Skip to main content

The HGF/MET Signaling and Therapeutics in Cancer

  • Chapter
  • First Online:
Regulation of Signal Transduction in Human Cell Research

Part of the book series: Current Human Cell Research and Applications ((CHCRA))

Abstract

The Met proto-oncogene encodes MET tyrosine kinase protein which is a receptor for hepatocyte growth factor/scatter factor (HGF/SF). HGF binds to and activates MET to regulate diversified cellular and molecular activities such as proliferation, motility, differentiation, and survival. Aberration of HGF/MET signaling plays a proven role in promoting cancer initiation and malignant progression, providing a strong rationale for targeting the MET signaling pathway in the treatment of cancer. Several anti-HGF and anti-MET monoclonal antibodies, as well as small-molecule inhibitors of MET, are being evaluated in clinical trials for the treatment of various cancers. In this chapter, we discuss the role of HGF/MET signaling in cancer development and progression, the strategies for targeting MET signaling, as well as the promises and challenges of MET-targeted therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141(7):1117–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353(2):172–87.

    Article  CAS  PubMed  Google Scholar 

  3. Gherardi E, et al. Targeting MET in cancer: rationale and progress. Nat Rev Cancer. 2012;12(2):89–103.

    Article  CAS  PubMed  Google Scholar 

  4. Trusolino L, Comoglio PM. Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer. 2002;2(4):289–300.

    Article  CAS  PubMed  Google Scholar 

  5. Cooper CS, et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature. 1984;311(5981):29–33.

    Article  CAS  PubMed  Google Scholar 

  6. Comoglio PM, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov. 2008;7(6):504–16.

    Article  CAS  PubMed  Google Scholar 

  7. Duh FM, et al. Gene structure of the human MET proto-oncogene. Oncogene. 1997;15(13):1583–6.

    Article  CAS  PubMed  Google Scholar 

  8. Liu Y. The human hepatocyte growth factor receptor gene: complete structural organization and promoter characterization. Gene. 1998;215(1):159–69.

    Article  CAS  PubMed  Google Scholar 

  9. Ding S, et al. HGF receptor up-regulation contributes to the angiogenic phenotype of human endothelial cells and promotes angiogenesis in vitro. Blood. 2003;101(12):4816–22.

    Article  CAS  PubMed  Google Scholar 

  10. Kajiya K, et al. Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J. 2005;24(16):2885–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jung W, et al. Expression and functional interaction of hepatocyte growth factor-scatter factor and its receptor c-met in mammalian brain. J Cell Biol. 1994;126(2):485–94.

    Article  CAS  PubMed  Google Scholar 

  12. Okano J, Shiota G, Kawasaki H. Expression of hepatocyte growth factor (HGF) and HGF receptor (c-met) proteins in liver diseases: an immunohistochemical study. Liver. 1999;19(2):151–9.

    Article  CAS  PubMed  Google Scholar 

  13. Kmiecik TE, et al. Hepatocyte growth factor is a synergistic factor for the growth of hematopoietic progenitor cells. Blood. 1992;80(10):2454–7.

    CAS  PubMed  Google Scholar 

  14. Liu Y, et al. Hepatocyte growth factor and c-Met expression in pericytes: implications for atherosclerotic plaque development. J Pathol. 2007;212(1):12–9.

    Article  CAS  PubMed  Google Scholar 

  15. Birchmeier C, et al. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25.

    Article  CAS  PubMed  Google Scholar 

  16. Rodrigues GA, Park M. Autophosphorylation modulates the kinase activity and oncogenic potential of the Met receptor tyrosine kinase. Oncogene. 1994;9(7):2019–27.

    CAS  PubMed  Google Scholar 

  17. Organ SL, Tsao MS. An overview of the c-MET signaling pathway. Ther Adv Med Oncol. 2011;3(1 Suppl):S7–S19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ponzetto C, et al. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell. 1994;77(2):261–71.

    Article  CAS  PubMed  Google Scholar 

  19. Weidner KM, et al. Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc Natl Acad Sci U S A. 1991;88(16):7001–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakamura T, et al. Molecular cloning and expression of human hepatocyte growth factor. Nature. 1989;342(6248):440–3.

    Article  CAS  PubMed  Google Scholar 

  21. Stoker M, et al. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature. 1987;327(6119):239–42.

    Article  CAS  PubMed  Google Scholar 

  22. Owen KA, et al. Pericellular activation of hepatocyte growth factor by the transmembrane serine proteases matriptase and hepsin, but not by the membrane-associated protease uPA. Biochem J. 2010;426(2):219–28.

    Article  CAS  PubMed  Google Scholar 

  23. Lee SL, Dickson RB, Lin CY. Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem. 2000;275(47):36720–5.

    Article  CAS  PubMed  Google Scholar 

  24. Furge KA, Zhang YW, Vande Woude GF. Met receptor tyrosine kinase: enhanced signaling through adapter proteins. Oncogene. 2000;19(49):5582–9.

    Article  CAS  PubMed  Google Scholar 

  25. Peruzzi B, Bottaro DP. Targeting the c-Met signaling pathway in cancer. Clin Cancer Res. 2006;12(12):3657–60.

    Article  CAS  PubMed  Google Scholar 

  26. Fixman ED, et al. Pathways downstream of Shc and Grb2 are required for cell transformation by the tpr-Met oncoprotein. J Biol Chem. 1996;271(22):13116–22.

