Skip to main content

Bioelectrochemical System Integrated with Photocatalysis: Principle and Prospect in Wastewater Treatment

  • Chapter
  • First Online:
Bioelectrochemistry Stimulated Environmental Remediation

Abstract

With the increasing consumption of fossil energy, more and more refractory pollutants are released into the environment. Using eco-friendly ways to treat the pollutants and gain energy is urgently needed. By using microbial fuel cells (MFCs), contaminant degradation and energy recovery can be achieved simultaneously but limited by the finite kinds of degradation of pollutants and the low power production efficiency. To promote the energy productivity and pollutant degradation ability, some researchers are focused on introducing solar energy into the system. Some semiconductors can absorb solar energy and convert it into electricity. Meanwhile, the typical structure of the photo-excited semiconductor can improve the performance of contaminant removal. Another ideal energy convention way is the photosynthesis. Some researchers use aquatic microalgae to harness the solar energy and then release the energy by MFC. In addition to producing oxygen and capturing CO2 and other nutrient, the microalga is a promising combination material. The coupling system of MFC and one of semiconductors or microalgae can be seen as microbial-photo-electro-chemical cell (MPEC) systems. The development background and research advances on MPECs are briefly introduced in this chapter. The existing coupling forms of the technology are classified, and the coupling mechanisms of various forms are explained in detail. Finally, the future development of this coupling technology is prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095):686–690

    Article  CAS  Google Scholar 

  2. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192

    Article  CAS  Google Scholar 

  3. Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38(21):5809–5814

    Article  CAS  Google Scholar 

  4. Mook WT, Aroua MKT, Chakrabarti MH, Noor IM, Irfan MF, Low CTJ (2013) A review on the effect of bio-electrodes on denitrification and organic matter removal processes in bio-electrochemical systems. J Ind Eng Chem 19(1):1–13

    Article  CAS  Google Scholar 

  5. Rozendal RA, Hamelers HV, Euverink GJ, Metz SJ, Buisman CJ (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31(12):1632–1640

    Article  CAS  Google Scholar 

  6. Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39(11):4317–4320

    Article  CAS  Google Scholar 

  7. Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci 104(47):18871–18873

    Article  Google Scholar 

  8. Antoniadou M, Lianos P (2010) Production of electricity by photoelectrochemical oxidation of ethanol in a PhotoFuelCell. Appl Catal B Environ 99(1–2):307–313

    Article  CAS  Google Scholar 

  9. Lianos P (2011) Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: the concept of the photofuelcell: a review of a re-emerging research field. J Hazard Mater 185(2–3):575–590

    Article  CAS  Google Scholar 

  10. Zhou K, Hu X-Y, Chen B-Y, Hsueh C-C, Zhang Q, Wang J, Lin Y-J, Chang C-T (2016) Synthesized TiO2/ZSM-5 composites used for the photocatalytic degradation of azo dye: intermediates, reaction pathway, mechanism and bio-toxicity. Appl Surf Sci 383:300–309

    Article  CAS  Google Scholar 

  11. Han H-X, Shi C, Yuan L, Sheng G-P (2017) Enhancement of methyl orange degradation and power generation in a photoelectrocatalytic microbial fuel cell. Appl Energy 204:382–389

    Article  CAS  Google Scholar 

  12. Neethu B, Ghangrekar MM (2017) Electricity generation through a photo sediment microbial fuel cell using algae at the cathode. Water Sci Technol 76:3269–3327. https://doi.org/10.2166/wst.2017.485

    Article  CAS  Google Scholar 

  13. Lai Y-C, Liang C-M, Hsu S-C, Hsieh P-H, Hung C-H (2017) Polyphosphate metabolism by purple non-sulfur bacteria and its possible application on photo-microbial fuel cell. J Biosci Bioeng 123(6):722–730

    Article  CAS  Google Scholar 

  14. Kim HW, Lee KS, Razzaq A, Lee SH, Grimes CA, In SI (2018) Photocoupled bioanode: a new approach for improved microbial fuel cell performance. Energ Technol 6(2):257–262

    Article  CAS  Google Scholar 

  15. Ajayi FF, Kim K-Y, Chae K-J, Choi M-J, Kim S-Y, Chang I-S, Kim IS (2009) Study of hydrogen production in light assisted microbial electrolysis cell operated with dye sensitized solar cell. Int J Hydrog Energy 34(23):9297–9304

