Skip to main content

Metabolomics of Respiratory Diseases

  • Chapter
  • First Online:
Metabolomics and Its Impact on Health and Diseases

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 277))

Abstract

Metabolomics is an expanding field of systems biology that is gaining significant attention in respiratory research. As a unique approach to understanding and diagnosing diseases, metabolomics provides a snapshot of all metabolites present in biological samples such as exhaled breath condensate, bronchoalveolar lavage, plasma, serum, urine, and other specimens that may be obtained from patients with respiratory diseases. In this article, we review the rapidly expanding field of metabolomics in its application to respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), pneumonia, and acute lung injury, along with its more severe form, adult respiratory disease syndrome. We also discuss the potential applications of metabolomics for monitoring exposure to aerosolized occupational and environmental materials. With the latest advances in our understanding of the microbiome, we discuss microbiome-derived metabolites that arise from the gut and lung in asthma and COPD that have mechanistic implications for these diseases. Recent literature has suggested that metabolomics analysis using nuclear magnetic resonance (NMR) and mass spectrometry (MS) approaches may provide clinicians with the opportunity to identify new biomarkers that may predict progression to more severe diseases which may be fatal for many patients each year.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashbaugh DG, Bigelow DB, Petty TL, Levine BE (1967) Acute respiratory distress in adults. Lancet 2(7511):319–323

    Article  CAS  PubMed  Google Scholar 

  • Barcik W, Boutin RCT, Sokolowska M, Finlay BB (2020) The role of lung and gut microbiota in the pathology of asthma. Immunity 52(2):241–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM, Schmidt TM, Young VB, Beck JM, Curtis JL, Huffnagle GB (2015) Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio 6(2):e00037

    Article  PubMed  PubMed Central  Google Scholar 

  • Bian X, Sun B, Zheng P, Li N, Wu JL (2017) Derivatization enhanced separation and sensitivity of long chain-free fatty acids: application to asthma using targeted and non-targeted liquid chromatography-mass spectrometry approach. Anal Chim Acta 989:59–70

    Article  CAS  PubMed  Google Scholar 

  • Bos LDJ (2018) Diagnosis of acute respiratory distress syndrome by exhaled breath analysis. Ann Transl Med 6(2):33

    Article  PubMed  PubMed Central  Google Scholar 

  • Bos LD, Weda H, Wang Y, Knobel HH, Nijsen TM, Vink TJ, Zwinderman AH, Sterk PJ, Schultz MJ (2014) Exhaled breath metabolomics as a noninvasive diagnostic tool for acute respiratory distress syndrome. Eur Respir J 44(1):188–197

    Article  PubMed  Google Scholar 

  • Bowerman KL, Rehman SF, Vaughan A, Lachner N, Budden KF, Kim RY, Wood DLA, Gellatly SL, Shukla SD, Wood LG, Yang IA et al (2020) Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat Commun 11(1):5886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P, Hansbro PM (2017) Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol 15(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Cait A, Hughes MR, Antignano F, Cait J, Dimitriu PA, Maas KR, Reynolds LA, Hacker L, Mohr J, Finlay BB, Zaph C et al (2018) Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunol 11(3):785–795

    Article  CAS  PubMed  Google Scholar 

  • Chambers ES, Preston T, Frost G, Morrison DJ (2018) Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep 7(4):198–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang-Chien J, Huang HY, Tsai HJ, Lo CJ, Lin WC, Tseng YL, Wang SL, Ho HY, Cheng ML, Yao TC (2021) Metabolomic differences of exhaled breath condensate among children with and without asthma. Pediatr Allergy Immunol 32(2):264–272

    Article  CAS  PubMed  Google Scholar 

  • Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, Bushman FD, Collman RG (2011) Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 184(8):957–963

    Article  PubMed  PubMed Central  Google Scholar 

  • Checkley W, Deza MP, Klawitter J, Romero KM, Klawitter J, Pollard SL, Wise RA, Christians U, Hansel NN (2016) Identifying biomarkers for asthma diagnosis using targeted metabolomics approaches. Respir Med 121(1532–3064 (Electronic)):59–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H, Li Z, Dong L, Wu Y, Shen H, Chen Z (2019) Lipid metabolism in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 14:1009–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu CY, Lin G, Cheng ML, Chiang MH, Tsai MH, Su KW, Hua MC, Liao SL, Lai SH, Yao TC, Yeh KW et al (2018) Longitudinal urinary metabolomic profiling reveals metabolites for asthma development in early childhood. Pediatr Allergy Immunol 29(5):496–503