    Article  CAS  PubMed  Google Scholar 

  27. Weidner KM, et al. Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature. 1996;384(6605):173–6.

    Article  CAS  PubMed  Google Scholar 

  28. Pelicci G, et al. The motogenic and mitogenic responses to HGF are amplified by the Shc adaptor protein. Oncogene. 1995;10(8):1631–8.

    CAS  PubMed  Google Scholar 

  29. Koch A, et al. The SH2-domian-containing inositol 5-phosphatase (SHIP)-2 binds to c-Met directly via tyrosine residue 1356 and involves hepatocyte growth factor (HGF)-induced lamellipodium formation, cell scattering and cell spreading. Oncogene. 2005;24(21):3436–47.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang YW, et al. Requirement of Stat3 signaling for HGF/SF-Met mediated tumorigenesis. Oncogene. 2002;21(2):217–26.

    Article  CAS  PubMed  Google Scholar 

  31. Boccaccio C, et al. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature. 1998;391(6664):285–8.

    Article  CAS  PubMed  Google Scholar 

  32. Graziani A, et al. Hepatocyte growth factor/scatter factor stimulates the Ras-guanine nucleotide exchanger. J Biol Chem. 1993;268(13):9165–8.

    CAS  PubMed  Google Scholar 

  33. Paumelle R, et al. Hepatocyte growth factor/scatter factor activates the ETS1 transcription factor by a RAS-RAF-MEK-ERK signaling pathway. Oncogene. 2002;21(15):2309–19.

    Article  CAS  PubMed  Google Scholar 

  34. Maroun CR, Naujokas MA, Park M. Membrane targeting of Grb2-associated binder-1 (Gab1) scaffolding protein through Src myristoylation sequence substitutes for Gab1 pleckstrin homology domain and switches an epidermal growth factor response to an invasive morphogenic program. Mol Biol Cell. 2003;14(4):1691–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schaeper U, et al. Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. J Cell Biol. 2000;149(7):1419–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xiao GH, et al. Anti-apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Proc Natl Acad Sci U S A. 2001;98(1):247–52.

    Article  CAS  PubMed  Google Scholar 

  37. Syed ZA, et al. HGF/c-met/Stat3 signaling during skin tumor cell invasion: indications for a positive feedback loop. BMC Cancer. 2011;11:180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Müller M, Morotti A, Ponzetto C. Activation of NF-kappaB is essential for hepatocyte growth factor-mediated proliferation and tubulogenesis. Mol Cell Biol. 2002;22(4):1060–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hui AY, et al. Src and FAK mediate cell-matrix adhesion-dependent activation of Met during transformation of breast epithelial cells. J Cell Biochem. 2009;107(6):1168–81.

    Article  CAS  PubMed  Google Scholar 

  40. Rahimi N, et al. c-Src kinase activity is required for hepatocyte growth factor-induced motility and anchorage-independent growth of mammary carcinoma cells. J Biol Chem. 1998;273(50):33714–21.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang S, et al. Targeting Met and Notch in the Lfng-deficient, Met-amplified triple-negative breast cancer. Cancer Biol Ther. 2014;15(5):633–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stella MC, et al. Negative feedback regulation of Met-dependent invasive growth by Notch. Mol Cell Biol. 2005;25(10):3982–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shattuck DL, et al. Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res. 2008;68(5):1471–7.

    Article  CAS  PubMed  Google Scholar 

  44. Siegfried JM, et al. Association of immunoreactive hepatocyte growth factor with poor survival in resectable non-small cell lung cancer. Cancer Res. 1997;57(3):433–9.

    CAS  PubMed  Google Scholar 

  45. Sawada K, et al. c-Met overexpression is a prognostic factor in ovarian cancer and an effective target for inhibition of peritoneal dissemination and invasion. Cancer Res. 2007;67(4):1670–9.

    Article  CAS  PubMed  Google Scholar 

  46. Lo Muzio L, et al. Effect of c-Met expression on survival in head and neck squamous cell carcinoma. Tumour Biol. 2006;27(3):115–21.

    Article  CAS  PubMed  Google Scholar 

  47. Park S, et al. High MET copy number and MET overexpression: poor outcome in non-small cell lung cancer patients. Histol Histopathol. 2012;27(2):197–207.

    PubMed  Google Scholar 

  48. Koochekpour S, et al. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res. 1997;57(23):5391–8.

    CAS  PubMed  Google Scholar 

  49. Li G, et al. Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development. Oncogene. 2001;20(56):8125–35.

    Article  CAS  PubMed  Google Scholar 

  50. Ferracini R, et al. The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene. 1995;10(4):739–49.

    CAS  PubMed  Google Scholar 

  51. Tuck AB, et al. Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. Am J Pathol. 1996;148(1):225–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cappuzzo F, et al. Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol. 2009;27(10):1667–74.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Okuda K, et al. Met gene copy number predicts the prognosis for completely resected non-small cell lung cancer. Cancer Sci. 2008;99(11):2280–5.

    Article  CAS  PubMed  Google Scholar 

  54. Ichimura E, et al. Expression of c-met/HGF receptor in human non-small cell lung carcinomas in vitro and in vivo and its prognostic significance. Jpn J Cancer Res. 1996;87(10):1063–9.

    Article  CAS  PubMed  Google Scholar 

  55. Takanami I, et al. Hepatocyte growth factor and c-Met/hepatocyte growth factor receptor in pulmonary adenocarcinomas: an evaluation of their expression as prognostic markers. Oncology. 1996;53(5):392–7.

