Skip to main content

Enhancing Cold Tolerance in Horticultural Plants Using In Vitro Approaches

  • Chapter
  • First Online:
Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective

Abstract

The economic benefits of horticultural plants are steadily rising over the years owing to the fact that they provide high yield and returns per unit area as compared to other crops. However, the world has limited arable area which is further limited by various types of abiotic stresses, of which the extremes of temperature is very critical. Extreme temperatures lead to physiological, metabolic, and molecular damages to the plants causing a substantial loss to yield by lowering germination rate, killing seedlings, and inducing symptoms like surface lesions, chlorosis, necrosis, desiccation, wilting, etc. in mature plants. Conventional plant breeding has been employed for years to cross species and genera to and select varieties with abiotic stress tolerance. The use of this traditional method is however limited and has not achieved notable results in developing cold-tolerant varieties. In vitro tissue culture-based tools allow a deeper understanding of the physiology of plants growing under stress and also help in the development of abiotic stress-tolerant plants. In the last decade, ample research has also been done to develop cold-tolerant transgenic plants. This chapter reviews the role of biotechnology in the development of cold stress-tolerant horticultural plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akin-Idowu PE, Ibitoye DO, Ademoyegun OT (2009) Tissue culture as a plant production technique for horticultural crops. African J Biotech 8:3782–3788

    Google Scholar 

  • Altman A (2003) From plant tissue culture to biotechnology: scientific revolutions, abiotic stress tolerance, and forestry. In Vitro Cell Dev Biol Plant 39:75–84

    Article  CAS  Google Scholar 

  • Anderson JV, Li QB, Haskell DW, Guy CL (1994) Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat shock cognate gene and expression of 70-kilodalton heat shock genes during cold acclimation. Plant Physiol 104:1359–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arduini I, Godbold DL, Onnis A (1995) Influence of copper on root growth and morphology of Pinus pinea L. and Pinus pinaster Ait. seedlings. Tree Physiol 15:411–415

    Article  CAS  PubMed  Google Scholar 

  • Bertin P, Bouharmont J (1997) Use of somaclonal variation and in vitro selection for chilling tolerance improvement in rice. Euphytica 96:135–142

    Article  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    Article  CAS  PubMed  Google Scholar 

  • Blumenfeld A, Bukovac MJ (1972) Cuticular penetration of ABA. Planta 107:261–268

    Article  CAS  PubMed  Google Scholar 

  • Bornman CH, Jansson E (1980) Nicotiana tabacum callus studies X, ABA increases resistance to cold damage. Physiol Plant 48:491–493

    Article  CAS  Google Scholar 

  • Borowiak K, Drzewiecka K, Magdziak Z, Gasecka M, Mleczek M (2012) Effect of Ca/Mg ratio on copper uptake, photosynthesis activity and growth of Cu (II) –treated Salix viminalis L. “Cannabina”. Photosynthetica 50:353–361

    Article  CAS  Google Scholar 

  • Chakravarty B, Srivastava S (1992) Toxicity of some heavy metals in vivo and in vitro in Helianthus annuus. Mutat Res 283:287–294

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought – from genes to the whole plant. Funct Plant Biol 30:239–264

    Google Scholar 

  • Chen THH, Gusta LV (1983) Abscisic acid-induced freezing resistance in cultured plant cells. Plant Physiol 73:71–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chrispeels MJ, Varner JE (1967) Hormonal control of enzyme synthesis: on the mode of action of gibberellic acid and abscisin in aleurone layers of barley. Plant Physiol 41:1008–1016

    Article  Google Scholar 

  • Cuartero J, Fernandez-Munoz R (1999) Tomato and salinity. Sci Hortic 78:83–125

    Article  CAS  Google Scholar 

  • Das HK, Mitra AK, Sengupta PK, Hossain A, Islam F, Rabbani GH (2004) Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environ Int 30:383–387

    Article  CAS  PubMed  Google Scholar 

  • Drew MC (1979) Plant responses to anaerobic conditions in soil and solution culture. Curr Adv Plant Sci 36:1–14

