Skip to main content

Understanding and Diagnosing Asthma and COPD by Metabolomics

  • Chapter
  • First Online:
Genomic Approach to Asthma

Part of the book series: Translational Bioinformatics ((TRBIO,volume 12))

  • 724 Accesses

Abstract

Metabolomics is an emerging analytical technology which offers unique molecular insights into respiratory diseases such as asthma, COPD, lung cancer, tuberculosis and influenza. Increasing number of studies have demonstrated that metabolomics is valuable in identifying disease phenotypes by revealing disease-relevant metabolic biomarkers in various lung diseases, especially asthma. These unique and distinctive disease metabolic signatures can be useful for clinical discrimination of various airway diseases. Latest reports have demonstrated that metabolomics may also be useful in diagnosing and separating different disease outcomes and stages, implicating the diagnostic value of this analytical approach. In this chapter, we provide a comprehensive overview of metabolomics investigations in asthma and COPD. This review will also discuss the prospective applications, advances and challenges in applying metabolomics to biomarker discovery, and the understanding of molecular disease mechanisms of these major respiratory diseases. With emerging technological advances in metabolomics-related analytical platforms, it is anticipated that metabolomics will become a major analytical technology for clinical phenotyping, diagnosis and understanding of asthma and COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fiehn O. Metabolomics–the link between genotypes and phenotypes. Plant Mol Biol. 2002;48:155–71. [PubMed: 11860207]

    Article  PubMed  CAS  Google Scholar 

  2. Xu Y-J, Wang C, Ho WE, Ong CN. Recent developments and applications of metabolomics in microbiological investigations. TrAC Trends Anal Chem. 2014;56:37–48.

    Article  CAS  Google Scholar 

  3. Ng DPK, Salim A, Liu Y, Zou L, Xu FG, Huang S, et al. A metabolomic study of low estimated GFR in non-proteinuric type 2 diabetes mellitus. Diabetologia. 2012;55:499–508. [PubMed: 22038517]

    Article  PubMed  CAS  Google Scholar 

  4. Xu Y-J, Ho WE, Xu F, Wen T, Ong CN. Exploratory investigation reveals parallel alteration of plasma fatty acids and eicosanoids in coronary artery disease patients. Prostaglandins Other Lipid Mediators. 2013;106:29–36. [PubMed: 24007966]

    Article  PubMed  CAS  Google Scholar 

  5. Ho WE, Xu YJ, Xu F, Cheng C, Peh HY, Tannenbaum SR, et al. Metabolomics reveals altered metabolic pathways in experimental asthma. Am J Respir Cell Mol Biol. 2013;48(2):204–11. [PubMed: 23144334]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ho WE, Xu Y-J, Cheng C, Peh HY, Tannenbaum SR, Wong WSF, et al. Metabolomics reveals inflammatory-linked pulmonary metabolic alterations in a murine model of house dust mite-induced allergic asthma. J Proteome Res. 2014;13:3771–82. [PubMed: 24956233]

    Article  CAS  PubMed  Google Scholar 

  7. Conlon Thomas M, Bartel J, Ballweg K, Günter S, Prehn C, Krumsiek J, et al. Metabolomics screening identifies reduced L-carnitine to be associated with progressive emphysema. Clin Sci. 2016;130:273–87. [PubMed: 26564208]

    Article  PubMed  CAS  Google Scholar 

  8. Adamko DJ, Sykes BD, Rowe BH. The metabolomics of asthma. Chest. 2012;141:1295–302. [PubMed: 22553262]

    Article  PubMed  CAS  Google Scholar 

  9. Snowden S, Dahlen SE, Wheelock CE. Application of metabolomics approaches to the study of respiratory diseases. Bioanalysis. 2012;4:2265–90. [PubMed: 23046268]

    Article  PubMed  CAS  Google Scholar 

  10. Wheelock CE, Goss VM, Balgoma D, Nicholas B, Brandsma J, Skipp PJ, et al. Application of 'omics technologies to biomarker discovery in inflammatory lung diseases. Eur Resp J. 2013;42:802–25. [PubMed: 23397306]