    Article  CAS  PubMed  Google Scholar 

  56. Gumustekin M, et al. HGF/c-Met overexpressions, but not met mutation, correlates with progression of non-small cell lung cancer. Pathol Oncol Res. 2012;18(2):209–18.

    Article  CAS  PubMed  Google Scholar 

  57. Smolen GA, et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc Natl Acad Sci U S A. 2006;103(7):2316–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pennacchietti S, et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell. 2003;3(4):347–61.

    Article  PubMed  Google Scholar 

  59. Boon EM, et al. Wnt signaling regulates expression of the receptor tyrosine kinase met in colorectal cancer. Cancer Res. 2002;62(18):5126–8.

    CAS  PubMed  Google Scholar 

  60. Kanteti R, et al. PAX5 is expressed in small-cell lung cancer and positively regulates c-Met transcription. Lab Invest. 2009;89(3):301–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ivan M, et al. Activated ras and ret oncogenes induce over-expression of c-met (hepatocyte growth factor receptor) in human thyroid epithelial cells. Oncogene. 1997;14(20):2417–23.

    Article  CAS  PubMed  Google Scholar 

  62. Gambarotta G, et al. Ets up-regulates MET transcription. Oncogene. 1996;13(9):1911–7.

    CAS  PubMed  Google Scholar 

  63. Feng Y, Thiagarajan PS, Ma PC. MET signaling: novel targeted inhibition and its clinical development in lung cancer. J Thorac Oncol. 2012;7(2):459–67.

    Article  CAS  PubMed  Google Scholar 

  64. Ma PC, et al. Expression and mutational analysis of MET in human solid cancers. Genes Chromosomes Cancer. 2008;47(12):1025–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Krishnaswamy S, et al. Ethnic differences and functional analysis of MET mutations in lung cancer. Clin Cancer Res. 2009;15(18):5714–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zaffaroni D, et al. Met proto-oncogene juxtamembrane rare variations in mouse and humans: differential effects of Arg and Cys alleles on mouse lung tumorigenesis. Oncogene. 2005;24(6):1084–90.

    Article  CAS  PubMed  Google Scholar 

  67. Ma PC, et al. c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res. 2003;63(19):6272–81.

    CAS  PubMed  Google Scholar 

  68. Peschard P, et al. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell. 2001;8(5):995–1004.

    Article  CAS  PubMed  Google Scholar 

  69. Schmidt L, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997;16(1):68–73.

    Article  CAS  PubMed  Google Scholar 

  70. Ma PC, et al. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res. 2005;65(4):1479–88.

    Article  CAS  PubMed  Google Scholar 

  71. Cortesina G, et al. Molecular markers study in pTNM of squamous carcinoma of the head and neck. Acta Otorhinolaryngol Ital. 2000;20(6):380–2.

    CAS  PubMed  Google Scholar 

  72. Walz C, Sattler M. Novel targeted therapies to overcome imatinib mesylate resistance in chronic myeloid leukemia (CML). Crit Rev Oncol Hematol. 2006;57(2):145–64.

    Article  PubMed  Google Scholar 

  73. Engelman JA, Jänne PA. Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res. 2008;14(10):2895–9.

    Article  PubMed  Google Scholar 

  74. Nieto MA. Epithelial-mesenchymal transitions in development and disease: old views and new perspectives. Int J Dev Biol. 2009;53(8–10):1541–7.

    Article  PubMed  Google Scholar 

  75. Thiery JP, et al. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.

    Article  CAS  PubMed  Google Scholar 

  76. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.

    Article  CAS  PubMed  Google Scholar 

  77. Birchmeier W, Birchmeier C. Epithelial-mesenchymal transitions in development and tumor progression. EXS. 1995;74:1–15.

    CAS  PubMed  Google Scholar 

  78. De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13(2):97–110.

    Article  PubMed  CAS  Google Scholar 

  79. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jung HY, Fattet L, Yang J. Molecular pathways: linking tumor microenvironment to epithelial-mesenchymal transition in metastasis. Clin Cancer Res. 2015;21(5):962–8.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang J, Ma L. MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev. 2012;31(3–4):653–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang P, Sun Y, Ma L. ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle. 2015;14(4):481–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Petrelli A, et al. The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met. Nature. 2002;416(6877):187–90.

    Article  CAS  PubMed  Google Scholar 

  84. Birchmeier C, Birchmeier W, Brand-Saberi B. Epithelial-mesenchymal transitions in cancer progression. Acta Anat (Basel). 1996;156(3):217–26.

    Article  CAS  Google Scholar 

  85. Fournier TM, et al. Cbl-transforming variants trigger a cascade of molecular alterations that lead to epithelial mesenchymal conversion. Mol Biol Cell. 2000;11(10):3397–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xie Q, et al. Geldanamycins exquisitely inhibit HGF/SF-mediated tumor cell invasion. Oncogene. 2005;24(23):3697–707.

    Article  CAS  PubMed  Google Scholar 

  87. Paik PK, et al. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov. 2015;5(8):842–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Merchant M, et al. Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent. Proc Natl Acad Sci U S A. 2013;110(32):E2987–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yilmaz M, Christofori G. Mechanisms of motility in metastasizing cells. Mol Cancer Res. 2010;8(5):629–42.