    Article  CAS  Google Scholar 

  16. Chen Z, Ding H, Chen W, Li Y, Zhang G, Lu A, Li X (2012) Photoelectric catalytic properties of silicon solar cell used in microbial fuel cell system. Acta Phys Sin 61(24):000543–000547

    Google Scholar 

  17. Chae K-J, Choi M-J, Kim K-Y, Ajayi FF, Chang I-S, Kim IS (2009) A solar-powered microbial electrolysis cell with a platinum catalyst-free cathode to produce hydrogen. Environ Sci Technol 43(24):9525–9530

    Article  CAS  Google Scholar 

  18. Wang H, Qian F, Wang G, Jiao Y, He Z, Li Y (2013) Self-biased solar-microbial device for sustainable hydrogen generation. ACS Nano 7(10):8728–8735

    Article  CAS  Google Scholar 

  19. Yang X, Lu J, Zhu Y, Shen J, Zhang Z, Zhang J, Chen C, Li C (2011) Microbial fuel cell cathode with dendrimer encapsulated Pt nanoparticles as catalyst. J Power Sources 196(24):10611–10615

    Article  CAS  Google Scholar 

  20. Neburchilov V, Mehta P, Hussain A, Wang H, Guiot SR, Tartakovsky B (2011) Microbial fuel cell operation on carbon monoxide: cathode catalyst selection. Int J Hydrog Energy 36(18):11929–11935

    Article  CAS  Google Scholar 

  21. Oh S, Booki Min A, Logan BE (2004) Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol 38(18):4900

    Article  CAS  Google Scholar 

  22. Cetinkaya AY, Ozdemir OK, Koroglu EO, Hasimoglu A, Ozkaya B (2015) The development of catalytic performance by coating Pt-Ni on CMI7000 membrane as a cathode of a microbial fuel cell. Bioresour Technol 195:188

    Article  CAS  Google Scholar 

  23. Li Y, Lu A, Ding H, Jin S, Yan Y, Wang C, Zen C, Wang X (2009) Cr (VI) reduction at rutile-catalyzed cathode in microbial fuel cells. Electrochem Commun 11(7):1496–1499

    Article  CAS  Google Scholar 

  24. Lu A, Li Y, Jin S, Ding H, Zeng C, Wang X, Wang C (2009) Microbial fuel cell equipped with a photocatalytic rutile-coated cathode. Energy Fuel 24(2):1184–1190

    Article  CAS  Google Scholar 

  25. Ding H, Li Y, Lu A, Jin S, Quan C, Wang C, Wang X, Zeng C, Yan Y (2010) Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode. Bioresour Technol 101(10):3500–3505

    Article  CAS  Google Scholar 

  26. Lin Z-Q, Yuan S-J, Li W-W, Chen J-J, Sheng G-P, Yu H-Q (2017) Denitrification in an integrated bioelectro-photocatalytic system. Water Res 109:88–93

    Article  CAS  Google Scholar 

  27. Qian F, Wang G, Li Y (2010) Solar-driven microbial photoelectrochemical cells with a nanowire photocathode. Nano Lett 10(11):4686–4691

    Article  CAS  Google Scholar 

  28. Wang S, Yang X, Zhu Y, Su Y, Li C (2014) Solar-assisted dual chamber microbial fuel cell with a CuInS 2 photocathode. RSC Adv 4(45):23790–23796

    Article  CAS  Google Scholar 

  29. Zang G-L, Sheng G-P, Shi C, Wang Y-K, Li W-W, Yu H-Q (2014) A bio-photoelectrochemical cell with a MoS 3-modified silicon nanowire photocathode for hydrogen and electricity production. Energy Environ Sci 7(9):3033–3039

    Article  CAS  Google Scholar 

  30. Chen Q-Y, Liu J-S, Liu Y, Wang Y-H (2013) Hydrogen production on TiO2 nanorod arrays cathode coupling with bio-anode with additional electricity generation. J Power Sources 238:345–349

    Article  CAS  Google Scholar 

  31. Brune A, Jeong G, Liddell PA, Sotomura T, Moore TA, Moore AL, Gust D (2004) Porphyrin-sensitized nanoparticulate TiO2 as the photoanode of a hybrid photoelectrochemical biofuel cell. Langmuir 20(19):8366–8371

