Skip to main content

Waste Valorization to Fuel and Chemicals Through Pyrolysis: Technology, Feedstock, Products, and Economic Analysis

  • Chapter
  • First Online:
Waste to Wealth

Abstract

The decreasing fossil fuel reserves, rise in oil prices, and increasing awareness of environmental impact of continued fossil fuel use have made the quest for alternative energy sources significant throughout the world. In this regard, conversion of various types of wastes to biofuels and biomaterials offers a new paradigm of research in the changing world faced with these diverse problems. Lignocellulosic biomasses are the most predominant among different types of waste resources and are characterized by diverse nature and abundant supply. However, it also has numerous competitive uses which shrink the biomass resource base for energy production. There are numerous biomass materials which are produced as by-products, residues, or wastes from other processes, operations, or industries. The energy content of these materials can be usefully exploited and have the advantage of removing these materials from the landfill. This chapter presents an overview of the pyrolytic conversion of low-value biomass/bio-wastes, agricultural residues, bioenergy by-product, industrial agro-wastes, aquatic wastes, MSW, plastic solid wastes to bio-oil and biochar and their wide-ranging applications. Further, this chapter also reviews the pyrolysis technology and its economic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abnisa F, Wan Daud WMA (2014) A review on co-pyrolysis of biomass: an optional technique to obtain high-grade pyrolysis oil. Energ Convers Manage 87:71–85

    Article  CAS  Google Scholar 

  • Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33:233–271

    Article  CAS  Google Scholar 

  • Al-Salem SM, Antelava A, Constantinou A, Manos G, Dutta A (2017) A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J Environ Manage 197:177–198

    Article  CAS  Google Scholar 

  • Altafini CR, Wander PR, Barreto RM (2003) Prediction of the working parameters of a wood waste gasifier through an equilibrium model. Energy Convers Manage 44:2763–2777

    Article  CAS  Google Scholar 

  • Balat M (2008) Mechanisms of thermochemical biomass conversion processes. Part 1: Reactions of pyrolysis. Energy Sources Part A 30(7):620–635

    Article  CAS  Google Scholar 

  • Balat M, Balat M, Kirtay E, Balat H (2009) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Convers Manage 50:3147–3157

    Article  CAS  Google Scholar 

  • Bélanger NI, Côté B, Fyles JW, Chourchesne F, Hendershot WH (2004) Forest regrowth as the controlling factor of soil nutrient availability 75 years after fire in a deciduous forest of southern Quebec’. Plant Soil 262:363–372

    Article  Google Scholar 

  • Bentsen NS, Felby C, Thorsen BJ (2014) Agricultural residue production and potentials for energy and materials services. Prog Energy Combust Sci 40:59–73

    Article  Google Scholar 

  • Bordoloi N, Narzari R, Chutia RS, Bhaskar T, Kataki R (2015) Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: characterization of bio-oil and its sub-fractions. Bioresour Technol 178:83–89

    Article  CAS  Google Scholar 

  • Bordoloi N, Goswami R, Kumar M, Kataki R (2017) Biosorption of Co (II) from aqueous solution using algal biochar: kinetics and isotherm studies. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.05.139

    Google Scholar 

  • Boukis I, Gyftopoulou ME, Papamichael I (2001) Biomass fast pyrolysis in an air blown circulating fluidized bed reactor. In: Bridgwater AV (ed) Progress in thermochemical biomass conversion. Blackwell Science Ltd, Oxford, UK, pp 1259–1267. https://doi.org/10.1002/9780470694954.ch104

  • Brandt A, Grasvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15(3):550–583

    Article  CAS  Google Scholar 

  • Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4(1):1–73

    Article  CAS  Google Scholar 

  • Bridgwater AV, Czernik S, Piskorz J (2001) An overview of fast pyrolysis. In: Bridgwater AV (ed) Progress in thermochemical biomass conversion, vol 2. Blackwell Science, London, pp 977–997