    Article  CAS  PubMed  Google Scholar 

  90. Tian X, et al. E-cadherin/beta-catenin complex and the epithelial barrier. J Biomed Biotechnol. 2011;2011:567305.

    PubMed  PubMed Central  Google Scholar 

  91. Nagai T, et al. Sorafenib inhibits the hepatocyte growth factor-mediated epithelial mesenchymal transition in hepatocellular carcinoma. Mol Cancer Ther. 2011;10(1):169–77.

    Article  CAS  PubMed  Google Scholar 

  92. Grotegut S, et al. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J. 2006;25(15):3534–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Susuki D, et al. Regulation of microRNA expression by hepatocyte growth factor in human head and neck squamous cell carcinoma. Cancer Sci. 2011;102(12):2164–71.

    Article  CAS  PubMed  Google Scholar 

  94. Serres M, et al. The disruption of adherens junctions is associated with a decrease of E-cadherin phosphorylation by protein kinase CK2. Exp Cell Res. 2000;257(2):255–64.

    Article  CAS  PubMed  Google Scholar 

  95. Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer. 2004;4(2):118–32.

    Article  CAS  PubMed  Google Scholar 

  96. Onder TT, et al. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008;68(10):3645–54.

    Article  CAS  PubMed  Google Scholar 

  97. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119(6):1429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Daugherty RL, Gottardi CJ. Phospho-regulation of Beta-catenin adhesion and signaling functions. Physiology (Bethesda). 2007;22:303–9.

    CAS  Google Scholar 

  99. Huber AH, Weis WI. The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell. 2001;105(3):391–402.

    Article  CAS  PubMed  Google Scholar 

  100. Huber AH, et al. The cadherin cytoplasmic domain is unstructured in the absence of beta-catenin. A possible mechanism for regulating cadherin turnover. J Biol Chem. 2001;276(15):12301–9.

    Article  CAS  PubMed  Google Scholar 

  101. Lickert H, et al. Casein kinase II phosphorylation of E-cadherin increases E-cadherin/beta-catenin interaction and strengthens cell-cell adhesion. J Biol Chem. 2000;275(7):5090–5.

    Article  CAS  PubMed  Google Scholar 

  102. Wang R, et al. Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J Cell Biol. 2001;153(5):1023–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tward AD, et al. Distinct pathways of genomic progression to benign and malignant tumors of the liver. Proc Natl Acad Sci U S A. 2007;104(37):14771–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tao J, et al. Modeling a human HCC subset in mice through co-expression of Met and point-mutant beta-catenin. Hepatology. 2016.

    Google Scholar 

  105. Howard S, et al. A positive role of cadherin in Wnt/beta-catenin signalling during epithelial-mesenchymal transition. PLoS One. 2011;6(8):e23899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265–73.

    Article  CAS  PubMed  Google Scholar 

  107. Roussos ET, et al. AACR special conference on epithelial-mesenchymal transition and cancer progression and treatment. Cancer Res. 2010;70(19):7360–4.

    Article  CAS  PubMed  Google Scholar 

  108. Heuberger J, Birchmeier W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol. 2010;2(2):a002915.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Vermeulen L, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12(5):468–76.

    Article  CAS  PubMed  Google Scholar 

  110. Korkaya H, Wicha MS. Cancer stem cells: nature versus nurture. Nat Cell Biol. 2010;12(5):419–21.

    Article  CAS  PubMed  Google Scholar 

  111. Brabletz T, et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A. 2001;98(18):10356–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Huang FI, et al. Hepatocyte growth factor activates Wnt pathway by transcriptional activation of LEF1 to facilitate tumor invasion. Carcinogenesis. 2012;33(6):1142–8.

    Article  CAS  PubMed  Google Scholar 

  113. Fabregat I, Malfettone A, Soukupova J. New insights into the crossroads between EMT and stemness in the context of cancer. J Clin Med. 2016;5(3).

    Google Scholar 

  114. Yoshida K, et al. Hepatocyte growth factor-induced up-regulation of Twist drives epithelial-mesenchymal transition in a canine mammary tumour cell line. Res Vet Sci. 2014;97(3):521–6.

    Article  CAS  PubMed  Google Scholar 

  115. Gimbrone MA Jr, et al. Tumor dormancy in vivo by prevention of neovascularization. J Exp Med. 1972;136(2):261–76.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Brem S, et al. Prolonged tumor dormancy by prevention of neovascularization in the vitreous. Cancer Res. 1976;36(8):2807–12.

    CAS  PubMed  Google Scholar 

  117. Chung AS, Lee J, Ferrara N. Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer. 2010;10(7):505–14.

    Article  CAS  PubMed  Google Scholar 

  118. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353–64.

    Article  CAS  PubMed  Google Scholar 

  119. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1(1):27–31.

    Article  CAS  PubMed  Google Scholar 

  120. Gerritsen ME. HGF and VEGF: a dynamic duo. Circ Res. 2005;96(3):272–3.

    Article  CAS  PubMed  Google Scholar 

  121. Sulpice E, et al. Cross-talk between the VEGF-A and HGF signalling pathways in endothelial cells. Biol Cell. 2009;101(9):525–39.

    Article  CAS  PubMed  Google Scholar 

  122. Xin X, et al. Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Am J Pathol. 2001;158(3):1111–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Van Belle E, et al. Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplification of angiogenesis. Circulation. 1998;97(4):381–90.

    Article  PubMed  Google Scholar 

  124. Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247–69.