    Article  CAS  Google Scholar 

  11. Villaseñor A, Rosace D, Obeso D, Pérez-Gordo M, Chivato T, Barbas C, et al. Allergic asthma: an overview of metabolomic strategies leading to the identification of biomarkers in the field. Clin Exp Allergy. 2017;47:442–56. [PubMed: 28160515]

    Article  PubMed  CAS  Google Scholar 

  12. Bao Z, Guan S, Cheng C, Wu S, Wong SH, Kemeny DM, et al. A novel Antiinflammatory role for Andrographolide in asthma via inhibition of the nuclear factor-κB pathway. Am J Respir Crit Care Med. 2009;179:657–65. [PubMed: 19201922]

    Article  PubMed  CAS  Google Scholar 

  13. Cheng C, Ho WE, Goh FY, Guan SP, Kong LR, Lai W-Q, et al. Anti-malarial drug Artesunate attenuates experimental allergic asthma via inhibition of the phosphoinositide 3-kinase/Akt pathway. PLoS One. 2011;6:e20932. [PubMed: 21695271]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ho WE, Cheng C, Peh HY, Xu F, Tannenbaum SR, Ong CN, et al. Anti-malarial drug artesunate ameliorates oxidative lung damage in experimental allergic asthma. Free Radic Biol Med. 2012;53:498–507. [PubMed: 22634146]

    Article  PubMed  CAS  Google Scholar 

  15. Cruz AA, Bousquet J, Khaltaev N. Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach. Geneva: World Health Organization; 2007.

    Google Scholar 

  16. Carraro S, Rezzi S, Reniero F, Heberger K, Giordano G, Zanconato S, et al. Metabolomics applied to exhaled breath condensate in childhood asthma. Am J Respir Crit Care Med. 2007;175:986–90. [PubMed: 17303796]

    Article  PubMed  CAS  Google Scholar 

  17. Carraro S, Giordano G, Reniero F, Carpi D, Stocchero M, Sterk PJ, et al. Asthma severity in childhood and metabolomic profiling of breath condensate. Allergy. 2013;68:110–7. [PubMed:23157191]

    Article  PubMed  CAS  Google Scholar 

  18. Ibrahim B, Marsden P, Smith JA, Custovic A, Nilsson M, Fowler SJ. Breath metabolomic profiling by nuclear magnetic resonance spectroscopy in asthma. Allergy. Eur J Allergy Clin Immunol. 2013;68:1050–6. [PubMed:23888905]

    Article  CAS  Google Scholar 

  19. Gahleitner F, Guallar-Hoyas C, Beardsmore CS, Pandya HC, Thomas CP. Metabolomics pilot study to identify volatile organic compound markers of childhood asthma in exhaled breath. Bioanalysis. 2013;5:2239–47. [PubMed:24053239]

    Article  PubMed  CAS  Google Scholar 

  20. Motta A, Paris D, D’Amato M, Melck D, Calabrese C, Vitale C, et al. NMR Metabolomic analysis of exhaled breath condensate of asthmatic patients at two different temperatures. J Proteome Res. 2014;13:6107–20. [PubMed:25393672]

    Article  PubMed  CAS  Google Scholar 

  21. Maniscalco M, Paris D, Melck DJ, D'Amato M, Zedda A, Sofia M, et al. Coexistence of obesity and asthma determines a distinct respiratory metabolic phenotype. J Allergy Clin Immunol. 2017;139:1536–47. e5. [PubMed: 27746236]

    Article  PubMed  CAS  Google Scholar 

  22. Malkar A, Wilson E, Harrrison T, Shaw D, Creaser C. Untargeted metabolic profiling of saliva by liquid chromatography-mass spectrometry for the identification of potential diagnostic biomarkers of asthma. Analyt Meth. 2016;8:5407–13.