    Google Scholar 

  • Chen D, Yin L, Wang H, He P (2014) Pyrolysis technologies for municipal solid waste: a review. Waste Manage 34(12):2466–2486

    Article  CAS  Google Scholar 

  • Chiaramonti D, Bonini M, Fratini E, Tondi G, Gartner K, Bridgwater AV, Grimm HP, Soldaini I, Webster A, Baglioni P (2003) Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines. Biomass Bioenergy 25:101–111

    Article  CAS  Google Scholar 

  • Chiaramonti D, Oasmaa A, Solantausta Y (2007) Power generation using fast pyrolysis liquids from biomass. Renew Sustain Energy Rev 11:1056–1086

    Article  CAS  Google Scholar 

  • Chopra S, Jain A (2007) A review of fixed bed gasification systems for biomass. Agric Eng Int 5:1–23

    Google Scholar 

  • Choudhury ND, Chutia RS, Bhaskar T, Kataki R (2014) Pyrolysis of jute dust: effect of reaction parameters and analysis of products. J Mater Cycles Waste Manage 16(3):449–459

    Article  CAS  Google Scholar 

  • Cottam ML, Bridgwater AV (1994) Techno-economic modeling of biomass flash pyrolysis and upgrading systems. Biomass Bioenerg 7:267–273

    Article  Google Scholar 

  • Czajczynska D, Anguilano L, Ghazal H, Krzyzynska R, Reynolds AJ, Spencer N, Jouhara H (2017) Potential of pyrolysis processes in the waste management sector. Therm Sci Eng Prog. https://doi.org/10.1016/j.tsep.2017.06.003

    Google Scholar 

  • Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18:590–598

    Article  CAS  Google Scholar 

  • Demirbas A (1998) Teaching practical chemical kinetics of pyrolysis reaction. Energy Educ Sci Technol 2:23–28

    CAS  Google Scholar 

  • Demirbas A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energ Convers Manage 41:633–646

    Article  CAS  Google Scholar 

  • Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energ Convers Manage 42:1357–1378

    Article  CAS  Google Scholar 

  • Demirbas A (2004) Combustion characteristics of different biomass fuels. Prog Energy Combus Sci 30:219–230

    Google Scholar 

  • Demirbas A (2007) Effect of temperature on pyrolysis products from biomass. Energy Sources Part A 29(4):329–336

    Article  CAS  Google Scholar 

  • Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energy Sources 24(5):471–482

    Google Scholar 

  • Dhyani V, Bhaskar T (2017) A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy. https://doi.org/10.1016/j.renene.2017.04.035

    Google Scholar 

  • Downie A, Crosky A, Munroe P (2009) Physical properties of biochar. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, Dynamotive Energy Systems

    Google Scholar 

  • Elliott D (1994) Water, alkali and char in flash pyrolysis oils. Biomass Bioenergy 7:179–185

    Article  CAS  Google Scholar 

  • Evans RJ, Milne TA (1987) Molecular characterization of the pyrolysis of biomass. Energy Fuels 1:123–137

    Article  CAS  Google Scholar 

  • Fahmi R, Bridgwater AV, Donnison I, Yates N, Jones JM (2008) The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 87:1230–1240

    Article  CAS  Google Scholar 

  • Fitz HC, DeBellevue EB, Costanza R, Boumans R, Maxwell T, Wainger L, Sklar FH (1996) Development of a general ecosystem model for a range of scales and ecosystems. Ecol Modell 88:263–295

    Article  CAS  Google Scholar 

  • Freel BA, Graham RG, Huffman DR (1996) Commercial aspects of rapid thermal processing (RTMTM). In: Bio-oil production and utilization. CPL Press, Newbery, UK, pp 86–95

    Google Scholar 

  • Glaser B, Lehmann J, Zechet W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230

    Article  CAS  Google Scholar 

  • Goswami R, Shimb J, Deka S, Kumari D, Kataki R, Kumar M (2016) Characterization of cadmium removal from aqueous solution by biochar produced from Ipomoea fistulosa at different pyrolytic temperatures. Ecol Eng 97:444–451