    Article  CAS  PubMed  Google Scholar 

  125. Connolly JO, et al. Rac regulates endothelial morphogenesis and capillary assembly. Mol Biol Cell. 2002;13(7):2474–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Royal I, et al. Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol Biol Cell. 2000;11(5):1709–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Rosario M, Birchmeier W. How to make tubes: signaling by the Met receptor tyrosine kinase. Trends Cell Biol. 2003;13(6):328–35.

    Article  CAS  PubMed  Google Scholar 

  128. Gu H, Neel BG. The “Gab” in signal transduction. Trends Cell Biol. 2003;13(3):122–30.

    Article  CAS  PubMed  Google Scholar 

  129. Horiguchi N, et al. Hepatocyte growth factor promotes hepatocarcinogenesis through c-Met autocrine activation and enhanced angiogenesis in transgenic mice treated with diethylnitrosamine. Oncogene. 2002;21(12):1791–9.

    Article  CAS  PubMed  Google Scholar 

  130. Saucier C, et al. The Shc adaptor protein is critical for VEGF induction by Met/HGF and ErbB2 receptors and for early onset of tumor angiogenesis. Proc Natl Acad Sci U S A. 2004;101(8):2345–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jimenez B, et al. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med. 2000;6(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  133. Zhang YW, et al. Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci U S A. 2003;100(22):12718–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gao CF, et al. Proliferation and invasion: plasticity in tumor cells. Proc Natl Acad Sci U S A. 2005;102(30):10528–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang H, Keiser JA. Hepatocyte growth factor enhances MMP activity in human endothelial cells. Biochem Biophys Res Commun. 2000;272(3):900–5.

    Article  CAS  PubMed  Google Scholar 

  136. Koh SA, Lee KH. HGF mediated upregulation of lipocalin 2 regulates MMP9 through nuclear factor-kappaB activation. Oncol Rep. 2015;34(4):2179–87.

    Article  CAS  PubMed  Google Scholar 

  137. Monvoisin A, et al. Involvement of matrix metalloproteinase type-3 in hepatocyte growth factor-induced invasion of human hepatocellular carcinoma cells. Int J Cancer. 2002;97(2):157–62.

    Article  CAS  PubMed  Google Scholar 

  138. Giancotti FG, Ruoslahti E. Integrin signaling. Science. 1999;285(5430):1028–32.

    Article  CAS  PubMed  Google Scholar 

  139. Campbell ID, Humphries MJ. Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol. 2011;3(3).

    Google Scholar 

  140. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–87.

    Article  CAS  PubMed  Google Scholar 

  141. Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer. 2008;8(8):604–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10(1):9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Weis SM, Cheresh DA. alphaV integrins in angiogenesis and cancer. Cold Spring Harb Perspect Med. 2011;1(1):a006478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Ephstein Y, et al. Critical role of S1PR1 and integrin beta4 in HGF/c-Met-mediated increases in vascular integrity. J Biol Chem. 2013;288(4):2191–200.

    Article  CAS  PubMed  Google Scholar 

  145. Ni X, et al. Interaction of integrin beta4 with S1P receptors in S1P- and HGF-induced endothelial barrier enhancement. J Cell Biochem. 2014;115(6):1187–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hongu T, et al. Arf6 regulates tumour angiogenesis and growth through HGF-induced endothelial beta 1 integrin recycling. Nat Commun. 2015;6.

    Google Scholar 

  147. Hongu T, et al. Pathological functions of the small GTPase Arf6 in cancer progression: tumor angiogenesis and metastasis. Small GTPases. 2016;7(2):47–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Rahman S, et al. Novel hepatocyte growth factor (HGF) binding domains on fibronectin and vitronectin coordinate a distinct and amplified Met-integrin induced signalling pathway in endothelial cells. BMC Cell Biol. 2005;6(1):8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Trusolino L, Bertotti A, Comoglio PM. A signaling adapter function for alpha6beta4 integrin in the control of HGF-dependent invasive growth. Cell. 2001;107(5):643–54.

    Article  CAS  PubMed  Google Scholar 

  150. Nikolopoulos SN, et al. Integrin beta4 signaling promotes tumor angiogenesis. Cancer Cell. 2004;6(5):471–83.

    Article  CAS  PubMed  Google Scholar 

  151. Zhao X, Guan JL. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev. 2011;63(8):610–5.

    Article  CAS  PubMed  Google Scholar 

  152. Chan PC, et al. Crosstalk between hepatocyte growth factor and integrin signaling pathways. J Biomed Sci. 2006;13(2):215–23.

    Article  CAS  PubMed  Google Scholar 

  153. Chen SY, Chen HC. Direct interaction of focal adhesion kinase (FAK) with Met is required for FAK to promote hepatocyte growth factor-induced cell invasion. Mol Cell Biol. 2006;26(13):5155–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: good and evil. Genes Cancer. 2011;2(12):1117–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer. 2008;8(12):967–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001;93(4):266–76.

    Article  CAS  PubMed  Google Scholar 

  157. Salceda S, Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem. 1997;272(36):22642–7.

    Article  CAS  PubMed  Google Scholar 

  158. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9(6):677–84.

