Skip to main content

Ecotoxicological Effects of Insecticides in Plants Assessed by Germination and Other Phytotoxicity Tools

  • Chapter
  • First Online:
Biotic and Abiotic Stress Tolerance in Plants

Abstract

The management of crop-pests relies largely on conventional insecticides. Farmers around the world use pesticides as an insurance policy against the possibility of a devastating crop loss from pests and diseases. Conversely, the use of insecticides has several drawbacks for agriculture, such as decrease in pollinator population and terrestrial pollution as they are frequently detected in the environment.

Several tests are used to assess phytotoxicity regarding several mechanisms affecting plants, namely, (a) inhibition of biological processes such as photosynthesis, cell division, enzyme function, and root, shoot, and leaf development; (b) interference with the synthesis of pigments, proteins, or DNA; (c) cell membrane instability; and (d) the promotion of uncontrolled growth. Germination tests are extensively used to assess the toxicity induced by pollutants. In these types of tests, the germination indexes and the seedling’s growth and development are evaluated in a dose-response manner.

This review evaluates the application of insecticides leading to alteration on germination, in biochemical, physiological, and different enzymatic and nonenzymatic antioxidant levels that may affect the crop yield and insecticide residues in plants. As such, this chapter represents a systematic and integrated picture of insecticide toxicological effects on plants, highlighting germination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksoy O, Deveci A (2012) The investigation of the cytotoxic effects of some pesticides on soybean (Glycine max L.) Cytologia 77:475–483

    Article  Google Scholar 

  • Al-Ahmadi MS (2013) Cytogenetic effects of two synthetic pesticides on mitotic chromosome on root tip cells of Allium cepa. Cytologia 78:3–8

    Article  CAS  Google Scholar 

  • Aznar R, Moreno-Ramon H, Albero B et al (2017) Spatio-temporal distribution of pyrethroids in soil in Mediterranean paddy fields. J Soils Sediment 17:1503–1513

    Article  CAS  Google Scholar 

  • Barron MG, Ashurova ZJ, Kukaniev MA et al (2017) Residues of organochlorine pesticides in surface soil and raw foods from rural areas of the Republic of Tajikistan. Environ Pollut 224:494–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashir F, Mahmooduzzafar, Siddiqi TO et al (2007) The antioxidative response system in Glycine max (L.) Merr. exposed to Deltamethrin, a synthetic pyrethroid insecticide. Environ Pollut 147:94–100

    Article  CAS  PubMed  Google Scholar 

  • Bashir F, Zahid F, Iqbal M (2014) Growth performance, photosynthetic efficiency and pigment concentration of Glycine max (L.) Merr., as affected by alphamethrin, a synthetic pyrethroid insecticide. Trends Biotechnol Biol Sci 1:29–35

    Google Scholar 

  • Cantu-Soto EU, Meza-Montenegro MM, Valenzuela-Quintanar AI et al (2011) Residues of organochlorine pesticides in soils from the Southern Sonora, Mexico. Bull Environ Contam Toxicol 87:556

    Article  CAS  PubMed  Google Scholar 

  • Carvalho FP (2006) Agriculture, pesticides, food security and food safety. Environ Sci Pol 9:685–692

    Article  Google Scholar 

  • Cheema HK, Sharma P, Singh R et al (2009) Efficacy and compatibility of insecticides, fungicide and Rhizobium inoculant in combination for seed treatment in chickpea (Cicer arietinum). Indian J Agric Sci 79:190–194

    CAS  Google Scholar 

  • Chopade AR, Naikwade NS, Nalawade AY et al (2007) Effects of pesticides on chlorophyll content in leaves of medicinal plants. Pollut Res 26:491–494

    CAS  Google Scholar 

  • Coskun Y, Kilic S, Duran RE (2015) The effects of the insecticide pyriproxyfen on germination, development and growth responses of maize seedlings. Fresenius Environ Bull 24:278–284

    Google Scholar 

  • Da Silva Júnior FMR, Garcia EM, Baisch RM et al (2013) Assessment of a soil with moderate level of contamination using lettuce seed assay and terrestrial isopods assimilation assay. Soil Water Res 8:56–62

    Article  Google Scholar 

  • Daly GL, Lei YD, Teixeira C et al (2007) Accumulation of current-use pesticides in neotropical montane forests. Environ Sci Technol 41:1118–1123

    Article  CAS  PubMed  Google Scholar 

  • De A, Bose R, Kumar A et al (2014) Worldwide pesticide use. In: De A, Bose R, Kumar A, Mozumdar S (eds) Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer, New Delhi, pp 5–6

    Chapter  Google Scholar 

  • Dhungana SK, Kim ID, Kwak HS et al (2016) Unraveling the effect of structurally different classes of insecticide on germination and early plant growth of soybean Glycine max (L.) Merr. Pestic Biochem Physiol 130:39–43