    Article  Google Scholar 

  • Gregoire CE (1992) Techno-economic analysis of the production of biocrude from wood; NREL/TP-430–5435. National Renewable Energy Laboratory, Golden, CO, USA

    Google Scholar 

  • Gregoire CE, Bain RL (1994) Technoeconomic analysis of the production of biocrude from wood. Biomass Bioenerg 7:275–283

    Article  CAS  Google Scholar 

  • Gust S (1997) Combustion experiences of flash pyrolysis fuel in intermediate size boilers. In: Bridgwater AV, Boocock DG (eds) Developments in thermochemical biomass conversion. Blackie Academic & Professional, London, UK, pp 481–488

    Google Scholar 

  • Hall DO (1997) Biomass energy in industrialized countries—a view of the future. For Ecol Manage 91:17–45

    Article  Google Scholar 

  • Harmsen J, Powell JB (2011) Sustainable development in the process industries: cases and impact. Wiley, Hoboken

    Google Scholar 

  • http://www.eai.in/ref/ae/wte/concepts.html. Accessed 13 June 2017

  • https://www.btg-btl.com/en/applications/biochemicals. Accessed 20 May 2017

  • Intergovernmental Panel on Climate Change (2017) Forty-fifth session of the IPCC, Guadalajara, Mexico, 28–31 Mar 2017

    Google Scholar 

  • International Energy Agency. World Energy Outlook 2016. http://www.worldenergyoutlook.org/factsheets/. Accessed 8 July 2017

  • International Energy Outlook (IEO 2011) https://www.iea.org/publications/freepublications/publication/WEO2011_WEB.pdf/. Accessed 3 Mar 2017

  • International Energy Outlook (IEO 2016) https://www.iea.org/media/publications/weo/WEO2016Chapter1.pdf. Accessed 22 Feb 2017

  • International Energy Outlook (IEO 2017) https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf/. Accessed 12 Mar 2017

  • Ishak WNRW, Hisham MWM, Yarmo MA, Hin TY (2012) A review on biooil production from biomass by using pyrolysis method. Renew Sustain Energy Rev 16:5910–5923

    Article  Google Scholar 

  • Islam MN, Ani FN (2000) Techno-economics of rice husk pyrolysis, conversion with catalytic treatment to produce liquid fuel. Bioresour Technol 73:67–75

    Article  CAS  Google Scholar 

  • Jahirul MI, Rasul MG, Chowdhury AA, Ashwath N (2012) Biofuels production through biomass pyrolysis—a technological review. Energies 5:4952–5001

    Article  CAS  Google Scholar 

  • Jones SB, Holladay JE, Valkenburg C, Stevens DJ, Walton CW, Kinchin C, Elliott DC, Czernik S (2009) Production of gasoline and diesel from biomass via fast pyrolysis, hydrotreating and hydrocracking: a design case. Report No. PNNL-18284; U.S. Department of Energy, Springfield, VA, USA

    Google Scholar 

  • Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, Zwieten L, Kimber S, Cowie A, Singh BP, Lehmann L, Foidl N, Smernik RJ, Amonette JE (2010) An investigation into the reactions of biochar in soil. Aust J Soil Res 48:501–515

    Article  CAS  Google Scholar 

  • Kabir G, Mohd Din AT, Hameed BH (2017) Pyrolysis of oil palm mesocarp fiber and palm frond in a slow-heating fixed-bed reactor: a comparative study. Bioresour Technol 241:563–572

    Article  CAS  Google Scholar 

  • Kasper JM, Jasas GB, Trauth RL (1983) Use of pyrolysis-derived fuel in a gas turbine engine. ASME Paper No. 83-GT-96

    Google Scholar 

  • Keech O, Carcaillet C, Nilsson M (2005) Adsorption of allelopathic compounds by wood–derived charcoal: the role of wood porosity. Plant Soil 272:291–300