    Article  CAS  Google Scholar 

  23. Saude EJ, Obiefuna IP, Somorjai RL, Ajamian F, Skappak C, Ahmad T, et al. Metabolomic biomarkers in a model of asthma exacerbation: urine nuclear magnetic resonance. Am J Respir Crit Care Med. 2009;179:25–34. [PubMed: 18931331]

    Article  PubMed  CAS  Google Scholar 

  24. Saude EJ, Skappak CD, Regush S, Cook K, Ben-Zvi A, Becker A, et al. Metabolomic profiling of asthma: diagnostic utility of urine nuclear magnetic resonance spectroscopy. J Allergy Clin Immunol. 2011;127:757–64. [PubMed: 21377043]

    Article  PubMed  CAS  Google Scholar 

  25. Mattarucchi E, Baraldi E, Guillou C. Metabolomics applied to urine samples in childhood asthma; differentiation between asthma phenotypes and identification of relevant metabolites. Biomed Chromatogr. 2011;26:89–94. [PubMed: 21465502]

    Article  PubMed  CAS  Google Scholar 

  26. Adamko DJ, Nair P, Mayers I, Tsuyuki RT, Regush S, Rowe BH. Metabolomic profiling of asthma and chronic obstructive pulmonary disease: A pilot study differentiating diseases. J Allergy Clin Immunol. 2015;136:571–80. e3. [PubMed: 26152317]

    Article  PubMed  Google Scholar 

  27. Loureiro CC, Duarte IF, Gomes J, Carrola J, Barros AS, Gil AM, et al. Urinary metabolomic changes as a predictive biomarker of asthma exacerbation. J Allergy Clin Immunol. 2014;133:261–3. [PubMed: 24369803]

    Article  PubMed  Google Scholar 

  28. Loureiro CC, Oliveira AS, Santos M, Rudnitskaya A, Todo-Bom A, Bousquet J, et al. Urinary metabolomic profiling of asthmatics can be related to clinical characteristics. Allergy. 2016;71:1362–5. [PubMed: 27188766]

    Article  PubMed  CAS  Google Scholar 

  29. Park YH, Fitzpatrick AM, Medriano CA, Jones DP. High-resolution metabolomics to identify urine biomarkers in corticosteroid-resistant asthmatic children. J Allergy Clin Immunol. 2017;139(5):1518–24. e4. [PubMed: 27658760]

    Article  PubMed  CAS  Google Scholar 

  30. Jung J, Kim S-H, Lee H-S, Choi GS, Jung Y-S, Ryu DH, et al. Serum metabolomics reveals pathways and biomarkers associated with asthma pathogenesis. Clin Exp Allergy. 2013;43:425–33. [PMID: 23517038]

    Article  PubMed  CAS  Google Scholar 

  31. Ried JS, Baurecht H, Stuckler F, Krumsiek J, Gieger C, Heinrich J, et al. Integrative genetic and metabolite profiling analysis suggests altered phosphatidylcholine metabolism in asthma. Allergy. 2013;68:629–36. [PubMed:23452035]

    Article  PubMed  CAS  Google Scholar 

  32. Checkley W, Deza MP, Klawitter J, Romero KM, Klawitter J, Pollard SL, et al. Identifying biomarkers for asthma diagnosis using targeted metabolomics approaches. Respir Med. 2016;121:59–66. [PubMed: 27888993]

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ban GY, Cho K, Kim SH, Yoon MK, Kim JH, Lee HY, et al. Metabolomic analysis identifies potential diagnostic biomarkers for aspirin-exacerbated respiratory disease. Clin Expl Allergy. 2017;47:37–47. [PubMed: 27533637]

    Article  CAS  Google Scholar 

  34. Lee HY, Ye YM, Kim SH, Ban GY, Kim SC, Kim JH, et al. Identification of phenotypic clusters of nonsteroidal anti-inflammatory drugs exacerbated respiratory disease. Allergy. 2017;72:616–26. [PubMed:27805264]