    Article  CAS  PubMed  Google Scholar 

  159. Liu Y, et al. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ Res. 1995;77(3):638–43.

    Article  CAS  PubMed  Google Scholar 

  160. Tang N, et al. Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell. 2004;6(5):485–95.

    Article  CAS  PubMed  Google Scholar 

  161. Wang GL, Semenza GL. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem. 1993;268(29):21513–8.

    CAS  PubMed  Google Scholar 

  162. Eckerich C, et al. Hypoxia can induce c-Met expression in glioma cells and enhance SF/HGF-induced cell migration. Int J Cancer. 2007;121(2):276–83.

    Article  CAS  PubMed  Google Scholar 

  163. Kitajima Y, et al. Induction of hepatocyte growth factor activator gene expression under hypoxia activates the hepatocyte growth factor/c-Met system via hypoxia inducible factor-1 in pancreatic cancer. Cancer Sci. 2008;99(7):1341–7.

    Article  CAS  PubMed  Google Scholar 

  164. Yamamoto K, et al. Contribution of Bcl-2, but not Bcl-xL and Bax, to antiapoptotic actions of hepatocyte growth factor in hypoxia-conditioned human endothelial cells. Hypertension. 2001;37(5):1341–8.

    Article  CAS  PubMed  Google Scholar 

  165. Wang X, et al. Hepatocyte growth factor protects against hypoxia/reoxygenation-induced apoptosis in endothelial cells. J Biol Chem. 2003;279(7):5237–43.

    Article  PubMed  Google Scholar 

  166. Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer. 2014;14(6):430–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Pugh CW, Ratcliffe PJ. The von Hippel-Lindau tumor suppressor, hypoxia-inducible factor-1 (HIF-1) degradation, and cancer pathogenesis. Semin Cancer Biol. 2003;13(1):83–9.

    Article  CAS  PubMed  Google Scholar 

  168. Gordon MS, et al. Safety, pharmacokinetics, and pharmacodynamics of AMG 102, a fully human hepatocyte growth factor-neutralizing monoclonal antibody, in a first-in-human study of patients with advanced solid tumors. Clin Cancer Res. 2010;16(2):699–710.

    Article  CAS  PubMed  Google Scholar 

  169. Rosen PJ, et al. A phase Ib study of AMG 102 in combination with bevacizumab or motesanib in patients with advanced solid tumors. Clin Cancer Res. 2010;16(9):2677–87.

    Article  CAS  PubMed  Google Scholar 

  170. Mok TS, et al. A randomized phase 2 study comparing the combination of Ficlatuzumab and Gefitinib with Gefitinib alone in Asian patients with advanced stage pulmonary adenocarcinoma. J Thorac Oncol. 2016;11(10):1736–44.

    Article  PubMed  Google Scholar 

  171. Patnaik A, et al. Phase I ficlatuzumab monotherapy or with erlotinib for refractory advanced solid tumours and multiple myeloma. Br J Cancer. 2014;111(2):272–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Houghton PJ, et al. Initial testing (Stage 1) of TAK-701, a humanized hepatocyte growth factor binding antibody, by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer. 2014;61(2):380–2.

    Article  CAS  PubMed  Google Scholar 

  173. Okamoto W, et al. TAK-701, a humanized monoclonal antibody to hepatocyte growth factor, reverses gefitinib resistance induced by tumor-derived HGF in non-small cell lung cancer with an EGFR mutation. Mol Cancer Ther. 2010;9(10):2785–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Jin H, et al. MetMAb, the one-armed 5D5 anti-c-Met antibody, inhibits orthotopic pancreatic tumor growth and improves survival. Cancer Res. 2008;68(11):4360–8.

    Article  CAS  PubMed  Google Scholar 

  175. Tseng JR, et al. Preclinical efficacy of the c-Met inhibitor CE-355621 in a U87 MG mouse xenograft model evaluated by 18F-FDG small-animal PET. J Nucl Med. 2008;49(1):129–34.

    Article  PubMed  Google Scholar 

  176. Pacchiana G, et al. Monovalency unleashes the full therapeutic potential of the DN-30 anti-Met antibody. J Biol Chem. 2010;285(46):36149–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Liu L, et al. LY2875358, a neutralizing and internalizing anti-MET bivalent antibody, inhibits HGF-dependent and HGF-independent MET activation and tumor growth. Clin Cancer Res. 2014;20(23):6059–70.

    Article  CAS  PubMed  Google Scholar 

  178. Salgia R, et al. Phase I dose-escalation study of onartuzumab as a single agent and in combination with bevacizumab in patients with advanced solid malignancies. Clin Cancer Res. 2014;20(6):1666–75.

    Article  CAS  PubMed  Google Scholar 

  179. Diéras V, et al. Randomized, phase II, placebo-controlled trial of onartuzumab and/or bevacizumab in combination with weekly paclitaxel in patients with metastatic triple-negative breast cancer. Ann Oncol. 2015;26(9):1904–10.

    Article  PubMed  Google Scholar 

  180. Spigel DR, et al. Randomized phase II trial of Onartuzumab in combination with erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2013;31(32):4105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Garber K. MET inhibitors start on road to recovery. Nat Rev Drug Discov. 2014;13(8):563–5.

    Article  CAS  PubMed  Google Scholar 

  182. Azuma K, et al. Phase II study of erlotinib plus tivantinib (ARQ 197) in patients with locally advanced or metastatic EGFR mutation-positive non-small-cell lung cancer just after progression on EGFR-TKI, gefitinib or erlotinib. ESMO Open. 2016;1(4):e000063.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Scagliotti G, et al. Phase III multinational, randomized, double-blind, placebo-controlled study of Tivantinib (ARQ 197) plus Erlotinib versus Erlotinib alone in previously treated patients with locally advanced or metastatic nonsquamous non-small-cell lung cancer. J Clin Oncol. 2015;33(24):2667–74.