    Article  CAS  Google Scholar 

  • Kumar A, Jones D, Hanna M (2009) Thermochemical biomass gasification: a review of the current status of the technology. Energies 2(3):556–581

    Article  CAS  Google Scholar 

  • Kwapinski W, Byrne CMP, Kryachko E, Wolfram P, Adley C, Leahy JJ, Novotny EH, Hayes MHB (2010) Biochar from biomass and waste. Waste Biomass Valoriz 1(2):177–189

    Article  CAS  Google Scholar 

  • Labeckas G, Slavinskas S (2006) Performance of direct-injection off-road diesel engine on rapeseed oil. Renew Energy 31:849–863

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology. Earthscan, London, Dynamotive Energy Systems

    Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strat Glob Change 11:395–419

    Article  Google Scholar 

  • Leung DYC, Yin XL, Wu CZ (2004) A review on the development and commercialization of biomass gasification technologies in China. Renew Sustain Energy Rev 8:565–580

    Article  CAS  Google Scholar 

  • Liang B, Lehman J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstas JO, Thies J, Luizao FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70(5):1719–1730

    Article  CAS  Google Scholar 

  • Luo Z, Wang S, Liao Y, Zhou J, Gu Y, Cen K (2004) Research on biomass fast pyrolysis for liquid fuel. Biomass Bioenergy 26:455–462

    Article  CAS  Google Scholar 

  • Lv PM, Xiong ZH, Chang J, Wu CZ, Chen Y, Zhu JX (2004) An experimental study on biomass air–steam gasification in a fluidized bed. Bioresour Technol 95:95–101

    Article  CAS  Google Scholar 

  • Meier D, Oasmaa A, Peacocke GVC (1997) Properties of fast pyrolysis liquids: status of test methods. Characterization of fast pyrolysis liquids. In: Bridgwater AV, Boocock DGB (eds) Developments in thermochemical biomass conversion. Blackie Academic & Professional, London, pp 391–408

    Google Scholar 

  • Menon V, Rao M (2012) Recent trends in valorization of lignocellulose to biofuel. In: Satyanarayana T, Johri BN (eds) Microorganisms in sustainable agriculture and biotechnology. Springer, Dordrecht, pp 381–409

    Chapter  Google Scholar 

  • Mohan D, Pittman CU Jr, Steele P (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    Article  CAS  Google Scholar 

  • Moses C (1994) Fuel-specification considerations for biomass liquids. In: Proceedings of biomass pyrolysis oil properties and combustion meeting, 26–28 Sept, Estes Park, CO., NREL-CP- 430-7215, pp 362–382

    Google Scholar 

  • Mullaney H, Farag IH, LaClaire CL, Barrett CJ (2002) Technical, environmental and economic feasibility of bio-oil in New Hampshire’s North Country. Final Report, New Hampshire Industrial Research Center (NHIRC), Durham City, NH, USA

    Google Scholar 

  • Muradov NZ, Veziroglu TN (2008) “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. Int J Hydrogen Energy 33:6804–6839

    Google Scholar 

  • Muradov N, Fidalgo B, Gujar A (2012) Production and characterization of duckweed bio-char and its catalytic application for biogas reforming. Biomass Energy 42:123–131

    Google Scholar 

  • Oasmaa A, Kytö M, Sipilä K (2001) Pyrolysis oil combustion tests in an industrial boiler. In: Progress in thermochemical biomass conversion. Blackwell Science, Oxford, UK, pp 1468–1481

    Google Scholar 

  • Oasmaa A, Elliott DC, Korhonen J (2010) Acidity of biomass fast pyrolysis bio-oils. Energy Fuel 24:6548–6554

    Google Scholar 

  • Oasmaa A, Korhonen J, Kuoppala E (2011) An approach for stability measurement of wood-based fast pyrolysis bio-oils. Energy Fuels 25(7):3307–3313

    Google Scholar 

  • Onwudili JA, Insura N, Williams PT (2009) Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: effects of temperature and residence time. J Anal Appl Pyrol 86:293–303