    Article  PubMed  Google Scholar 

  • Chiu CY, Cheng ML, Chiang MH, Wang CJ, Tsai MH, Lin G (2020) Metabolomic analysis reveals distinct profiles in the plasma and urine associated with IgE reactions in childhood asthma. J Clin Med 9(3):887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu CY, Cheng ML, Chiang MH, Wang CJ, Tsai MH, Lin G (2021) Integrated metabolic and microbial analysis reveals host–microbial interactions in IgE-mediated childhood asthma. Sci Rep 11(1):23407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowley G, Kwon S, Haider SH, Caraher EJ, Lam R, St-Jules DE, Liu M, Prezant DJ, Nolan A (2018) Metabolomics of world trade center-lung injury: a machine learning approach. BMJ Open Respir Res 5(1):e000274

    Article  PubMed  PubMed Central  Google Scholar 

  • Cullinan P, Munoz X, Suojalehto H, Agius R, Jindal S, Sigsgaard T, Blomberg A, Charpin D, Annesi-Maesano I, Gulati M, Kim Y et al (2017) Occupational lung diseases: from old and novel exposures to effective preventive strategies. Lancet Respir Med 5(5):445–455

    Article  PubMed  Google Scholar 

  • Denner DR, Sangwan N, Becker JB, Hogarth DK, Oldham J, Castillo J, Sperling AI, Solway J, Naureckas ET, Gilbert JA, White SR (2016) Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways. J Allergy Clin Immunol 137(5):1398–1405

    Article  CAS  PubMed  Google Scholar 

  • Devine JF (2008) Chronic obstructive pulmonary disease: an overview. Am Health Drug Benefits 1(7):34–42

    PubMed  PubMed Central  Google Scholar 

  • Diao W, Labaki WW, Han MK, Yeomans L, Sun Y, Smiley Z, Kim JH, McHugh C, Xiang P, Shen N, Sun X et al (2019) Disruption of histidine and energy homeostasis in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 14:2015–2025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB (2016) The microbiome and the respiratory tract. Annu Rev Physiol 78(1):481–504

    Article  CAS  PubMed  Google Scholar 

  • Durack J, Lynch SV, Nariya S, Bhakta NR, Beigelman A, Castro M, Dyer AM, Israel E, Kraft M, Martin RJ, Mauger DT et al (2017) Features of the bronchial bacterial microbiome associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment. J Allergy Clin Immunol 140(1):63–75

    Article  CAS  PubMed  Google Scholar 

  • Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, Schmidt LA, Young VB, Toews GB, Curtis JL, Sundaram B, Martinez FJ et al (2011) Analysis of the lung microbiome in the "healthy" smoker and in COPD. PLoS One 6(2):e16384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans CR, Karnovsky A, Kovach MA, Standiford TJ, Burant CF, Stringer KA (2014) Untargeted LC-MS metabolomics of bronchoalveolar lavage fluid differentiates acute respiratory distress syndrome from health. J Proteome Res 13(2):640–649

    Article  CAS  PubMed  Google Scholar 

  • Ferraro VA, Carraro S, Pirillo P, Gucciardi A, Poloniato G, Stocchero M, Giordano G, Zanconato S, Baraldi E (2020) Breathomics in asthmatic children treated with inhaled corticosteroids. Meta 10(10):390

    CAS  Google Scholar 

  • Gai X, Guo C, Zhang L, Zhang L, Abulikemu M, Wang J, Zhou Q, Chen Y, Sun Y, Chang C (2021) Serum glycerophospholipid profile in acute exacerbation of chronic obstructive pulmonary disease. Front Physiol 12:646010

    Article  PubMed  PubMed Central  Google Scholar 

  • Gattinoni L, Cressoni M, Brazzi L (2014) Fluids in ARDS: from onset through recovery. Curr Opin Crit Care 20(4):373–377

