Skip to main content

Data Science for Asthma Study

  • Chapter
  • First Online:
Genomic Approach to Asthma

Part of the book series: Translational Bioinformatics ((TRBIO,volume 12))

Abstract

To obtain information from quantitative data, we need to develop various analysis methods, which can be drawn from diverse fields, such as computer science, information theory and statistics. This chapter discusses methods for analysing datasets generated in asthma study for personalized medicine. Personalized medicine is the future of medicine, aiming at providing tailor-made medical decisions, practices and products to individual patients. Medical decisions and treatments are being tailored to individual patient based on the context of patient’s various profiles such as Genomics, Proteomics, Lipidomics and Metabolomics content. High throughput instruments are used to generate large scale datasets. To succeed in personalized medicine, analysis methods, including those dedicated to specific data types and those shared among various data, should be well developed. In this chapter, we first discuss the need of using data from molecular level to pathway level. Then we introduce analysis methods in typical analysis steps, which are batch effect detection and removal, statistical analysis, feature selection and classification, and unsupervised way of pattern recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANOVA:

Analysis of variance

CS:

Corticosteroids

CV:

Cross-validation

DNA:

Deoxyribonucleic acid

DRAMI:

Drift, Retention time, Accurate Mass, Intensity

DWD:

Distance weighted discrimination

GR:

Glucocorticoid receptor

GWAS:

Genome-wide association study

LASSO:

least absolute shrinkage and selection operator

LC-IMS/MSE :

Ion mobility supported lipid chromatography and mass spectrometry instrument

LOOCV:

Leave-one-out cross-validation

LPS:

Lipopolysaccharide

MAPK:

Mitogen Activated Protein Kinase

MKP-1:

MAPK phosphatase-1

MS:

Mass spectrometry

PCA:

Principle component analysis

PLGS:

ProteinLynx Global Server

ROC:

Receiver operating characteristic

SNP:

Single-nucleotide polymorphisms

SVA:

Surrogate variable analysis

SVD:

Singular value decomposition

SVM:

Support vector machine

TAK1:

GFβ kinase-1

TDA:

Topological data analysis

UBIOPRED:

Unbiased BIOmarkers in PREDiction of respiratory disease outcomes

References

  1. Coveney P, Díaz-Zuccarini V, Hunter P, Viceconti M. Computational biomedicine. In: Computational biomedicine; 2014. p. 296.

    Google Scholar 

  2. Wimmer GE, Shohamy D. Preference by association: how memory mechanisms in the hippocampus bias decisions. Science (80- ). 2012;338(6104):270–3. https://doi.org/10.1126/science.1223252.

    Article  CAS  Google Scholar 

  3. Smith R. Stratified, personalised, or precision medicine 2012.

    Google Scholar 

  4. Dudley JT, Karczewski KJ. Exploring personal genomics; 2013. https://doi.org/10.1093/acprof:oso/9780199644483.001.0001.

    Book  Google Scholar 

  5. Lu Y, Goldstein D, Angrist M, Cavalleri G. Personalized medicine and human genetic diversity. Cold Spring Harb Perspect Med. 2014;4(9):a008581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pearson TA, Manolio TA. How to interpret a genome-wide association study. JAMA. 2008;299(11):1335–44. https://doi.org/10.1001/jama.299.11.1335.

    Article  PubMed  CAS  Google Scholar 

  7. Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363(2):166–76. https://doi.org/10.1056/NEJMra0905980.

    Article  PubMed  CAS  Google Scholar 

  8. Clarke GM, Anderson CA, Pettersson FH, Cardon LR, Morris AP, Zondervan KT. Basic statistical analysis in genetic case-control studies. Nat Protoc. 6(2):121–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75. https://doi.org/10.1086/519795.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Gomez-Cabrero D, Abugessaisa I, Maier D, et al. Data integration in the era of omics: current and future challenges. BMC Syst Biol. 2014;8 Suppl 2(Suppl 2):I1. https://doi.org/10.1186/1752-0509-8-S2-I1.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Joyce AR, Palsson BØ. The model organism as a system: integrating’omics’ data sets. Nat Rev Mol Cell Biol. 2006;7(3):198–210. https://doi.org/10.1038/nrm1857.

    Article  PubMed  CAS  Google Scholar 

  12. Winslow RL, Trayanova N, Geman D, Miller MI. Computational medicine: translating models to clinical care. Sci Transl Med. 2012;4(158):158rv11. https://doi.org/10.1126/scitranslmed.3003528.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Shaw DE, Sousa AR, Fowler SJ, et al. Clinical and inflammatory characteristics of the European U-BIOPRED adult severe asthma cohort. Eur Respir J. 2015;46:1308–21. https://doi.org/10.1183/13993003.00779-2015.