    Google Scholar 

  • Fitter AH, Hay RKM (1981) Environmental physiology of plants. Academic Press, New York

    Google Scholar 

  • Foolad MR (2005) Breeding for abiotic stress tolerance in tomato. In: Ashraf M, Harris PJ (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. The Hawarth Press, New York, pp 613–684

    Google Scholar 

  • Foy CD (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29:511–566

    Article  CAS  Google Scholar 

  • Galȃn-Saȗco VG, Rodrȋguez-Pastor MGR (2007) Greenhouse cultivation of papaya. Acta Hortic 740:191–195

    Article  Google Scholar 

  • Gao JP, Chao DY, Lin HX (2007) Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. J Integr Plant Biol 49:742–750

    Article  CAS  Google Scholar 

  • Giles KL, Morgan WM (1987) Industrial-scale plant micropropagation. TIBTECH 5:35–39

    Article  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 1(24):1854–1865

    Article  Google Scholar 

  • Gusta LV, Nesbitt NT, Wu G, Luo X, Robertson AJ, Waterer D, Gusta ML (2002) Genetic engineering of cultivated plants for enhanced abiotic stress tolerance. In: Li PH, Palva T (eds) Plant cold hardiness: gene regulation and genetic engineering. Kluwer Academic/Plenum Publishers, Dordrecht, pp 237–248

    Google Scholar 

  • Gusta LV, Trischuk R, Weiser C (2005) Plant cold acclimation: the role of abscisic acid. J Plant Growth Regul 24:308

    Article  CAS  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol 41:187–223

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Extreme temperature responses, oxidative stress and antioxidant defense in plants. In: Vahdati K (ed) Abiotic stress – plant responses and applications in agriculture. InTech. https://doi.org/10.5772/54833. Available from: https://www.intechopen.com/books/abiotic-stress-plant-responsesand-applications-in-agriculture/extreme-temperature-responses-oxidative-stress-and-antioxidant-defense-inplants

  • Hisano H, Kanazawa A, Kawakami A, Yoshida M, Shimamoto Y, Yamada T (2004) Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing. Plant Sci 167:861–868

    Article  CAS  Google Scholar 

  • Hopkins WG (1999) The physiology of plants under stress. In: Introduction to plant physiology, 2nd edn. Wiley, New York, pp 451–475

    Google Scholar 

  • Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Wu Q, Sprague SA, Park J, Oh M, Rajashekar CB, Koiwa H, Nakata PA, Cheng N, Hirschi KD, White FF, Park S (2015) Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components. Horticulture Research 2:15051

    Article  PubMed  PubMed Central  Google Scholar 

  • Irving RM, Lanphear FO (1968) Regulation of cold hardiness in Acer negundo. Plant Physiol 43:9–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juwarkar AS, Shende GB (1986) Interaction of Cd-Pb effect on growth yield and content of Cd, Pb in barley. Indian J Environ Health 28:235–243

    CAS  Google Scholar 

  • Kader AA (2002) Postharvest biology and technology: an overview. In: Kader AA (ed) Postharvest technology of horticultural crop, publication number 3311. Regents of the University of California, Division of Agricultural and Natural Resources, Oakland, pp 39–48

    Google Scholar 

  • Karan R, Subudhi PK (2012) Approaches to increasing salt tolerance in crop plants. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants metabolism, productivity and sustainability. Springer, New York, 978–1–4614-0633-4, pp 63–88

    Google Scholar 

  • Karp A (1995) Somaclonal variation as a tool for crop improvement. Euphytica 85:295–302

    Article  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology 17:287–291

    Google Scholar 

  • Kendall EJ, Qureshi JA, Kartha KK, Leung KN, Caswell CK, THH C (1990) Regeneration of freezing tolerant spring wheat (Triticum aestivum L.) plants from cryoselected callus. Plant Physiol 94:1756–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kijne JW (2006) Abiotic stress and water scarcity: identifying and resolving conflicts from plant level to global level. Field Crop Res 97:3–18