    Article  PubMed  Google Scholar 

  • Ghosh N, Choudhury P, Kaushik SR, Arya R, Nanda R, Bhattacharyya P, Roychowdhury S, Banerjee R, Chaudhury K (2020) Metabolomic fingerprinting and systemic inflammatory profiling of asthma COPD overlap (ACO). Respir Res 21(1):126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goleva E, Jackson LP, Harris JK, Robertson CE, Sutherland ER, Hall CF, Good JT Jr, Gelfand EW, Martin RJ, Leung DY (2013) The effects of airway microbiome on corticosteroid responsiveness in asthma. Am J Respir Crit Care Med 188(10):1193–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grassin-Delyle S, Roquencourt C, Moine P, Saffroy G, Carn S, Heming N, Fleuriet J, Salvator H, Naline E, Couderc LJ, Devillier P et al (2021) Metabolomics of exhaled breath in critically ill COVID-19 patients: a pilot study. EBioMedicine 63:103154

    Article  CAS  PubMed  Google Scholar 

  • Griffin MR, Zhu Y, Moore MR, Whitney CG, Grijalva CG (2013) U.S. Hospitalizations for pneumonia after a decade of pneumococcal vaccination. N Engl J Med 369(2):155–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halper-Stromberg E, Gillenwater L, Cruickshank-Quinn C, O'Neal WK, Reisdorph N, Petrache I, Zhuang Y, Labaki WW, Curtis JL, Wells J, Rennard S et al (2019) Bronchoalveolar lavage fluid from COPD patients reveals more compounds associated with disease than matched plasma. Metabolites 9(8):157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, Davies J, Ervine A, Poulter L, Pachter L, Moffatt MF et al (2010) Disordered microbial communities in asthmatic airways. PLoS One 5(1):e8578

    Article  PubMed  PubMed Central  Google Scholar 

  • Horvat RJ, Lane WG, Ng H, Shepherd AD (1964) Saturated hydrocarbons from autoxidizing methyl linoleate. Nature 203:523–524

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Shi G (2019) Smoking and microbiome in oral, airway, gut and some systemic diseases. J Transl Med 17(1):225

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang YJ, Nariya S, Harris JM, Lynch SV, Choy DF, Arron JR, Boushey H (2015) The airway microbiome in patients with severe asthma: associations with disease features and severity. J Allergy Clin Immunol 136(4):874–884

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izquierdo-Garcia JL, Naz S, Nin N, Rojas Y, Erazo M, Martinez-Caro L, Garcia A, de Paula M, Fernandez-Segoviano P, Casals C, Esteban A et al (2014) A Metabolomic approach to the pathogenesis of ventilator-induced lung injury. Anesthesiology 120(3):694–702

    Article  CAS  PubMed  Google Scholar 

  • Jiang T, Dai L, Li P, Zhao J, Wang X, An L, Liu M, Wu S, Wang Y, Peng Y, Sun D et al (2021) Lipid metabolism and identification of biomarkers in asthma by lipidomic analysis. Biochim Biophys Acta Mol Cell Biol Lipids 1866(2):158853

    Article  CAS  PubMed  Google Scholar 

  • Kang YP, Lee WJ, Hong JY, Lee SB, Park JH, Kim D, Park S, Park CS, Park SW, Kwon SW (2014) Novel approach for analysis of bronchoalveolar lavage fluid (BALF) using HPLC-QTOF-MS-based lipidomics: lipid levels in asthmatics and corticosteroid-treated asthmatic patients. J Proteome Res 13(9):3919–3929

    Article  CAS  PubMed  Google Scholar 

  • Kelly RS, Virkud Y, Giorgio R, Celedon JC, Weiss ST, Lasky-Su J (2017) Metabolomic profiling of lung function in Costa-Rican children with asthma. Biochim Biophys Acta Mol basis Dis 1863(6):1590–1595

    Article  CAS  PubMed  Google Scholar 

  • Keogh E, Mark WE (2021) Managing malnutrition in COPD: a review. Respir Med 176:106248

    Article  PubMed  Google Scholar 

  • Kilk K, Aug A, Ottas A, Soomets U, Altraja S, Altraja A (2018) Phenotyping of chronic obstructive pulmonary disease based on the integration of metabolomes and clinical characteristics. Int J Mol Sci 19(3):666