    Article  CAS  PubMed  Google Scholar 

  • Dubey KK, Fulekar MH (2011) Effect of pesticides on the seed germination of Cenchrus setigerus and Pennisetum pedicellatum as monocropping and co-cropping system: implications for rhizospheric bioremediation. Roum Biotechnol Lett 16:5909–5918

    CAS  Google Scholar 

  • Dubey P, Mishra AK, Shukla P et al (2015) Differential sensitivity of barley (Hordeum vulgare L.) to chlorpyrifos and propiconazole: morphology, cytogenetic assay and photosynthetic pigments. Pestic Biochem Physiol 124:29–36

    Article  CAS  PubMed  Google Scholar 

  • Duran RE, Kilic S, Coskun Y (2015) Response of maize (Zea mays L. saccharata Sturt) to different concentration treatments of deltamethrin. Pestic Biochem Physiol 124:15–20

    Article  CAS  PubMed  Google Scholar 

  • Gillespie S, Long R, Seitz N et al (2014) Insecticide use in hybrid onion seed production affects pre- and postpollination processes. J Econ Entomol 107:29–37

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez M, Miglioranza KSB, Aizpún De Moreno JE et al (2003) Organochlorine pesticide residues in leek (Allium porrum) crops grown on untreated soils from an agricultural environment. J Agric Food Chem 51:5024–5029

    Article  CAS  PubMed  Google Scholar 

  • Guo ZW, Li YC, Yang QP et al (2016) Concentrations, sources and pollution characteristic of organic pesticide in soil from typical Chinese bamboo forest. Environ Prog Sustain Energy 35:729–736

    Article  CAS  Google Scholar 

  • Hamdi H, De La Torre-Roche R, Hawthorne J et al (2015) Impact of non-functionalized and amino-functionalized multiwall carbon nanotubes on pesticide uptake by lettuce (Lactuca sativa L.) Nanotoxicology 9:172–180

    Article  CAS  PubMed  Google Scholar 

  • Hanley ME, Whiting MD (2005) Insecticides and arable weeds: effects on germination and seedling growth. Ecotoxicology 14:483–490

    Article  CAS  PubMed  Google Scholar 

  • ISTA (1966) International rules for seed testing. Proc Int Seed Test Ass 31:1–152

    Google Scholar 

  • Kapanen A, Itävaara M (2001) Ecotoxicity tests for compost applications. Ecotoxicol Environ Saf 49:1–16

    Article  CAS  PubMed  Google Scholar 

  • Kishida M, Imamura K, Maeda Y et al (2007) Distribution of persistent organic pollutants and polycyclic aromatic hydrocarbons in sediment samples from Vietnam. J Health Sci 53:291–301

    Article  CAS  Google Scholar 

  • Kumar RSS, Shiny PJ, Anjali CH et al (2013) Distinctive effects of nano-sized permethrin in the environment. Environ Sci Pollut Res 20:2593–2602

    Article  CAS  Google Scholar 

  • Kumari B, Madan VK, Kathpal TS (2008) Status of insecticide contamination of soil and water in Haryana, India. Environ Monit Assess 136:239–244

    Article  CAS  PubMed  Google Scholar 

  • Lancaster SH, Jordan DL, Spears JF et al (2005) Sicklepod (Senna obtusifolia) control and seed production after 2,4-DB applied alone and with fungicides or insecticides. Weed Technol 19:451–455

    Article  CAS  Google Scholar 

  • Lichtenstein EP, Millington WF, Cowley GT (1962) Insecticide effects on plant growth, effect of various insecticides on growth and respiration of plants. J Agric Food Chem 10:251–256

    Article  CAS  Google Scholar 

  • Liu TF, Wang T, Sun C et al (2009) Single and joint toxicity of cypermethrin and copper on Chinese cabbage (Pakchoi) seeds. J Hazard Mater 163:344–348

    Article  CAS  PubMed  Google Scholar 

  • Loffredo E, Castellana G (2015) Comparative evaluation of the efficiency of low-cost adsorbents and ligninolytic fungi to remove a combination of xenoestrogens and pesticides from a landfill leachate and abate its phytotoxicity. J Environ Sci Health A 50:958–970

    CAS  Google Scholar 

  • Macedo WR, Fernandes GM, Possenti RA et al (2013) Responses in root growth, nitrogen metabolism and nutritional quality in Brachiaria with the use of thiamethoxam. Acta Physiol Plant 35:205–211

    Article  CAS  Google Scholar 

  • Maila MP, Cloete TE (2005) The use of biological activities to monitor the removal of fuel contaminants – perspective for monitoring hydrocarbon contamination: a review. Int Biodeterior Biodegrad 55:1–8