    Article  PubMed  CAS  Google Scholar 

  14. Chen R, Mias GI, Li-Pook-Than J, et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell. 2012;148(6):1293–307. https://doi.org/10.1016/j.cell.2012.02.009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Schneider MV, Orchard S. Omics technologies, data and bioinformatics principles. Methods Mol Biol. 2011;719:3–30. https://doi.org/10.1007/978-1-61779-027-0_1.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang G, Annan RS, Carr SA, Neubert TA. Overview of peptide and protein analysis by mass spectrometry. Curr Protoc Protein Sci. 2010; Chapter 16(November):Unit16.1. https://doi.org/10.1002/0471140864.ps1601s62.

  17. Silva JC, Denny R, Dorschel CA, et al. Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem. 2005;77(7):2187–200. https://doi.org/10.1021/ac048455k.

    Article  PubMed  CAS  Google Scholar 

  18. Olson CF. Parallel algorithms for hierarchical clustering. 1995;21:1313–25.

    Article  Google Scholar 

  19. Zomorodian A. Topological data analysis. Inverse Probl. 2011;27(12):120201. https://doi.org/10.1088/0266-5611/27/12/120201.

    Article  Google Scholar 

  20. Nikolsky Y, Kirillov E, Zuev R, Rakhmatulin E, Nikolskaya T. Functional analysis of OMICs data and small molecule compounds in an integrated “knowledge-based” platform. Methods Mol Biol. 2009;563:177–96. https://doi.org/10.1007/978-1-60761-175-2_10.

    Article  PubMed  CAS  Google Scholar 

  21. Wolkenhauer O. Why model? Front Physiol. 2014;5(JAN(January)):1–5. https://doi.org/103389/fphys2014.00021

    Google Scholar 

  22. Kholodenko BN. Cell-signalling dynamics in time and space. Nat Cell Biol. 2006;7(March):165–76. https://doi.org/10.1038/nrm1838.

    Article  CAS  Google Scholar 

  23. Holehouse A, Yang X, Adcock I, Guo Y. Developing a novel integrated model of p38 MAPK and glucocorticoid signalling pathways. 2012 IEEE Symposium on Computational Intelligence Computational Biology CIBCB 2012. 2012:69–76. https://doi.org/10.1109/CIBCB.2012.6217213.

  24. Ito K, Chung KF, Adcock IM. Update on glucocorticoid action and resistance. J Allergy Clin Immunol. 2006;117(3):522–43. https://doi.org/10.1016/j.jaci.2006.01.032.

    Article  PubMed  CAS  Google Scholar 

  25. Bhavsar P, Khorasani N, Hew M, Johnson M, Chung KF. Effect of p38 MAPK inhibition on corticosteroid suppression of cytokine release in severe asthma. Eur Respir J. 2010;35(4):750–6. https://doi.org/10.1183/09031936.00071309.

    Article  PubMed  CAS  Google Scholar 

  26. Hew M, Bhavsar P, Torrego A, et al. Relative corticosteroid insensitivity of peripheral blood mononuclear cells in severe asthma. Am J Respir Crit Care Med. 2006;174(2):134–41. https://doi.org/10.1164/rccm.200512-1930OC.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hendriks BS, Hua F, Chabot JR. Analysis of mechanistic pathway models in drug discovery: P38 pathway. Biotechnol Prog. 2008;24(1):96–109. https://doi.org/10.1021/bp070084g.

    Article  PubMed  CAS  Google Scholar 

  28. Petricoin E, Ardekani A, Hitt B, Levine P. Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002;359(9306):572–7.

    Article  CAS  PubMed  Google Scholar 

  29. Spielman R, Bastone L, Burdick J, Morley M. Common genetic variants account for differences in gene expression among ethnic groups. Nat Genet. 2007;39:226–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spielman R, Cheung V. Reply to “On the design and analysis of gene expression studies in human populations”. Nat Genet. 2007;39:808–9.

    Article  CAS  Google Scholar 

  31. Baggerly KA, Edmonson SR, Morris JS, Coombes KR. High-resolution serum proteomic patterns for ovarian cancer detection. Endocr Relat Cancer. 2004;11:585–7.

    Article  CAS  Google Scholar 

  32. Yang H, Harrington CA, Vartanian K, Coldren CD, Hall R, Churchill GA. Randomization in laboratory procedure is key to obtaining reproducible microarray results. PLoS One. 2008;3(11). https://doi.org/10.1371/journal.pone.0003724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Holmes S, Alekseyenko A, Timme A, Nelson T, Pasricha PJ, Spormann A. Visualization and statistical comparisons of microbial communities using R packages on phylochip data. Pac Symp Biocomput. 2010:142–53. https://doi.org/10.1142/9789814335058_0016.