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon S, Lee M, Crowley G, Schwartz T, Zeig-Owens R, Prezant DJ, Liu M, Nolan A (2021) Dynamic metabolic risk profiling of world trade center lung disease: a longitudinal cohort study. Am J Respir Crit Care Med 204(9):1035–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacy P, McKay RT, Finkel M, Karnovsky A, Woehler S, Lewis MJ, Chang D, Stringer KA (2014) Signal intensities derived from different NMR probes and parameters contribute to variations in quantification of metabolites. PLoS One 9(1):e85732

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G, Malinchoc M, Cartin-Ceba R, Venkata CV, Kor DJ, Peters SG, Hubmayr RD, Gajic O (2011) Eight-year trend of acute respiratory distress syndrome: a population-based study in Olmsted County, Minnesota. Am J Respir Crit Care Med 183(1):59–66

    Article  PubMed  Google Scholar 

  • Li S, Liu J, Zhou J, Wang Y, Jin F, Chen X, Yang J, Chen Z (2020) Urinary Metabolomic profiling reveals biological pathways and predictive signatures associated with childhood asthma. J Asthma Allergy 13:713–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Dai Z, Wang Z, Deng Z, Zhang J, Pu J, Cao W, Pan T, Zhou Y, Yang Z, Li J et al (2021) Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease. Respir Res 22(1):274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Gai XY, Chang C, Zhang X, Wang J, Li TT (2019) Metabolomic profiling differences among asthma, COPD, and healthy subjects: a LC-MS-based metabolomic analysis. Biomed Environ Sci 32(9):659–672

    CAS  PubMed  Google Scholar 

  • Loureiro CC, Oliveira AS, Santos M, Rudnitskaya A, Todo-Bom A, Bousquet J, Rocha SM (2016) Urinary metabolomic profiling of asthmatics can be related to clinical characteristics. Allergy 71(9):1362–1365

    Article  CAS  PubMed  Google Scholar 

  • Loverdos K, Bellos G, Kokolatou L, Vasileiadis I, Giamarellos E, Pecchiari M, Koulouris N, Koutsoukou A, Rovina N (2019) Lung microbiome in asthma: current perspectives. J Clin Med 8(11):1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolomics – a review in human disease diagnosis. Anal Chim Acta 659(1–2):23–33

    Article  CAS  PubMed  Google Scholar 

  • Maniscalco M, Paris D, Melck DJ, D'Amato M, Zedda A, Sofia M, Stellato C, Motta A (2017) Coexistence of obesity and asthma determines a distinct respiratory metabolic phenotype. J Allergy Clin Immunol 139(5):1536–1547

    Article  CAS  PubMed  Google Scholar 

  • Maniscalco M, Paris D, Melck D, Chiariello N, Di Napoli F, Manno M, Iavicoli I, Motta A (2018) Biomonitoring of workers using nuclear magnetic resonance-based metabolomics of exhaled breath condensate: a pilot study. Toxicol Lett 298:4–12

    Article  CAS  PubMed  Google Scholar 

  • Marsland BJ, Trompette A, Gollwitzer ES (2015) The gut-lung axis in respiratory disease. Ann Am Thorac Soc 12(Suppl 2):S150–S156

    Article  PubMed  Google Scholar 

  • Martin TR, Matute-Bello G (2011) Experimental models and emerging hypotheses for acute lung injury. Crit Care Clin 27(3):735–752

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathieu E, Escribano-Vazquez U, Descamps D, Cherbuy C, Langella P, Riffault S, Remot A, Thomas M (2018) Paradigms of lung microbiota functions in health and disease, particularly, in asthma. Front Physiol 9(1168):1168

    Article  PubMed  PubMed Central  Google Scholar 

  • Matute-Bello G, Downey GP (2013) Reply: defining lung injury in animals. Am J Respir Cell Mol Biol 48(2):267–268

    Article  PubMed  PubMed Central  Google Scholar 

  • Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM (2011) Acute Lung Injury in Animals Study G. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 44(5):725–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matysiak J, Klupczynska A, Packi K, Mackowiak-Jakubowska A, Breborowicz A, Pawlicka O, Olejniczak K, Kokot ZJ, Matysiak J (2020) Alterations in serum-free amino acid profiles in childhood asthma. Int J Environ Res Public Health 17(13):4758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer NJ (2013) Future clinical applications of genomics for acute respiratory distress syndrome. Lancet Respir Med 1(10):793–803