    Article  CAS  PubMed  Google Scholar 

  184. Eng C, et al. A randomized, placebo-controlled, phase 1/2 study of tivantinib (ARQ 197) in combination with irinotecan and cetuximab in patients with metastatic colorectal cancer with wild-type KRAS who have received first-line systemic therapy. Int J Cancer. 2016;139(1):177–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tolaney SM, et al. Phase II study of tivantinib (ARQ 197) in patients with metastatic triple-negative breast cancer. Invest New Drugs. 2015;33(5):1108–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Trojan J, Zeuzem S. Tivantinib in hepatocellular carcinoma. Expert Opin Investig Drugs. 2013;22(1):141–7.

    Article  CAS  PubMed  Google Scholar 

  187. Porta C, et al. Tivantinib (ARQ197) in hepatocellular carcinoma. Expert Rev Anticancer Ther. 2015;15(6):615–22.

    Article  CAS  PubMed  Google Scholar 

  188. Lee J, Tran P, Klempner SJ. Targeting the MET pathway in gastric and oesophageal cancers: refining the optimal approach. Clin Oncol (R Coll Radiol). 2016;28(8):e35–44.

    Article  CAS  Google Scholar 

  189. Brandes F, et al. Targeting cMET with INC280 impairs tumour growth and improves efficacy of gemcitabine in a pancreatic cancer model. BMC Cancer. 2015;15:71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Gavine PR, et al. Volitinib, a potent and highly selective c-Met inhibitor, effectively blocks c-Met signaling and growth in c-MET amplified gastric cancer patient-derived tumor xenograft models. Mol Oncol. 2015;9(1):323–33.

    Article  CAS  PubMed  Google Scholar 

  191. Rodig SJ, Shapiro GI. Crizotinib, a small-molecule dual inhibitor of the c-Met and ALK receptor tyrosine kinases. Curr Opin Investig Drugs. 2010;11(12):1477–90.

    CAS  PubMed  Google Scholar 

  192. Kazandjian D, et al. FDA approval summary: crizotinib for the treatment of metastatic non-small cell lung cancer with anaplastic lymphoma kinase rearrangements. Oncologist. 2014;19(10):e5–11.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Schwab R, et al. Major partial response to crizotinib, a dual MET/ALK inhibitor, in a squamous cell lung (SCC) carcinoma patient with de novo c-MET amplification in the absence of ALK rearrangement. Lung Cancer. 2014;83(1):109–11.

    Article  PubMed  Google Scholar 

  194. Yakes FM, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10(12):2298–308.

    Article  CAS  PubMed  Google Scholar 

  195. Krajewska J, Olczyk T, Jarzab B. Cabozantinib for the treatment of progressive metastatic medullary thyroid cancer. Expert Rev Clin Pharmacol. 2016;9(1):69–79.

    Article  CAS  PubMed  Google Scholar 

  196. Singh H, et al. U.S. Food and Drug Administration approval: Cabozantinib for treatment of advanced renal cell carcinoma. Clin Cancer Res. 2016.

    Google Scholar 

  197. Neal JW, et al. Erlotinib, cabozantinib, or erlotinib plus cabozantinib as second-line or third-line treatment of patients with EGFR wild-type advanced non-small-cell lung cancer (ECOG-ACRIN 1512): a randomised, controlled, open-label, multicentre, phase 2 trial. Lancet Oncol. 2016;17(12):1661–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Drilon A, et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncol. 2016;17(12):1653–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Smith M, et al. Phase III Study of Cabozantinib in previously treated metastatic castration-resistant prostate cancer: COMET-1. J Clin Oncol. 2016;34(25):3005–13.

    Article  CAS  PubMed  Google Scholar 

  200. Tolaney SM, et al. Phase II and biomarker study of Cabozantinib in metastatic triple-negative breast cancer patients. Oncologist. 2016.

    Google Scholar 

  201. Qian F, et al. Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases. Cancer Res. 2009;69(20):8009–16.

    Article  CAS  PubMed  Google Scholar 

  202. Kataoka Y, et al. Foretinib (GSK1363089), a multi-kinase inhibitor of MET and VEGFRs, inhibits growth of gastric cancer cell lines by blocking inter-receptor tyrosine kinase networks. Invest New Drugs. 2012;30(4):1352–60.

    Article  CAS  PubMed  Google Scholar 

  203. Chen HM, Tsai CH, Hung WC. Foretinib inhibits angiogenesis, lymphangiogenesis and tumor growth of pancreatic cancer in vivo by decreasing VEGFR-2/3 and TIE-2 signaling. Oncotarget. 2015;6(17):14940–52.

    PubMed  PubMed Central  Google Scholar 

  204. Choueiri TK, et al. Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J Clin Oncol. 2013;31(2):181–6.

    Article  CAS  PubMed  Google Scholar 

  205. Logan TF. Foretinib (XL880): c-MET inhibitor with activity in papillary renal cell cancer. Curr Oncol Rep. 2013;15(2):83–90.

    Article  CAS  PubMed  Google Scholar 

  206. Rayson D, et al. Canadian Cancer Trials Group IND197: a phase II study of foretinib in patients with estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2-negative recurrent or metastatic breast cancer. Breast Cancer Res Treat. 2016;157(1):109–16.