  34. Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans R Soc A Math, Phys Eng Sci. 2016;374. https://doi.org/10.1098/rsta.2015.0202.

    Article  Google Scholar 

  35. Desdouits N, Nilges M, Blondel A. Principal component analysis reveals correlation of cavities evolution and functional motions in proteins. J Mol Graph Model. 2015;55:13–24. https://doi.org/10.1016/j.jmgm.2014.10.011.

    Article  PubMed  CAS  Google Scholar 

  36. Alonso-Gutierrez J, Kim EM, Batth TS, et al. Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering. Metab Eng. 2015;28:123–33. https://doi.org/10.1016/j.ymben.2014.11.011.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang JD, Küng E, Boess F, Certa U, Ebeling M. Pathway reporter genes define molecular phenotypes of human cells. BMC Genomics. 2015;16(1):342. https://doi.org/10.1186/s12864-015-1532-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Fahad A, Alshatri N, Tari Z, et al. A survey of clustering algorithms for big data: taxonomy and empirical analysis. IEEE Trans Emerg Top Comput. 2014;2(3):267–79. https://doi.org/10.1109/TETC.2014.2330519.

    Article  Google Scholar 

  39. Alter O, Brown PO, Botstein D. Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci. 2000;97(18):10101–6. Available at: http://www.pnas.org/cgi/content/abstract/97/18/10101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nielsen T, West R, Linn S, Alter O, Knowling M. Molecular characterisation of soft tissue tumours: a gene expression study. Lancet. 2002. Available at: http://www.sciencedirect.com/science/article/pii/S0140673602082703. Accessed 13 March 2017.

  41. Benito M, Parker J, Du Q, et al. Adjustment of systematic microarray data biases. Bioinformatics. 2004;20(1):105–14. https://doi.org/10.1093/bioinformatics/btg385.

    Article  PubMed  CAS  Google Scholar 

  42. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–27. https://doi.org/10.1093/biostatistics/kxj037.

    Article  PubMed  Google Scholar 

  43. Scherer A. Batch effects and noise in microarray experiments: sources and solutions. Chichester: Wiley; 2009.

    Book  Google Scholar 

  44. Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 2007;3(9):1724–35. https://doi.org/10.1371/journal.pgen.0030161.

    Article  PubMed  CAS  Google Scholar 

  45. Wasserstein RL, Lazar NA. The ASA’s statement on p-values: context, process and purpose. Am Stat. 2016. https://doi.org/10.1080/00031305.2016.1154108.

  46. Mastin L. The story of mathematics.; 2010. Available at: www.storyofmathematics.com.

    Google Scholar 

  47. Welch BL. The generalization of ‘Student’s’ problem when several different population variances are involved. Biometrika. 1947;34(1/2):28–35. https://doi.org/10.1093/biomet/34.1-2.28.

    Article  PubMed  CAS  Google Scholar 

  48. Mann HB, Whitney DR. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat. 1947;18(1):50–60. https://doi.org/10.1214/aoms/1177730491.

    Article  Google Scholar 

  49. Arnold TB, Emerson JW. Nonparametric goodness-of-fit tests for discrete null distributions. R J. 2011:34–9. Available at: http://journal.r-project.org/archive/2011-2/RJournal_2011-2_Arnold+Emerson.pdf

  50. Yates F. Contingency table involving small numbers and the χ2 test. Suppl to J R Stat Soc. 1934;1:217–35.

    Article  Google Scholar 

  51. GEP B. Non-normality and tests on variances. Biometrika. 1953;40(3/4):318. https://doi.org/10.2307/2333350.

    Article  Google Scholar 

  52. Mehta CR, Patel NR. Exact inference for categorical data. Encycl Biostat. 1998:1411–22. https://doi.org/10.1002/0470011815.b2a10019.

  53. Davis J, Maes M, Andreazza A, McGrath JJ, Tye SJ, Berk M. Towards a classification of biomarkers of neuropsychiatric disease: from encompass to compass. Mol Psychiatry. 2014;20(2):152–3. https://doi.org/10.1038/mp.2014.139.

    Article  PubMed  Google Scholar 

  54. Eckardt K-U, Alper SL, Antignac C, et al. Autosomal dominant tubulointerstitial kidney disease: diagnosis, classification, and management—a KDIGO consensus report. Kidney Int. 2015;1(4):1–8. https://doi.org/10.1038/ki.2015.28.