    Article  CAS  Google Scholar 

  32. Han L, Bai L, Zhu C, Wang Y, Dong S (2012) Improving the performance of a membraneless and mediatorless glucose–air biofuel cell with a TiO2 nanotube photoanode. Chem Commun 48(49):6103–6105

    Article  CAS  Google Scholar 

  33. Du Y, Feng Y, Qu Y, Liu J, Ren N, Liu H (2014) Electricity generation and pollutant degradation using a novel biocathode coupled photoelectrochemical cell. Environ Sci Technol 48(13):7634–7641

    Article  CAS  Google Scholar 

  34. Du Y, Qu Y, Zhou X, Feng Y (2015) Electricity generation by biocathode coupled photoelectrochemical cells. RSC Adv 5(32):25325–25328

    Article  CAS  Google Scholar 

  35. Wang Q, Xu J, Ge Y, Zhang Y, Feng H, Cong Y (2016) Efficient nitrogen removal by simultaneous photoelectrocatalytic oxidation and electrochemically active biofilm denitrification. Electrochim Acta 198:165–173

    Article  CAS  Google Scholar 

  36. Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69(3):1548–1555

    Article  CAS  Google Scholar 

  37. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098

    Article  CAS  Google Scholar 

  38. Nakamura R, Kai F, Okamoto A, Newton GJ, Hashimoto K (2009) Self-constructed electrically conductive bacterial networks. Angew Chem Int Ed 48(3):508–511

    Article  CAS  Google Scholar 

  39. Borole AP, Reguera G, Ringeisen B, Wang Z-W, Feng Y, Kim BH (2011) Electroactive biofilms: current status and future research needs. Energy Environ Sci 4(12):4813–4834

    Article  CAS  Google Scholar 

  40. Strycharz-Glaven SM, Snider RM, Guiseppi-Elie A, Tender LM (2011) On the electrical conductivity of microbial nanowires and biofilms. Energy Environ Sci 4(11):4366–4379

    Article  CAS  Google Scholar 

  41. Qian F, Wang H, Ling Y, Wang G, Thelen MP, Li Y (2014) Photoenhanced electrochemical interaction between Shewanella and a hematite nanowire photoanode. Nano Lett 14(6):3688–3693

    Article  CAS  Google Scholar 

  42. Li D-B, Cheng Y-Y, Li L-L, Li W-W, Huang Y-X, Pei D-N, Tong Z-H, Mu Y, Yu H-Q (2014) Light-driven microbial dissimilatory electron transfer to hematite. Phys Chem Chem Phys 16(42):23003–23011

    Article  CAS  Google Scholar 

  43. Zhou D, Dong S, Ki D, Rittmann BE (2018) Photocatalytic-induced electron transfer via anode-respiring bacteria (ARB) at an anode that intimately couples ARB and a TiO2 photocatalyst. Chem Eng J 338:745–751

    Article  CAS  Google Scholar 

  44. Ha PT, Moon H, Kim BH, Ng HY, Chang IS (2010) Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage. Biosens Bioelectron 25(7):1629–1634

    Article  CAS  Google Scholar 

  45. Lovley DR (2011) Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ Sci 4(12):4896–4906

    Article  CAS  Google Scholar 

  46. Malvankar NS, Lau J, Nevin KP, Franks AE, Tuominen MT, Lovley DR (2012) Electrical conductivity in a mixed-species biofilm. Appl Environ Microbiol 78(16):5967–5971

    Article  CAS  Google Scholar 

  47. Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81(4):629–636

    Article  CAS  Google Scholar 

  48. Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99(10):4021

    Article  CAS  Google Scholar 

  49. Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1(5):763

    Article  CAS  Google Scholar 

  50. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577

    Article  CAS  Google Scholar 

  51. Baicha Z, Salar-García MJ, Ortiz-Martínez VM, Hernández-Fernández FJ, Ríos APDL, Labjar N, Lotfi E, Elmahi M (2016) A critical review on microalgae as an alternative source for bioenergy production: a promising low cost substrate for microbial fuel cells. Fuel Process Technol 154:104–116

    Article  CAS  Google Scholar 

  52. Yang Z, Pei H, Hou Q, Jiang L, Zhang L, Nie C (2018) Algal biofilm-assisted microbial fuel cell to enhance domestic wastewater treatment: nutrient, organics removal and bioenergy production. Chem Eng J 332:277–285