    Article  Google Scholar 

  • Krishna P, Sacco M, Cherutti JF, Hill S (1995) Cold-induced accumulation of hsp90 transcripts in Brassica napus. Plant Physiol 107:915–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishna H, Alizadeh M et al (2016) Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 6:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuo CG, Tsay JS, Chen BW, Lin PY (1982) Screening for flooding tolerance in the genus Lycopersicon. Hortic Sci 17:76–78

    Google Scholar 

  • Larkin P, Scowcroft W (1981) Somaclonal variation-a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  • Ledesma NA, Nakata M, Sugiyama N (2008) Effects of high temperature stress on the reproductive growth of strawberry CNS ‘Nyoho’ and ‘Toyonoka’. Sci Hortic 116:186–193

    Article  Google Scholar 

  • Lee SP, Zhu B, Chen THH, Li PH (1992) Induction of freezing tolerance in potato (Solanum commersonü) suspension cultured cells. Physiol Plant 84:41–48

    Article  CAS  Google Scholar 

  • Lee JT, Prasad V, Yang P-T, Wu J-F, David Ho T-H, Charng Y-Y, Chan MT (2003) Expression of Arabidopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yield. Plant Cell Environ 26:1181–1190

    Article  CAS  Google Scholar 

  • Li R, Qu R, Bruneau AH, Livingston DP (2010) Selection for freezing tolerance in St. Augustine grass through somaclonal variation and germplasm evaluation. Plant Breed 129:417–421

    Article  Google Scholar 

  • Liu J, Yang Z, Li W, Yu J, Huang B (2013) Improving cold tolerance through in vitro selection for somaclonal variations in seashore Paspalum. J Amer Soc Hort Sci 138(6):452–460

    CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • McKersie BD, Chen Y, de Beus M, Bowley SR, Bowler C, Inze D, Halluin KD, Botterman J (1993) Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.) Plant Physiol 10(3):1155–1116

    Article  Google Scholar 

  • McKersie BD, Bowley SR, Jones KS (1999) Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 119:839–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKersie BD, Murnaghan J, Jones KS, Bowley SR (2000) Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol 122:1427–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olien CR, Smith MN (1997) Ice adhesions in relation to freeze stress. Plant Physiol 60:499–503

    Article  Google Scholar 

  • Owens CL, Thomashow MF, Hancock JF, Iezzoni AF (2002) CBF1 orthologs in sour cherry and strawberry and the heterologous expression of CBF1 in strawberry. J Am Soc Hortic Sci 127:489–494

    CAS  Google Scholar 

  • Palonen P, Buszard D (1997) Current state of cold hardiness research on fruit crops. Can J Plant Sci 77:399–420

    Article  Google Scholar 

  • Park EJ, Jeknic Z, Sakamoto A, DeNoma J, Murata N, Chen THH (2003) Genetic engineering of cold-tolerant tomato via glycine betaine biosynthesis. Cryobiol Cryotechnol 49:77–85

    Google Scholar 

  • Park EJ, Jeknic Z, Sakamoto A, DeNoma J, Yuwansiri R, Murata N, Chen THH (2004) Genetic engineering of glycine betaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J 40:474–487

    Article  CAS  PubMed  Google Scholar 

  • Pennycooke JC, Jones ML, Stushnoff C (2003) Down-regulating α-galactosidase enhances freezing tolerance in transgenic petunia. Plant Physiol 133:901–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Clemente RM, Gómez-Cadenas A (2012) In vitro tissue culture, a tool for the study and breeding of plants subjected to abiotic stress conditions. In: Leva A (ed), Recent advances in plant in vitro culture, InTech, doi: https://doi.org/10.5772/50671

  • Rahnama A, Poustini K, Munns R, James RA (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37:255–263

    Article  Google Scholar 

  • Rai MK, Shekhawat HNS, Gupta AK, Phulwaria M, Ram K, Jaiswal U (2011) The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell Tissue Organ Cult 106:179–190