    Article  PubMed  Google Scholar 

  • Meyer NJ (2014) Beyond single-nucleotide polymorphisms: genetics, genomics, and other 'omic approaches to acute respiratory distress syndrome. Clin Chest Med 35(4):673–684

    Article  PubMed  PubMed Central  Google Scholar 

  • Moitra S, Puri R, Paul D, Huang YC (2015) Global perspectives of emerging occupational and environmental lung diseases. Curr Opin Pulm Med 21(2):114–120

    Article  CAS  PubMed  Google Scholar 

  • Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, Curtis JL, Flores SC, Fontenot AP, Ghedin E, Huang L, Jablonski K et al (2013) Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med 187(10):1067–1075

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy TF, Brauer AL, Grant BJ, Sethi S (2005) Moraxella catarrhalis in chronic obstructive pulmonary disease: burden of disease and immune response. Am J Respir Crit Care Med 172(2):195–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Nambiar S, Tan DBA, Clynick B, Bong SH, Rawlinson C, Gummer J, Corte TJ, Glaspole I, Moodley YP, Trengove R (2021) Untargeted metabolomics of human plasma reveal lipid markers unique to chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Proteomics Clin Appl 15(2–3):e2000039

    Article  PubMed  Google Scholar 

  • Naz S, Kolmert J, Yang M, Reinke SN, Kamleh MA, Snowden S, Heyder T, Levanen B, Erle DJ, Skold CM, Wheelock AM et al (2017) Metabolomics analysis identifies sex-associated metabotypes of oxidative stress and the autotaxin-lysoPA axis in COPD. Eur Respir J 49(6):1602322

    Article  PubMed  PubMed Central  Google Scholar 

  • Novotna B, Abdel-Hamid M, Koblizek V, Svoboda M, Hejduk K, Rehacek V, Bis J, Salajka F (2018) A pilot data analysis of a metabolomic HPLC-MS/MS study of patients with COPD. Adv Clin Exp Med 27(4):531–539

    Article  PubMed  Google Scholar 

  • Pang Z, Wang G, Wang C, Zhang W, Liu J, Wang F (2018) Serum metabolomics analysis of asthma in different inflammatory phenotypes: a cross-sectional study in Northeast China. Biomed Res Int 2018:2860521

    Article  PubMed  PubMed Central  Google Scholar 

  • Park YH, Fitzpatrick AM, Medriano CA, Jones DP (2017) High-resolution metabolomics to identify urine biomarkers in corticosteroid-resistant asthmatic children. J Allergy Clin Immunol 139(5):1518–1524

    Article  CAS  PubMed  Google Scholar 

  • Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto-Plata V, Casanova C, Divo M, Tesfaigzi Y, Calhoun V, Sui J, Polverino F, Priolo C, Petersen H, de Torres JP, Marin JM et al (2019) Plasma metabolomics and clinical predictors of survival differences in COPD patients. Respir Res 20(1):219

    Article  PubMed  PubMed Central  Google Scholar 

  • Pragman AA, Kim HB, Reilly CS, Wendt C, Isaacson RE (2012) The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS One 7(10):e47305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan-Jun Y, Jian-Ping Z, Jian-Hua Z, Yong-Long H, Bo X, Jing-Xian Z, Bona D, Yuan Z, Cheng G (2017) Distinct metabolic profile of inhaled budesonide and salbutamol in asthmatic children during acute exacerbation. Basic Clin Pharmacol Toxicol 120(3):303–311

    Article  PubMed  Google Scholar 

  • Rafie S, Moitra S, Brashier BB (2018) Association between the serum metabolic profile and lung function in chronic obstructive pulmonary disease. Turk Thorac J 19(1):13–18

    Article  PubMed  Google Scholar 

  • Rahman I (2003) Oxidative stress, chromatin remodeling and gene transcription in inflammation and chronic lung diseases. J Biochem Mol Biol 36(1):95–109

    CAS  PubMed  Google Scholar 

  • Ran N, Pang Z, Gu Y, Pan H, Zuo X, Guan X, Yuan Y, Wang Z, Guo Y, Cui Z, Wang F (2019) An updated overview of Metabolomic profile changes in chronic obstructive pulmonary disease. Meta 9(6):111