    Article  PubMed  CAS  Google Scholar 

  35. Fitzpatrick AM, Park Y, Brown LAS, Jones DP. Children with severe asthma have unique oxidative stress–associated metabolomic profiles. J Allergy Clin Immunol. 2014;133:258–61. e8. [PubMed:24369802]

    Article  PubMed  PubMed Central  Google Scholar 

  36. Comhair SAA, McDunn J, Bennett C, Fetig J, Erzurum SC, Kalhan SC. Metabolomic endotype of Asthma. J Immunol. 2015;195:643–50. [PubMed: 26048149]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gao H, Sun Z, Xiao C, Zheng X, Zhang Y. The metabonomic study of Shaoyao-Gancao decoction in a rat model of acute bronchial asthma by 1H NMR. Analyt Meth. 2016;8:570–81.

    Article  CAS  Google Scholar 

  38. Kelly RS, Virkud Y, Giorgio R, Celedón JC, Weiss ST, Lasky-Su J. Metabolomic profiling of lung function in Costa-Rican children with asthma. Biochim Biophys Acta. 2017;1863:1590–5. [PubMed: 28188833]

    Article  PubMed Central  CAS  Google Scholar 

  39. Yu M, Cui F-X, Jia H-M, Zhou C, Yang Y, Zhang H-W, et al. Aberrant purine metabolism in allergic asthma revealed by plasma metabolomics. J Pharmaceut Biomed Analy. 2016;120:181–9. [PubMed: 26744988]

    Article  CAS  Google Scholar 

  40. Peng J, St. Laurent CD, Befus AD, Zhou R, Li L. Metabolomic profiling of bronchoalveolar lavage fluids by isotope labeling liquid chromatography mass spectrometry: a promising approach to studying experimental asthma. Metabolomics. 2014;10:1305–17.

    Article  CAS  Google Scholar 

  41. Lara A, Khatri SB, Wang Z, Comhair SAA, Xu W, Dweik RA, et al. Alterations of the arginine metabolome in asthma. Am J Respir Crit Care Med. 2008;178:673–81. [PubMed: 18635886]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Aggarwal A, Baker C, Evans T, Haslam P. G-CSF and IL-8 but not GM-CSF correlate with severity of pulmonary neutrophilia in acute respiratory distress syndrome. Eur Resp J. 2000;15:895–901. [PubMed: 10853855]

    Article  CAS  Google Scholar 

  43. Ho W, Xu Y-J, Xu F, Cheng C, Peh H, Huang S-M, et al. Anti-malarial drug artesunate restores metabolic changes in experimental allergic asthma. Metabolomics. 2014; 11:1–11.

    Article  CAS  Google Scholar 

  44. Celli BR, Cote CG, Marin JM, Casanova C, Montes de Oca M, Mendez RA, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. New Engl J Med. 2004;350:1005–12. [PubMed: 14999112]

    Article  PubMed  CAS  Google Scholar 

  45. Tinkelman DG, Price DB, Nordyke RJ, Halbert RJ. Misdiagnosis of COPD and asthma in primary care patients 40 years of age and over. J Asthma. 2006;43:75–80. [PubMed: 16448970]

    Article  PubMed  Google Scholar 

  46. Fens N, Roldaan AC, van der Schee MP, Boksem RJ, Zwinderman AH, Bel EH, et al. External validation of exhaled breath profiling using an electronic nose in the discrimination of asthma with fixed airways obstruction and chronic obstructive pulmonary disease. Clin Exp Allergy. 2011;41:1371–8. [PubMed:21732998]

    Article  PubMed  CAS  Google Scholar 

  47. Fens N, Zwinderman AH, van der Schee MP, de Nijs SB, Dijkers E, Roldaan AC, et al. Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am J Respir Crit Care Med. 2009;180:1076–82. [PubMed: 19713445]