    Article  CAS  Google Scholar 

  53. Velasquez-Orta SB, Curtis TP, Logan BE (2009) Energy from algae using microbial fuel cells. Biotechnol Bioeng 103(6):1068–1076

    Article  CAS  Google Scholar 

  54. Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25(2):207–210

    Article  CAS  Google Scholar 

  55. Ventura MR, Castañón JIR (1998) The nutritive value of seaweed (Ulva lactuca) for goats. Small Rumin Res 29(3):325–327

    Article  Google Scholar 

  56. Rashid N, Song W, Park J, Jin HF, Lee K (2009) Characteristics of hydrogen production by immobilized cyanobacterium Microcystis aeruginosa through cycles of photosynthesis and anaerobic incubation. J Ind Eng Chem 15(4):498–503

    Article  CAS  Google Scholar 

  57. Jafary T, Rahimnejad M, Ghoreyshi AA, Najafpour G, Hghparast F, Ramli WDW (2013) Assessment of bioelectricity production in microbial fuel cells through series and parallel connections. Energy Convers Manag 75(5):256–262

    Article  CAS  Google Scholar 

  58. Liu T, Rao L, Yuan Y, Zhuang L (2015) Bioelectricity generation in a microbial fuel cell with a self-sustainable photocathode. Sci World J 2015:864568

    Google Scholar 

  59. Hu X, Zhou J, Liu B (2016) Effect of algal species and light intensity on the performance of an air-lift-type microbial carbon capture cell with an algae-assisted cathode. RSC Adv 6(30):25094–25100

    Article  CAS  Google Scholar 

  60. Nguyen HT, Kakarla R, Min B (2017) Algae cathode microbial fuel cells for electricity generation and nutrient removal from landfill leachate wastewater. Int J Hydrog Energy 42(49):29433–29442

    Article  CAS  Google Scholar 

  61. Gouveia L, Neves C, Sebastião D, Nobre BP, Matos CT (2014) Effect of light on the production of bioelectricity and added-value microalgae biomass in a photosynthetic alga microbial fuel cell. Bioresour Technol 154:171–177

    Article  CAS  Google Scholar 

  62. Wu Y-C, Wang Z-J, Zheng Y, Xiao Y, Yang Z-H, Zhao F (2014) Light intensity affects the performance of photo microbial fuel cells with Desmodesmus sp. A8 as cathodic microorganism. Appl Energy 116:86–90

    Article  CAS  Google Scholar 

  63. Cui Y, Rashid N, Hu N, Rehman MSU, Han J-I (2014) Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode. Energy Convers Manag 79:674–680

    Article  CAS  Google Scholar 

  64. Rashid N, Cui YF, Rehman MSU, Han JI (2013) Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. Sci Total Environ 456–457(7):91

    Article  CAS  Google Scholar 

  65. Khandelwal A, Vijay A, Dixit A, Chhabra M (2017) Microbial fuel cell powered by lipid extracted algae: a promising system for algal lipids and power generation. Bioresour Technol 247:520–527

    Article  CAS  Google Scholar 

  66. Ryckebosch E, Muylaert K, Foubert I (2012) Optimization of an analytical procedure for extraction of lipids from microalgae. J Am Oil Chem Soc 89(2):189–198

    Article  CAS  Google Scholar 

  67. Colombo A, Marzorati S, Lucchini G, Cristiani P, Pant D, Schievano A (2017) Assisting cultivation of photosynthetic microorganisms by microbial fuel cells to enhance nutrients recovery from wastewater. Bioresour Technol 237:240–248

    Article  CAS  Google Scholar 

  68. Commault AS, Laczka O, Siboni N, Tamburic B, Crosswell JR, Seymour JR, Ralph PJ (2017) Electricity and biomass production in a bacteria- Chlorella based microbial fuel cell treating wastewater. J Power Sources 356:348–355

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao-Yi Cheng or Ai-Jie Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, SS., Sharif, H.M.A., Cheng, HY., Wang, AJ. (2019). Bioelectrochemical System Integrated with Photocatalysis: Principle and Prospect in Wastewater Treatment. In: Wang, AJ., Liang, B., Li, ZL., Cheng, HY. (eds) Bioelectrochemistry Stimulated Environmental Remediation. Springer, Singapore. https://doi.org/10.1007/978-981-10-8542-0_9

Download citation

Publish with us

Policies and ethics