    CAS  Google Scholar 

  • Reinke SN, Gallart-Ayala H, Gomez C, Checa A, Fauland A, Naz S, Kamleh MA, Djukanovic R, Hinks TS, Wheelock CE (2017) Metabolomics analysis identifies different metabotypes of asthma severity. Eur Respir J 49(3):1601740

    Article  PubMed  PubMed Central  Google Scholar 

  • Riely CA, Cohen G, Lieberman M (1974) Ethane evolution: a new index of lipid peroxidation. Science 183(4121):208–210

    Article  CAS  PubMed  Google Scholar 

  • Robertson DG, Watkins PB, Reily MD (2011) Metabolomics in toxicology: preclinical and clinical applications. Toxicol Sci 120:S146–S170

    Article  CAS  PubMed  Google Scholar 

  • Rogers AJ, Matthay MA (2014) Applying metabolomics to uncover novel biology in ARDS. Am J Physiol Lung Cell Mol Physiol 306(11):L957–L961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schols AM, Broekhuizen R, Weling-Scheepers CA, Wouters EF (2005) Body composition and mortality in chronic obstructive pulmonary disease. Am J Clin Nutr 82(1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Schubert JK, Muller WP, Benzing A, Geiger K (1998) Application of a new method for analysis of exhaled gas in critically ill patients. Intensive Care Med 24(5):415–421

    Article  CAS  PubMed  Google Scholar 

  • Sender R, Fuchs S, Milo R (2016) Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164(3):337–340

    Article  CAS  PubMed  Google Scholar 

  • Serkova NJ, Van Rheen Z, Tobias M, Pitzer JE, Wilkinson JE, Stringer KA (2008) Utility of magnetic resonance imaging and nuclear magnetic resonance-based metabolomics for quantification of inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol 295(1):L152–L161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serkova NJ, Standiford TJ, Stringer KA (2011) The emerging field of quantitative blood metabolomics for biomarker discovery in critical illnesses. Am J Respir Crit Care Med 184(6):647–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson JL, Baines KJ, Horvat JC, Essilfie AT, Brown AC, Tooze M, McDonald VM, Gibson PG, Hansbro PM (2016) COPD is characterized by increased detection of Haemophilus influenzae, Streptococcus pneumoniae and a deficiency of Bacillus species. Respirology 21(4):697–704

    Article  PubMed  Google Scholar 

  • Slupsky CM, Cheypesh A, Chao DV, Fu H, Rankin KN, Marrie TJ, Lacy P (2009a) Streptococcus pneumoniae and Staphylococcus aureus pneumonia induce distinct metabolic responses. J Proteome Res 8(6):3029–3036

    Article  CAS  PubMed  Google Scholar 

  • Slupsky CM, Rankin KN, Fu H, Chang D, Rowe BH, Charles PG, McGeer A, Low D, Long R, Kunimoto D, Sawyer MB et al (2009b) Pneumococcal pneumonia: potential for diagnosis through a urinary metabolic profile. J Proteome Res 8(12):5550–5558

    Article  CAS  PubMed  Google Scholar 

  • Stringer KA, Serkova NJ, Karnovsky A, Guire K, Paine R 3rd, Standiford TJ (2011) Metabolic consequences of sepsis-induced acute lung injury revealed by plasma (1)H-nuclear magnetic resonance quantitative metabolomics and computational analysis. Am J Physiol Lung Cell Mol Physiol 300(1):L4–L11

    Article  CAS  PubMed  Google Scholar 

  • Stringer KA, McKay RT, Karnovsky A, Quemerais B, Lacy P (2016) Metabolomics and its application to acute lung diseases. Front Immunol 7:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L (2014) Chapter three – the role of short-chain fatty acids in health and disease. In: Alt FW (ed) Advances in immunology, vol 121. Academic Press, pp 91–119

    Google Scholar 

  • Tao JL, Chen YZ, Dai QG, Tian M, Wang SC, Shan JJ, Ji JJ, Lin LL, Li WW, Yuan B (2019) Urine metabolic profiles in paediatric asthma. Respirology 24(6):572–581

    Article  PubMed  Google Scholar 

  • Van Vliet D, Smolinska A, Jobsis Q, Rosias PP, Muris JW, Dallinga JW, van Schooten FJ, Dompeling E (2016) Association between exhaled inflammatory markers and asthma control in children. J Breath Res 10(1):016014