    Article  CAS  Google Scholar 

  • Ormrod D, Webster A (2000) Progress in utilization of bio-oil in diesel engines. In: PyNe News Letter. Aston University, Birmingham, UK, p 15

    Google Scholar 

  • Peacocke GVC, Madrali ES, Li C-Z, Guell AJ, Kandiyoti R, Bridgwater AV (1994a) Effect of reactor configuration on the yields and structures of pine-wood derived pyrolysis liquids: a comparison between ablative and wire-mesh pyrolysis. Biomass Bioenergy 7(1–6):155–167

    Article  CAS  Google Scholar 

  • Peacocke GVC, Russell PA, Bridgwater AV (1994b) Ablative plate pyrolysis of biomass for liquids. Biomass Bioenergy 7:147–154

    Article  CAS  Google Scholar 

  • Pettersen RC (1984) The chemical composition of wood. Chem Solid Wood 207:57–126

    Article  CAS  Google Scholar 

  • Polagye LB, Hodgson KT, Malte PC (2007) An economic analysis of bio-energy options using thinnings from overstocked forests. Biomass Bioenergy 31:105–125

    Article  Google Scholar 

  • Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50:1–39

    Article  Google Scholar 

  • Putun AE, Apaydin E, Putun E (2002) Bio-oil production from pyrolysis and steam pyrolysis of soybean-cake: product yields and composition. Energy 27(7):703–713

    Article  CAS  Google Scholar 

  • Ramadhas AS, Jayaraj S, Muraleedharan C (2005) Characterization and effect of using rubber seed oil as fuel in the compression ignition engines. Renew Energy 30:795–803

    Article  CAS  Google Scholar 

  • Rao MS, Singha SP, Sodhaa MS, Dubey AK, Shyam M (2004) Stoichiometric, mass, energy and exergy balance analysis of countercurrent fixed-bed gasification of post-consumer residues. Biomass Bioenergy 27:155–171

    Article  CAS  Google Scholar 

  • REN21-Renewable Energy Policy Network for the 21st Century. Renewables 2014 Global Status Report, 2014

    Google Scholar 

  • Ringer M, Putsche V, Scahill J (2006) Large-scale pyrolysis oil production and economic analysis. Technical report NREL/TP-510–37779, National Renewable Energy Laboratory, Cole Boulevard, CO, USA

    Google Scholar 

  • Roy P, Dias G (2017) Prospects for pyrolysis technologies in the bioenergy sector: a review. Renew Sustain Energy Rev 77:59–69

    Article  CAS  Google Scholar 

  • Roy C, Blanchette D, Korving L, Yang J, DeCaumia B (1997) Development of a novel vacuum pyrolysis reactor with improved heat transfer potential. In: Bridgewater AV, Boocock DGB (eds) Developments in thermochemical biomass conversion. Blackie Academic and Professional, London, UK, pp 351–367

    Google Scholar 

  • Saffarzadeh A, Shimaoka T, Motomura Y, Watanabe K (2006) Chemical and mineralogical evaluation of slag products derived from the pyrolysis/melting treatment of MSW. Waste Manage 26:1443–1452

    Article  CAS  Google Scholar 

  • Saikia R, Chutia RS, Kataki R, Pant KK (2015) Perennial grass (Arundo donax L.) as a feedstock for thermo-chemical conversion to energy and materials. Bioresour Technol 188:265–272

    Article  CAS  Google Scholar 

  • Scott DS, Majerski P, Piskorz J, Radlein D (1999) A second look at fast pyrolysis of biomass—the RTI process. J Anal Appl Pyrol 51:23–37

    Article  CAS  Google Scholar 

  • Scurlock JMO, Dayton DC, Hames B (2000) Bamboo: an overlooked biomass resource? Biomass Bioenerg 19:229–244

    Article  CAS  Google Scholar 

  • Sharma A, Pareek V, Zhang D (2015) Biomass pyrolysis—a review of modelling, process parameters and catalytic studies. Renew Sustain Energy Rev 50:1081–1096