    Article  CAS  Google Scholar 

  • Main AR, Michel NL, Cavallaro MC et al (2016) Snowmelt transport of neonicotinoid insecticides to Canadian prairie wetlands. Agric Ecosyst Environ 215:76–84

    Article  CAS  Google Scholar 

  • Marković M, Cupać S, Đurović R et al (2010) Assessment of heavy metal and pesticide levels in soil and plant products from agricultural area of Belgrade, Serbia. Arch Environ Contam Toxicol 58:341–351

    Article  CAS  PubMed  Google Scholar 

  • Mathur SN, Singh VK, Mathur M et al (1989) Studies with phorate, an organophosphate insecticide, on some enzymes of nitrogen metabolism in Vigna mungo (L.) Hepper. Biol Plant 31:363–369

    Article  CAS  Google Scholar 

  • Mawussi G, Scorza Junior RP, Dossa EL et al (2014) Insecticide residues in soil and water in coastal areas of vegetable production in Togo. Environ Monit Assess 186:7379–7385

    Article  CAS  PubMed  Google Scholar 

  • Miller GT (2004) Sustaining the earth. Thompson Learning, Pacific Grove

    Google Scholar 

  • Mishra V, Srivastava G, Prasad SM et al (2008) Growth, photosynthetic pigments and photosynthetic activity during seedling stage of cowpea (Vigna unguiculata) in response to UV-B and dimethoate. Pestic Biochem Physiol 92:30–37

    Article  CAS  Google Scholar 

  • Mishra K, Sharma RC, Kumar S (2012) Contamination levels and spatial distribution of organochlorine pesticides in soils from India. Ecotoxicol Environ Saf 76:215–225

    Article  CAS  PubMed  Google Scholar 

  • Mishra K, Sharma RC, Kumar S (2013) Contamination profile of DDT and HCH in surface sediments and their spatial distribution from North-East India. Ecotoxicol Environ Saf 95:113–122

    Article  CAS  PubMed  Google Scholar 

  • Mishra IP, Sabat G, Mohanty BK (2015) Phytotoxicity of profenofos 50% EC (Curacron 50 EC) to Vigna radiata L. seedlings: III. Studies on secondary metabolites and enzymes. Int J Life Sci 3:351–359

    Google Scholar 

  • Mohamed HI, Akladious SA (2017) Changes in antioxidants potential, secondary metabolites and plant hormones induced by different fungicides treatment in cotton plants. Pestic Biochem Physiol 142:117–122

    Article  CAS  PubMed  Google Scholar 

  • Moore MT, Kroger R (2010) Effect of three insecticides and two herbicides on rice (Oryza sativa) seedling germination and growth. Arch Environ Contam Toxicol 59:574–581

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (1969) Insecticides. Insect-pest management and control. National Academies, Washington, DC, pp 64–98

    Google Scholar 

  • OECD (2006) Terrestrial plant test: seedling emergence and seedling growth test OECD guideline for testing of chemicals. Organization for Economic Cooperation and Development, Paris

    Google Scholar 

  • Parween T, Jan S, Mahmooduzzafar et al (2012) Evaluation of oxidative stress in Vigna radiata L. in response to chlorpyrifos. Int J Environ Sci Technol 9:605–612

    Article  CAS  Google Scholar 

  • Pereira RC, Monterroso C, Macías F (2010) Phytotoxicity of hexachlorocyclohexane: effect on germination and early growth of different plant species. Chemosphere 79:326–333

    Article  CAS  Google Scholar 

  • Pose-Juan E, Sanchez-Martin MJ, Andrades MS et al (2015) Pesticide residues in vineyard soils from Spain: spatial and temporal distributions. Sci Total Environ 514:351–358

    Article  CAS  PubMed  Google Scholar 

  • Priac A, Badot P-M, Crini G (2017) Treated wastewater phytotoxicity assessment using Lactuca sativa: focus on germination and root elongation test parameters. C R Biol 340:188–194

    Article  PubMed  Google Scholar 

  • Rambo CL, Zanotelli P, Dalegrave D et al (2017) Hydropower reservoirs: cytotoxic and genotoxic assessment using the Allium cepa root model. Environ Sci Pollut Res 24:8759–8768

    Article  CAS  Google Scholar 

  • Ratna Kumari B, Ranga Rao GV, Sahrawat KL et al (2012) Occurrence of insecticide residues in selected crops and natural resources. Bull Environ Contam Toxicol 89:187–192

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Otani T, Seike N et al (2012) A comparison of dieldrin residues in various vegetable crops cultivated in a contaminated field. J Soil Sci Plant Nutr 58:373–383

    Article  CAS  Google Scholar 

  • Sánchez-González S, Pose-Juan E, Herrero-Hernández E et al (2013) Pesticide residues in groundwaters and soils of agricultural areas in the Águeda River Basin from Spain and Portugal. Int J Environ Anal Chem 93:1585–1601