    Article  PubMed  Google Scholar 

  • van Vliet D, Smolinska A, Jobsis Q, Rosias P, Muris J, Dallinga J, Dompeling E, van Schooten FJ (2017) Can exhaled volatile organic compounds predict asthma exacerbations in children? J Breath Res 11(1):016016

    Article  PubMed  Google Scholar 

  • Veerappan A, Oskuei A, Crowley G, Mikhail M, Ostrofsky D, Gironda Z, Vaidyanathan S, Wadghiri YZ, Liu M, Kwon S, Nolan A (2020) World trade center-cardiorespiratory and vascular dysfunction: assessing the phenotype and metabolome of a murine particulate matter exposure model. Sci Rep 10(1):3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlahos R (2020) Lipids in chronic obstructive pulmonary disease: a target for future therapy? Am J Respir Cell Mol Biol 62(3):273–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, Abbasi-Kangevari M, Abbastabar H, Abd-Allah F, Abdelalim A, Abdollahi M et al (2020) Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet 396(10258):1204–1222

    Article  Google Scholar 

  • Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342(18):1334–1349

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Wu X, Bai Y, Li G, Meng H, Feng Y, Li H, Li M, Guan X, Fu M, Wang C et al (2021) Arsenic exposure and its joint effects with cigarette smoking and physical exercise on lung function impairment: evidence from an occupational cohort study. Environ Res 196:110419

    Article  CAS  PubMed  Google Scholar 

  • Wheelock CE, Goss VM, Balgoma D, Nicholas B, Brandsma J, Skipp PJ, Snowden S, Burg D, D'Amico A, Horvath I, Chaiboonchoe A et al (2013) Application of 'omics technologies to biomarker discovery in inflammatory lung diseases. Eur Respir J 42(3):802–825

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS (2005) Metabolomics: the principles and potential applications to transplantation. Am J Transplant 5(12):2814–2820

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Hou C, Li Y, Zhao Z, Liu J, Lu X, Shang X, Xin Y (2014) Analysis of the bacterial community in chronic obstructive pulmonary disease sputum samples by denaturing gradient gel electrophoresis and real-time PCR. BMC Pulm Med 14(1):179

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia J, Broadhurst DI, Wilson M, Wishart DS (2013) Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics 9(2):280–299

    Article  CAS  PubMed  Google Scholar 

  • Xue M, Cai C, Guan L, Xu Y, Lin J, Zeng Y, Hu H, Chen R, Wang H, Zhou L, Sun B (2020) Exploration of n-6 and n-3 polyunsaturated fatty acids metabolites associated with nutritional levels in patients with severe stable chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 15:1633–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young RP, Hopkins RJ, Marsland B (2016) The gut-liver-lung axis. Modulation of the innate immune response and its possible role in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 54(2):161–169

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Flexeder C, McGarrah RW 3rd, Wyss A, Morrison AC, North KE, Boerwinkle E, Kastenmuller G, Gieger C, Suhre K, Karrasch S et al (2019) Metabolomics identifies novel blood biomarkers of pulmonary function and COPD in the general population. Meta 9(4):61

    CAS  Google Scholar 

  • Zakharkina T, Heinzel E, Koczulla RA, Greulich T, Rentz K, Pauling JK, Baumbach J, Herrmann M, Grunewald C, Dienemann H, von Muller L et al (2013) Analysis of the airway microbiota of healthy individuals and patients with chronic obstructive pulmonary disease by T-RFLP and clone sequencing. PLoS One 8(7):e68302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Chen L, Cao L, Li KJ, Huang Y, Luan XQ, Li G (2018) Effects of smoking on the lower respiratory tract microbiome in mice. Respir Res 19(1):253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Li Q, Liu C, Pang R, Yin Y (2020) Plasma metabolomics and Lipidomics reveal perturbed metabolites in different disease stages of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 15:553–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paige Lacy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moitra, S., Bandyopadhyay, A., Lacy, P. (2022). Metabolomics of Respiratory Diseases. In: Ghini, V., Stringer, K.A., Luchinat, C. (eds) Metabolomics and Its Impact on Health and Diseases. Handbook of Experimental Pharmacology, vol 277. Springer, Cham. https://doi.org/10.1007/164_2022_614

Download citation

Publish with us

Policies and ethics