    Article  PubMed  CAS  Google Scholar 

  48. Postma DS, Rabe KF. The asthma–COPD overlap syndrome. New Engl J Med. 2015;373:1241–9. [PubMed:26398072]

    Article  PubMed  CAS  Google Scholar 

  49. de Laurentiis G, Paris D, Melck D, Maniscalco M, Marsico S, Corso G, et al. Metabonomic analysis of exhaled breath condensate in adults by nuclear magnetic resonance spectroscopy. Eur Respir J. 2008;32:1175–83. [PubMed: 18653649]

    Article  PubMed  CAS  Google Scholar 

  50. de Laurentiis G, Paris D, Melck D, Montuschi P, Maniscalco M, Bianco A, et al. Separating smoking-related diseases using NMR-based metabolomics of exhaled breath condensate. J Proteome Res. 2013;12:1502–11. [PubMed: 2336015]

    Article  PubMed  CAS  Google Scholar 

  51. Bertini I, Luchinat C, Miniati M, Monti S, Tenori L. Phenotyping COPD by 1H NMR metabolomics of exhaled breath condensate. Metabolomics. 2014;10:302–11.

    Article  CAS  Google Scholar 

  52. Basanta M, Ibrahim B, Dockry R, Douce D, Morris M, Singh D, et al. Exhaled volatile organic compounds for phenotyping chronic obstructive pulmonary disease: a cross-sectional study. Respir Res. 2012;13:72. [PubMed: 22916684]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Basanta M, Jarvis RM, Xu Y, Blackburn G, Tal-Singer R, Woodcock A, et al. Non-invasive metabolomic analysis of breath using differential mobility spectrometry in patients with chronic obstructive pulmonary disease and healthy smokers. Analyst. 2010;135:315–20. [PubMed: 20098764]

    Article  PubMed  CAS  Google Scholar 

  54. Basanta M, Koimtzis T, Thomas CP. Sampling and analysis of exhaled breath on human subjects with thermal desorption gas chromatography-differential mobility spectrometry. Int J Ion Mobility Spectrom. 2006;9:45–9.

    CAS  Google Scholar 

  55. Fens N, de Nijs SB, Peters S, Dekker T, Knobel HH, Vink TJ, et al. Exhaled air molecular profiling in relation to inflammatory subtype and activity in COPD. Eur Resp J. 2011;38:1301–9. [PubMed: 21700610]

    Article  CAS  Google Scholar 

  56. Fens N, van Rossum AG, Zanen P, van Ginneken B, van Klaveren RJ, Zwinderman AH, et al. Subphenotypes of mild-to-moderate COPD by factor and cluster analysis of pulmonary function, CT imaging and breathomics in a population-based survey. COPD. 2013;10:277–85. [PubMed: 23536961]

    Article  PubMed  Google Scholar 

  57. Paige M, Burdick MD, Kim S, Xu J, Lee JK, Shim YM. Pilot analysis of the plasma metabolite profiles associated with emphysematous chronic obstructive pulmonary disease phenotype. Biochem Biophys Res Comm. 2011;413:588–93. [PubMed: 21925153]

    Article  PubMed  CAS  Google Scholar 

  58. Rodríguez DA, Alcarraz-Vizán G, Díaz-Moralli S, Reed M, Gómez FP, Falciani F, et al. Plasma metabolic profile in COPD patients: effects of exercise and endurance training. Metabolomics. 2012;8:508–16.

    Article  CAS  Google Scholar 

  59. McClay JL, Adkins DE, Isern NG, O’Connell TM, Wooten JB, Zedler BK, et al. 1H nuclear magnetic resonance metabolomics analysis identifies novel urinary biomarkers for lung function. J Proteome Res. 2010;9:3083–90. [PubMed: 20408573]