    Article  CAS  Google Scholar 

  55. Wisittipanit N, Rangwala H, Sikaroodi M, Keshavarzian A, Mutlu EA, Gillevet P. Classification methods for the analysis of LH-PCR data associated with inflammatory bowel disease patients. Int J Bioinforma Res Appl. 2015;11(2):111–29. https://doi.org/10.1504/IJBRA.2015.068087

    Article  CAS  Google Scholar 

  56. Möller C, Pijnenburg YAL, van der Flier WM, et al. Alzheimer disease and behavioral variant frontotemporal dementia: automatic classification based on cortical atrophy for single-subject diagnosis. Radiology. 2015:150220. https://doi.org/10.1148/radiol.2015150220.

  57. Murphy KP. Machine learning: a probabilistic perspective. Cambridge, MA: MIT press; 1991. https://doi.org/10.1007/SpringerReference_35834.

    Book  Google Scholar 

  58. Fisher R. The use of multiple measurements in taxonomic problems. Ann Eugenics. 1936;7(2):179–88. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x.

    Article  Google Scholar 

  59. Cox DR. The regression analysis of binary sequences (with discussion). J Roy Stat Soc B. 1958;20:215–42.

    Google Scholar 

  60. Rish I. An empirical study of the naive Bayes classifier. Proc of Th IJCAI 2001 workshop on empirical methods in artificial intelligence. 2001;1:1–6.

    Google Scholar 

  61. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–97. https://doi.org/10.1007/BF00994018.

    Article  Google Scholar 

  62. Quinlan JR. Simplifying decision trees. Int J Man Mach Stud. 1987;27(3):221–34. https://doi.org/10.1016/S0020-7373(87)80053-6.

    Article  Google Scholar 

  63. Bishop CM. Neural networks for pattern recognition. J Am Stat Assoc. 1995;92:482. https://doi.org/10.2307/2965437.

    Article  Google Scholar 

  64. Tipping ME. Sparse Bayesian learning and the relevance vector machine. Journal Mach Learn Res. 2001;1:211–44. https://doi.org/10.1162/15324430152748236.

    Article  Google Scholar 

  65. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

    Article  CAS  PubMed  Google Scholar 

  66. Aho K, Derryberry D, Peterson T. Model selection for ecologists: the worldviews of AIC and BIC. Ecology. 2014;95(3):631–6. https://doi.org/10.1890/13-1452.1.

    Article  PubMed  Google Scholar 

  67. Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6(2):461–4. https://doi.org/10.1214/aos/1176344136.

    Article  Google Scholar 

  68. Dutta R, Bogdan M, Ghosh JK. Model selection and multiple testing – a Bayesian and empirical Bayes overview and some new results. J Indian Stat …. 2000;2015:1–29.

    Google Scholar 

  69. Toni T, Stumpf MPH. Simulation-based model selection for dynamical systems in systems and population biology. Bioinformatics. 2010;26(1):104–10.

    Article  CAS  PubMed  Google Scholar 

  70. Hug S, Schmidl D, Li WB, Greiter MB, Theis FJ. Bayesian model selection methods and their application to biological ODE systems. In: Uncertainty in biology, a computational modeling approach. Cham: Springer; 2015.

    Google Scholar 

  71. Yang X, Guo Y, Skipp P, Rowe A. Automating mass spectrometry proteomics analysis. In: Fourth international conference on bioinformatics and computational biology; 2012.

    Google Scholar 

  72. Wikipedia. Sensitivity and specificity. Available at: http://en.wikipedia.org/wiki/Sensitivity_and_specificity. Accessed 3 July 2015.

  73. Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. 2006;27(8):861–74. https://doi.org/10.1016/j.patrec.2005.10.010.

    Article  Google Scholar 

  74. Arnold T, Emerson J. Nonparametric goodness-of-fit tests for discrete null distributions. R J. 2011:34–9.

    Google Scholar 

  75. Tibshirani R. Regression selection and shrinkage via the Lasso. J R Stat Soc B. 1994;58:267–88. https://doi.org/10.2307/2346178.

    Article  Google Scholar 

  76. Abeel T, Helleputte T, Van de Peer Y, Dupont P, Saeys Y. Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics. 2009;26(3):392–8. https://doi.org/10.1093/bioinformatics/btp630.

    Article  PubMed  CAS  Google Scholar 

  77. Zucknick M, Richardson S, Stronach EA. Comparing the characteristics of gene expression profiles derived by univariate and multivariate classification methods. Stat Appl Genet Mol Biol. 2008;7(1.):Article7). https://doi.org/10.2202/1544-6115.1307.