    Article  CAS  Google Scholar 

  • Rao R, Li YC (2003) Management of flooding effects on growth of vegetable and selected field crops. Hort Technol 13:610–616

    Google Scholar 

  • Ravichandra NG (2014) Horticultural nematology. Springer, New Delhi

    Book  Google Scholar 

  • Rout GR, Mohapatra A, Jain SM (2006) Tissue culture of ornamental pot plant: a critical review on present scenario and future prospects. Biotechnol Adv 24:531–560

    Article  CAS  PubMed  Google Scholar 

  • Sahijram L, Soneji J, Bollamma K (2003) Analyzing somaclonal variation in micropropagated bananas (Musa spp.) In Vitro Cell Dev Biol Plant 39:551–556

    Article  Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12:30–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shekhawat UKS, Ganapathi TR (2014) Transgenic banana plants overexpressing MusabZIP53display severe growth retardation with enhanced sucrose and polyphenol oxidase activity. PlantCell Tiss Org Cult 116:387–402

    Article  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94:1035–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swamy PM, Smith B (1999) Role of abscisic acid in plant stress tolerance. Curr Sci 76:1220–1227

    CAS  Google Scholar 

  • Taji T, Ohsumi C, Iuchi M, Seki M, Kasuga M, Kobayshi M, Shinozaki KY, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol 50:571–599

    Article  CAS  Google Scholar 

  • Uemura M, Warren G, Steponkus PL (2003) Freezing sensitivity in the sfr4 mutant of Arabidopsis is due to low sugar content and is manifested by loss of osmotic responsiveness. Plant Physiol 131:1800–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Ieperen W (1996) Effects of different day and night salinity levels on vegetative growth, yield and quality of tomato. J Hortic Sci 71:99–111

    Article  Google Scholar 

  • Varshney A, Dhawan V (1998) Micropropagation of ornamental plants. In: Srivastava PS (ed) Plant tissue culture and molecular biology: applications and prospects. Narosa Publishing House, New Delhi, pp 402–528

    Google Scholar 

  • Weiser C (1970) Cold resistance and injury in woody plants knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage. Science 169:1269–1278

    Article  CAS  PubMed  Google Scholar 

  • Wien HC, Turner AD, Yang SF (1989) Hormonal basis for low light intensity induced flower bud abscission of pepper. J Am Soc Hortic Sci 114:981–985

    CAS  Google Scholar 

  • Wisniewski M, Bassett C, Norelli JL, Artlip T (2007) Using biotechnology to improve resistance to environmental stress in fruit crops: the importance of understanding physiology. Biotechnol Temp Fruit Crops Trop Species 738

    Google Scholar 

  • Wu S (1994) Effect of manganese excess on the soybean plant cultivated under various growth conditions. J Plant Nutr 17:993–1003

    Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev 30(3):515–527

    Article  CAS  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620

    Article  CAS  PubMed  Google Scholar 

  • Yusnita Y, Widodo W, Sudarsono S (2005) In vitro selection of peanut somatic embryos on medium containing culture filtrate of Sclerotium rolfsii and plantlet regeneration. Hayati J Biosci 12(2):50–56

    Article  Google Scholar 

  • Zhang M, Rajashekar CB (1994) Selection of cold tolerant cells of grapes in suspension culture. Plant Sci 97:69–74

    Article  Google Scholar 

  • Zhu B, Alva AK (1993) Effect of pH on growth and uptake of copper by Swingle citrumelo seedlings. J Plant Nutr 16:1837–1845

    Article  CAS  Google Scholar 

  • Zhu J, Dong CH, Zhu JK (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10:290–295

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chugh, S., Sharma, S., Rustagi, A., Kumari, P., Agrawal, A., Kumar, D. (2018). Enhancing Cold Tolerance in Horticultural Plants Using In Vitro Approaches. In: Zargar, S., Zargar, M. (eds) Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective. Springer, Singapore. https://doi.org/10.1007/978-981-10-7479-0_8

Download citation

Publish with us

Policies and ethics