    Article  PubMed  CAS  Google Scholar 

  60. Wang L, Tang Y, Liu S, Mao S, Ling Y, Liu D, et al. Metabonomic profiling of serum and urine by 1H NMR-based spectroscopy discriminates patients with chronic obstructive pulmonary disease and healthy individuals. PLoS One. 2013;8:e65675. [PubMed: 23755267]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Cruickshank-Quinn CI, Mahaffey S, Justice MJ, Hughes G, Armstrong M, Bowler RP, et al. Transient and persistent Metabolomic changes in plasma following chronic cigarette smoke exposure in a mouse model. PLoS One. 2014;9:e101855. [PubMed: 25007263]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Deja S, Porebska I, Kowal A, Zabek A, Barg W, Pawelczyk K, et al. Metabolomics provide new insights on lung cancer staging and discrimination from chronic obstructive pulmonary disease. J Pharmaceut Biomed Analy. 2014;100:369–80. [PubMed: 25007263]

    Article  CAS  Google Scholar 

  63. Ubhi BK, Cheng KK, Dong J, Janowitz T, Jodrell D, Tal-Singer R, et al. Targeted metabolomics identifies perturbations in amino acid metabolism that sub-classify patients with COPD. Mol BioSys. 2012;8:3125–33. [PubMed:25213261]

    Article  CAS  Google Scholar 

  64. Ubhi BK, Riley JH, Shaw PA, Lomas DA, Tal-Singers R, MacNeef W, et al. Metabolic profiling detects biomarkers of protein degradation in COPD patients. Eur Resp J. 2012;40:345–55. [PubMed: 22183483]

    Article  CAS  Google Scholar 

  65. Xu W-F, Upur H, Wu Y-H, Mamtimin B, Yang J, Ga Y-J, et al. Metabolomic changes in patients with chronic obstructive pulmonary disease with abnormal Savda syndrome. Exp Ther Med. 2015;9:425–31. [PubMed:4280916]

    Article  PubMed  CAS  Google Scholar 

  66. Gulcev M, Reilly C, Griffin TJ, Broeckling CD, Sandri BJ, Witthuhn BA, et al. Tryptophan catabolism in acute exacerbations of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2016;11:2435–46. [PubMed: 27729784]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Singh B, Jana SK, Ghosh N, Das SK, Joshi M, Bhattacharyya P, et al. Metabolomic profiling of doxycycline treatment in chronic obstructive pulmonary disease. J Pharmaceut Biomed Analy. 2017;132:103–8. [PubMed: 27697570]

    Article  CAS  Google Scholar 

  68. Wendt CH, Nelsestuen G, Harvey S, Gulcev M, Stone M, Reilly C. Peptides in Bronchoalveolar lavage in chronic obstructive pulmonary disease. PLoS One. 2016;11(5):e0155724. [PubMed: 27227774]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Li J, Yang L, Li Y, Tian Y, Li S, Jiang S, et al. Metabolomics study on model rats of chronic obstructive pulmonary disease treated with BuFei JianPi. Mol Med Reports. 2015;11:1324–33. [PubMed:25370181]

    Article  CAS  Google Scholar 

  70. Fabbri L, Luppi F, Beghe B, Rabe K. Complex chronic comorbidities of COPD. Eur Resp J. 2008;31:204. [PubMed:18166598]

    Article  CAS  Google Scholar 

  71. Clini EM, Beghé B, Fabbri LM. Chronic obstructive pulmonary disease is just one component of the complex multimorbidities in patients with COPD. Am J Respir Crit Care Med. 2013;187:668–71. [PubMed: 23540872]

    Article  PubMed  Google Scholar 

  72. Choudhury G, Rabinovich R, MacNee W. Comorbidities and systemic effects of chronic obstructive pulmonary disease. Clinics Chest Med. 2014;35:101–30. [PubMed: 24507840]

    Article  Google Scholar 

  73. Barnes PJ. Role of HDAC2 in the pathophysiology of COPD. Annu Rev Physiol. 2009;71:451–64. [PubMed: 18817512]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. S. Fred Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ho, W.E., Fred Wong, W.S. (2018). Understanding and Diagnosing Asthma and COPD by Metabolomics. In: Wang, X., Chen, Z. (eds) Genomic Approach to Asthma. Translational Bioinformatics, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-10-8764-6_8

Download citation

Publish with us

Policies and ethics