    Article  CAS  Google Scholar 

  • Shakir SK, Kanwal M, Murad W et al (2016) Effect of some commonly used pesticides on seed germination, biomass production and photosynthetic pigments in tomato (Lycopersicon esculentum). Ecotoxicology 25:329–341

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui ZS, Khan S (2001) Effect of systemic fungicides and insecticides on absorption spectra, chlorophyll and phenolic contents of Vigna radiata (L.) Wilczek. Pak J Biol Sci 4:812–814

    Article  Google Scholar 

  • Singh VK, Mathur M, Mathur SN (1982) Phyto-toxicity of the insecticide phorate on germination of Vigna mungo. Agric Biol Chem 46:1681–1682

    CAS  Google Scholar 

  • Singh KP, Malik A, Sinha S (2007) Persistent organochlorine pesticide residues in soil and surface water of northern Indo-Gangetic alluvial plains. Environ Monit Assess 125:147–155

    Article  CAS  PubMed  Google Scholar 

  • Somtrakoon K, Pratumma S (2012) Phytotoxicity of heptachlor and endosulfan sulfate contaminants in soils to economic crops. J Environ Biol 33:1097–1101

    PubMed  CAS  Google Scholar 

  • Soumya KR, Teena MT, Sudha S (2016) Evaluation of cytotoxic effects of synthetic pesticide “Attack” on root meristems of Allium cepa L. South Indian J Biol Sci 2:35–40

    Article  Google Scholar 

  • Srivastava AK, Singh AK (2009) Effects of insecticide profenophos on germination, early growth, meiotic behavior and chlorophyll mutation of barley (Hordeum vulgare L.) Acta Physiol Plant 31:537–544

    Article  CAS  Google Scholar 

  • Sruthi SN, Shyleshchandran MS, Mathew SP et al (2017) Contamination from organochlorine pesticides (OCPs) in agricultural soils of Kuttanad agroecosystem in India and related potential health risk. Environ Sci Pollut Res 24:969–978

    Article  CAS  Google Scholar 

  • Stevens MM, Reinke RF, Coombes NE et al (2008) Influence of imidacloprid seed treatments on rice germination and early seedling growth. Pest Manag Sci 64:215–222

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Wei Y, Li H et al (2016) Insecticides in sediment cores from a rural and a suburban area in South China: a reflection of shift in application patterns. Sci Total Environ 568:11–18

    Article  CAS  PubMed  Google Scholar 

  • Szczepaniec A, Raupp MJ, Parker RD et al (2013) Neonicotinoid insecticides alter induced defenses and increase susceptibility to spider mites in distantly related crop plants. PLoS One 8:e62620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szemruch CL, Ferrari L (2013) Encrusting offers protection against phytotoxic chemicals and maintains the physiological quality of sunflower (Helianthus annuus) seeds. Seed Sci Technol 41:125–132

    Article  Google Scholar 

  • USEPA (1996) In: Greene JC, Bartels CL, Warren-Hicks WJ, Parkhurst BR, Linder GL, Peterson SA, Miller WEE (eds) Protocols for short term toxicity screening of hazardous waste sites. USEPA, Chicago

    Google Scholar 

  • Van Dyk JC, Bouwman H, Barnhoorn IEJ et al (2010) DDT contamination from indoor residual spraying for malaria control. Sci Total Environ 408:2745–2752

    Article  CAS  PubMed  Google Scholar 

  • Villanneau E, Saby NPA, Arrouays D et al (2009) Spatial distribution of lindane in topsoil of Northern France. Chemosphere 77:1249–1255

    Article  CAS  PubMed  Google Scholar 

  • Wang WC, Freemark K (1995) The use of plants for environmental monitoring and assessment. Ecotoxicol Environ Saf 30:289–301

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Sun C, Gao S et al (2001) Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus. Chemosphere 44:1711–1721

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Lu Y, Shi Y et al (2007) Organochlorine pesticides in soils around Guanting Reservoir, China. Environ Geochem Health 29:491–501

    Article  CAS  PubMed  Google Scholar 

  • Wei YL, Bao LJ, Wu CC et al (2015) Assessing the effects of urbanization on the environment with soil legacy and current-use insecticides: a case study in the Pearl River Delta, China. Sci Total Environ 514:409–417

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yin DQ, Wu YT et al (2016) Organochlorine pesticides in sediments around Chaohu Lake: concentration levels and vertical distribution. Soil Sediment Contam 25:195–209

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Grosso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bragança, I. et al. (2018). Ecotoxicological Effects of Insecticides in Plants Assessed by Germination and Other Phytotoxicity Tools. In: Vats, S. (eds) Biotic and Abiotic Stress Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-9029-5_3

Download citation

Publish with us

Policies and ethics