  78. Ahmed I, Hartikainen A-L, Järvelin M-R, Richardson S. False discovery rate estimation for stability selection: application to genome-wide association studies. Stat Appl Genet Mol Biol. 2011;10(1):1–20. https://doi.org/10.2202/1544-6115.1663.

    Article  Google Scholar 

  79. Alexander DH, Lange K. Stability selection for genome-wide association. Genet Epidemiol. 2011;35(7):722–8. https://doi.org/10.1002/gepi.20623.

    Article  PubMed  Google Scholar 

  80. Kirk P, Witkover A, Bangham CRM, Richardson S, Lewin AM, Stumpf MPH. Balancing the robustness and predictive performance of biomarkers. J Comput Biol. 2013;20(12):979–89. https://doi.org/10.1089/cmb.2013.0018.

    Article  PubMed  CAS  Google Scholar 

  81. Saria S, Goldenberg A. Subtyping: what it is and its role in precision medicine. IEEE Intell Syst. 2015;30(4):70–5. https://doi.org/10.1109/MIS.2015.60.

    Article  Google Scholar 

  82. Bishop CM. Pattern recognition and machine learning. New York: Springer; 2006. https://doi.org/10.1117/1.2819119.

    Book  Google Scholar 

  83. Madeira SC, Oliveira AL. Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Comput Biol Bioinform. 2004;1(1):24–45. https://doi.org/10.1109/TCBB.2004.2.

    Article  PubMed  CAS  Google Scholar 

  84. Cheng Y, Church GM. Biclustering of expression data. Int Conf Intell Syst Mol Biol. 2000;8:93–103.

    CAS  Google Scholar 

  85. Getz G, Levine E, Domany E. Coupled two-way clustering analysis of gene microarray data. Proc Natl Acad Sci U S A. 2000;97(22):12079–84. https://doi.org/10.1073/pnas.210134797.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Bergmann S, Ihmels J, Barkai N. Iterative signature algorithm for the analysis of large-scale gene expression data. Phys Rev E Stat Nonlinear Soft Matter Phys. 2003;67(3 Pt 1):31902. https://doi.org/10.1103/PhysRevE.67.031902.

    Article  CAS  Google Scholar 

  87. Tanay A, Sharan R, Kupiec M, Shamir R. Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc Natl Acad Sci U S A. 2004;101(9):2981–6. https://doi.org/10.1073/pnas.0308661100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Tanay A. Biclustering algorithms: a survey. Handb Comput Mol Biol. 2005;9(May):122–4. https://doi.org/10.1.1.133.9434

    Google Scholar 

  89. Oghabian A, Kilpinen S, Hautaniemi S, Czeizler E. Biclustering methods: biological relevance and application in gene expression analysis. PLoS One. 2014;9(3). https://doi.org/10.1371/journal.pone.0090801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cha K, Hwang T, Oh K, Yi G-S. Discovering transnosological molecular basis of human brain diseases using biclustering analysis of integrated gene expression data. BMC Med Inform Decis Mak. 2015;15(Suppl 1):S7. https://doi.org/10.1186/1472-6947-15-S1-S7.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hussain SF, Ramazan M. Biclustering of human cancer microarray data using co-similarity based co-clustering. Expert Syst Appl. 2016;55:520–31. https://doi.org/10.1016/j.eswa.2016.02.029

    Article  Google Scholar 

  92. Williams A, Halappanavar S. Application of bi-clustering of gene expression data and gene set enrichment analysis methods to identify potentially disease causing nanomaterials. Beilstein J Nanotechnol. 2015;6(1.) under review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nicolau M, Levine AJ, Carlsson G. Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proc Natl Acad Sci U S A. 2011;108(17):7265–70. https://doi.org/10.1073/pnas.1102826108.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hinks TSC, Zhou X, Staples KJ, et al. Innate and adaptive T cells in asthmatic patients: relationship to severity and disease mechanisms. J Allergy Clin Immunol. 2015:1–11. https://doi.org/10.1016/j.jaci.2015.01.014.

  95. Lum PY, Singh G, Lehman A, et al. Extracting insights from the shape of complex data using topology. Sci Rep. 2013;3:1236. https://doi.org/10.1038/srep01236.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Rucco M, Falsetti L, Herman D, et al. Using topological data analysis for diagnosis pulmonary embolism. ArXiv e-prints. 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yike Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, X., Guo, Y. (2018). Data Science for Asthma Study. In: Wang, X., Chen, Z. (eds) Genomic Approach to Asthma. Translational Bioinformatics, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-10-8764-6_13

Download citation

Publish with us

Policies and ethics