    Article  CAS  Google Scholar 

  • Sharuddin SDA, Abnisa F, Daud WMAW, Aroua MK (2016) A review on pyrolysis of plastic wastes. Energy Convers Manage 115:308–326

    Article  Google Scholar 

  • Solantausta Y, Oasmaa A (2003) Fast pyrolysis of forestry residues and sawdust, production and fuel oil quality. In Proceedings of international nordic bioenergy conference, Javaskyla, Finland, pp 1–3

    Google Scholar 

  • Soltes EJ, Lin JCK (1984) Hydro processing of biomass tars for liquid engine fuels. In: Tillman DA, Jahn EC (eds) Progress in biomass conversion. Academic Press, New York, pp 1–69

    Google Scholar 

  • Sorum L, Gronli MG, Hustad JE (2001) Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel 80:1217–1227

    Article  CAS  Google Scholar 

  • Thewys T, Kuppens T (2008) Economics of willow pyrolysis after phytoextraction. Int J Phytorem 10:561–583

    Article  Google Scholar 

  • Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sustain Energy Rev 55:467–481

    Article  CAS  Google Scholar 

  • Thornley P, Wright E (2001) Evaluation of Bio-Energy Projects. In PyNe Final Report to the EC; European Commission: Brussels, Belgium

    Google Scholar 

  • Voets T, Kuppens T (2011) Economics of electricity and heat production by gasification or flash pyrolysis of short rotation coppice in Flanders (Belgium). Biomass Bioenergy 35:1912–1924

    Article  Google Scholar 

  • Wagenaar BM, Venderbosch RH, Carrasco J, Strenziok R, Van der Aa BJ (2001) Rotating cone bio-oil production and applications. In: Bridgewater AV (ed) Progress in thermochemical biomass conversion. Blackwell Science, Oxford, UK, pp 1268–1280

    Google Scholar 

  • Wang X, Kersten SRA, Prins W, Van Swaaij WPM (2005) Biomass pyrolysis in a fluidized bed reactor. Part 2: Experimental validation of model results. Ind Eng Chem Res 44:8786–8795

    Article  CAS  Google Scholar 

  • Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86

    Article  Google Scholar 

  • Wright MM, Daugaard DE, Satrio JA, Brown RC (2010) Techno-economic analysis of biomass fast pyrolys to transportation fuels. Fuel 89:S2–S10

    Article  CAS  Google Scholar 

  • Yaman S (2004) Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manage 45:651–671

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Liang DT, Zheng C (2006) Pyrolysis of palm oil wastes for enhanced production of hydrogen rich gases. Fuel Proc Technol 87:935–942

    Article  CAS  Google Scholar 

  • Zabaniotou AA (1999) Pyrolysis of forestry biomass by-products in Greece. Energy Sources Part A Recovery Util Environ Eff 21:395–403

    CAS  Google Scholar 

  • Zanzi R, Sjostrom K, Bjornbom E (1996) Rapid high-temperature pyrolysis of biomass in a free-fall reactor. Fuel 75:545–550

    Article  CAS  Google Scholar 

  • Zhao YL, Dolat A, Steinberger Y, Wang X, Osman A, Xie GH (2009) Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. Fields Crop Res 111:55–64

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to offer their sincere thanks and acknowledgement for the support from Tezpur University and University Grants Commission, New Delhi, India [Grant No. 42-723/2013 (SR)] received in the form of UGC-MRP. The authors RN, DS, and RS sincerely acknowledge the receipt of fellowships from UGC and CSIR, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupam Kataki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kataki, R. et al. (2018). Waste Valorization to Fuel and Chemicals Through Pyrolysis: Technology, Feedstock, Products, and Economic Analysis. In: Singhania, R., Agarwal, R., Kumar, R., Sukumaran, R. (eds) Waste to Wealth. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7431-8_21

Download citation

Publish with us

Policies and ethics