    Article  CAS  PubMed  Google Scholar 

  207. Seiwert T, et al. Phase II trial of single-agent foretinib (GSK1363089) in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Invest New Drugs. 2013;31(2):417–24.

    CAS  PubMed  Google Scholar 

  208. Shah MA, et al. Phase II study evaluating 2 dosing schedules of oral foretinib (GSK1363089), cMET/VEGFR2 inhibitor, in patients with metastatic gastric cancer. PLoS One. 2013;8(3):e54014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Shapiro GI, et al. A phase 1 dose-escalation study of the safety and pharmacokinetics of once-daily oral foretinib, a multi-kinase inhibitor, in patients with solid tumors. Invest New Drugs. 2013;31(3):742–50.

    Article  CAS  PubMed  Google Scholar 

  210. Yau TC, et al. A phase I/II multicenter study of single-agent Foretinib as first-line therapy in patients with advanced hepatocellular carcinoma. Clin Cancer Res. 2016.

    Google Scholar 

  211. Molife LR, et al. A phase I, dose-escalation study of the multitargeted receptor tyrosine kinase inhibitor, golvatinib, in patients with advanced solid tumors. Clin Cancer Res. 2014;20(24):6284–94.

    Article  CAS  PubMed  Google Scholar 

  212. Nakagawa T, et al. Lenvatinib in combination with golvatinib overcomes hepatocyte growth factor pathway-induced resistance to vascular endothelial growth factor receptor inhibitor. Cancer Sci. 2014;105(6):723–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kosciuczuk EM, et al. Merestinib blocks Mnk kinase activity in acute myeloid leukemia progenitors and exhibits antileukemic effects in vitro and in vivo. Blood. 2016;128(3):410–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Bessudo A, et al. Phase I results of the randomized, placebo controlled, phase I/II study of the novel oral c-MET inhibitor, ARQ 197, irinotecan (CPT-11), and cetuximab (C) in patients (pts) with wild-type (WT) KRAS metastatic colorectal cancer (mCRC) who have received front-line systemic therapy. J Clin Oncol. 2011;29(15_suppl):3582.

    Article  Google Scholar 

  215. Yoshioka H, et al. A randomized, double-blind, placebo-controlled, phase III trial of erlotinib with or without a c-Met inhibitor tivantinib (ARQ 197) in Asian patients with previously treated stage IIIB/IV nonsquamous nonsmall-cell lung cancer harboring wild-type epidermal growth factor receptor (ATTENTION study). Ann Oncol. 2015;26(10):2066–72.

    Article  CAS  PubMed  Google Scholar 

  216. Koeppen H, et al. Biomarker analyses from a placebo-controlled phase II study evaluating erlotinib±onartuzumab in advanced non-small cell lung cancer: MET expression levels are predictive of patient benefit. Clin Cancer Res. 2014;20(17):4488–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Spigel DR, et al. Treatment Rationale Study Design for the MetLung Trial: a randomized, double-blind phase III study of Onartuzumab (MetMAb) in combination with Erlotinib versus Erlotinib alone in patients who have received standard chemotherapy for Stage IIIB or IV Met-positive non-small-cell lung cancer. Clin Lung Cancer. 2012;13(6):500–4.

    Article  CAS  PubMed  Google Scholar 

  218. Vashishtha A, et al. Safety data and patterns of progression in met diagnostic subgroups in OAM4558g; a phase II trial evaluating MetMAb in combination with erlotinib in advanced NSCLC. J Clin Oncol. 2011;29(15_suppl):7604.

    Article  Google Scholar 

  219. Yu W, et al. Exploratory biomarker analyses from OAM4558g: a placebo-controlled phase II study of erlotinib with or without MetMAb in patients with advanced non-small cell lung cancer (NSCLC). J Clin Oncol. 2011;29(15_suppl):7529.

    Article  Google Scholar 

  220. Puzanov I, et al. Phase 1 trial of tivantinib in combination with sorafenib in adult patients with advanced solid tumors. Invest New Drugs. 2015;33(1):159–68.

    Article  CAS  PubMed  Google Scholar 

  221. Ciamporcero E, et al. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol Cancer Ther. 2015;14(1):101–10.

    Article  CAS  PubMed  Google Scholar 

  222. Subbiah V, et al. Activity of c-Met/ALK inhibitor Crizotinib and multi-kinase VEGF inhibitor Pazopanib in metastatic gastrointestinal neuroectodermal tumor harboring EWSR1-CREB1 fusion. Oncology. 2016;91(6):348–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Adjei AA, et al. Efficacy in selected tumor types in a phase I study of the c-MET inhibitor ARQ 197 in combination with sorafenib. J Clin Oncol. 2011;29(15_suppl):3034.

    Article  Google Scholar 

  224. Eder JP, et al. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res. 2009;15(7):2207–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Dr. Robert Wondergem for critical reading. This work is supported by Stephen M. Coffman Charitable Trust and ETSU Start-up Fund (Q. X.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thewke, D.P., Kou, J., Fulmer, M.L., Xie, Q. (2018). The HGF/MET Signaling and Therapeutics in Cancer. In: Shinomiya, N., Kataoka, H., Xie, Q. (eds) Regulation of Signal Transduction in Human Cell Research. Current Human Cell Research and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-7296-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7296-3_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7295-6

  • Online ISBN: 978-981-10-7296-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics