Skip to main content

Current Applications of Finite Element Methods in Dentistry

  • Reference work entry
  • First Online:
Handbook of Mechanics of Materials

Abstract

This chapter introduces recent applications of finite element method (FEM) as one of the promising methodological options in the clinical dental sciences. A PubMed-based review indicated that the number of published FEM studies in dentistry was 2,919 in all time and 1,896 during the last decade on the 7th of July 2017. The articles have increased during the last two decades from 35 (0.3% of all scientific articles from the dental society) in 1996 to 97 (0.7%) in 2006 and 216 (0.7%) in 2016. The FEM studies on dental implant accounted for 40.0% of all FEM studies in dentistry during the last decade. Unlike manufactory products of relatively uniform configuration, 3D modeling has a considerable advantage in the analyses of the oral tissues with complex and irregular morphology. Nonlinear analysis has become an increasingly powerful methodology for the simulations of the tooth-to-tooth contacts, restorative interface degradation and debonding, and the incomplete bone-implant osseointegration. While, a relatively low increase rate of the nonlinear studies was indicated, presumably because the simulations of the oral environment may still pose some difficulties to complete model solutions. The use of CT data of patients to create the maxillary and mandibular bone models has increased with incorporated CAD-based implant models. The mathematical approach to allocate Young’s modulus to a local bone segment is still a challenging issue to establish validity of large and realistic models of oral soft and hard tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang SH, Lin LS, Fok AS, Lin CP. Diametral compression test with composite disk for dentin bond strength measurement – finite element analysis. Dent Mater. 2012;28(10):1098–104.

    Article  Google Scholar 

  2. Juloski J, Apicella D, Ferrari M. The effect of ferrule height on stress distribution within a tooth restored with fibre posts and ceramic crown: a finite element analysis. Dent Mater. 2014;30(12):1304–15.

    Article  Google Scholar 

  3. Gacnik F, Ren Z, Hren NI. Modified bone density-dependent orthotropic material model of human mandibular bone. Med Eng Phys. 2014;36(12):1684–92.

    Article  Google Scholar 

  4. Kim HS, Mall S, Ghoshal A. Two-dimensional and three-dimensional finite element analysis of finite contact width on fretting fatigue. Mater Trans. 2011;52(2):147–54.

    Article  Google Scholar 

  5. Ona M, Watanabe C, Igarashi Y, Wakabayashi N. Influence of preparation design on failure risks of ceramic inlays: a finite element analysis. J Adhes Dent. 2011;13(4):367–73.

    Google Scholar 

  6. Zhang Z, Zheng K, Li E, Li W, Li Q, Swain MV. Mechanical benefits of conservative restoration for dental fissure caries. J Mech Behav Biomed Mater. 2016;53:11–20.

    Article  Google Scholar 

  7. Nasrin S, Katsube N, Seghi RR, Rokhlin SI. 3D statistical failure analysis of monolithic dental ceramic crowns. J Biomech. 2016;49(10):2038–46.

    Article  Google Scholar 

  8. Wang R, Katsube N, Seghi RR, Rokhlin SI. Statistical failure analysis of brittle coatings by spherical indentation: theory and experiment. J Mater Sci. 2006;41(17):5441–54.

    Article  Google Scholar 

  9. Dupriez ND, von Koeckritz AK, Kunzelmann KH. A comparative study of sliding wear of nonmetallic dental restorative materials with emphasis on micromechanical wear mechanisms. J Biomed Mater Res B Appl Biomater. 2015;103(4):925–34.

    Article  Google Scholar 

  10. Murakami N, Wakabayashi N. Finite element contact analysis as a critical technique in dental biomechanics: a review. J Prosthodont Res. 2014;58(2):92–101.

    Article  Google Scholar 

  11. Handa K, Murakami N, Yamazaki T, Takahashi H, Wakabayashi N. The ball-on-disk cyclic wear of CAD/CAM machinable dental composite and ceramic materials. J Oral Sci. 2017;59(4):589–596.

    Google Scholar 

  12. Benazzi S, Nguyen HN, Kullmer O, Kupczik K. Dynamic modelling of tooth deformation using occlusal kinematics and finite element analysis. PLoS One. 2016;11(3):e0152663.

    Article  Google Scholar 

  13. Ausiello P, Ciaramella S, Fabianelli A, Gloria A, Martorelli M, Lanzotti A, et al. Mechanical behavior of bulk direct composite versus block composite and lithium disilicate indirect Class II restorations by CAD-FEM modeling. Dent Mater. 2017;33(6):690–701.

    Article  Google Scholar 

  14. Xu B, Wang Y, Li Q. Modeling of damage driven fracture failure of fiber post-restored teeth. J Mech Behav Biomed Mater. 2015;49:277–89.

    Article  MathSciNet  Google Scholar 

  15. Zhang Z, Guazzato M, Sornsuwan T, Scherrer SS, Rungsiyakull C, Li W, et al. Thermally induced fracture for core-veneered dental ceramic structures. Acta Biomater. 2013;9(9):8394–402.

    Article  Google Scholar 

  16. Dejak B, Mlotkowski A. The influence of ferrule effect and length of cast and FRC posts on the stresses in anterior teeth. Dent Mater. 2013;29(9):e227–37.

    Article  Google Scholar 

  17. Santos AF, Meira JB, Tanaka CB, Xavier TA, Ballester RY, Lima RG, et al. Can fiber posts increase root stresses and reduce fracture? J Dent Res. 2010;89(6):587–91.

    Article  Google Scholar 

  18. Ona M, Wakabayashi N, Yamazaki T, Takaichi A, Igarashi Y. The influence of elastic modulus mismatch between tooth and post and core restorations on root fracture. Int Endod J. 2013;46(1):47–52.

    Article  Google Scholar 

  19. Lu C, Wang R, Mao S, Arola D, Zhang D. Reduction of load-bearing capacity of all-ceramic crowns due to cement aging. J Mech Behav Biomed Mater. 2013;17(0):56–65.

    Article  Google Scholar 

  20. Xiong Y, Huang SH, Shinno Y, Furuya Y, Imazato S, Fok A, et al. The use of a fiber sleeve to improve fracture strength of pulpless teeth with flared root canals. Dent Mater. 2015;31(12):1427–34.

    Article  Google Scholar 

  21. Limbert G, van Lierde C, Muraru OL, Walboomers XF, Frank M, Hansson S, et al. Trabecular bone strains around a dental implant and associated micromotions--a micro-CT-based three-dimensional finite element study. J Biomech. 2010;43(7):1251–61.

    Article  Google Scholar 

  22. Huang HL, Hsu JT, Fuh LJ, MG T, Ko CC, Shen YW. Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: a non-linear finite element study. J Dent. 2008;36(6):409–17.

    Article  Google Scholar 

  23. Hussein MO, Rabie ME. Three-Dimensional Nonlinear Contact Finite Element Analysis of Mandibular All-on-4 Design. J Oral Implantol. 2015;41(2):e12–8.

    Google Scholar 

  24. Akca K, Eser A, Eckert S, Cavusoglu Y, Cehreli MC. Immediate versus conventional loading of implant-supported maxillary overdentures: a finite element stress analysis. Int J Oral Maxillofac Implants. 2013;28(2):e57–63.

    Article  Google Scholar 

  25. Maezawa N, Shiota M, Kasugai S, Wakabayashi N. Three-dimensional stress analysis of tooth/lmplant-retained long-span fixed dentures. Int J Oral Maxillofac Implants. 2007;22(5):710–8.

    Google Scholar 

  26. Wang C, Zhang W, Ajmera DH, Zhang Y, Fan Y, Ji P. Simulated bone remodeling around tilted dental implants in the anterior maxilla. Biomech Model Mechanobiol. 2016;15(3):701–12.

    Article  Google Scholar 

  27. Frost HM. Defining osteopenias and osteoporoses: another view (with insights from a new paradigm). Bone. 1997;20(5):385–91.

    Article  Google Scholar 

  28. Duyck J, Ronold HJ, Van Oosterwyck H, Naert I, Sloten JV, Ellingsen JE. The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study. Clin Oral Implants Res. 2001;12(3):207–18.

    Article  Google Scholar 

  29. Fujiki K, Aoki K, Marcian P, Borak L, Hudieb M, Ohya K, et al. The influence of mechanical stimulation on osteoclast localization in the mouse maxilla: bone histomorphometry and finite element analysis. Biomech Model Mechanobiol. 2012;12:325.

    Article  Google Scholar 

  30. Arola D, Huang MP. The influence of simultaneous mechanical and thermal loads on the stress distribution in molars with amalgam restorations. J Mater Sci Mater Med. 2000;11(3):133–40.

    Article  Google Scholar 

  31. Yang HS, Lang LA, Guckes AD, Felton DA. The effect of thermal change on various dowel-and-core restorative materials. J Prosthet Dent. 2001;86(1):74–80.

    Article  Google Scholar 

  32. Genovese K, Lamberti L, Pappalettere C. Structural behaviour of endodontically treated teeth under thermomechanical loading. Proc Inst Mech Eng H. 2006;220(8):909–28.

    Article  Google Scholar 

  33. Wang F, Lee HP, Lu C. Thermal-mechanical study of functionally graded dental implants with the finite element method. J Biomed Mater Res A. 2007;80((1):146–58.

    Article  Google Scholar 

  34. De Jager N, Pallav P, Feilzer AJ. The influence of design parameters on the FEA-determined stress distribution in CAD-CAM produced all-ceramic dental crowns. Dent Mater. 2005;21(3):242–51.

    Article  Google Scholar 

  35. Aboushelib MN, Feilzer AJ, de Jager N, Kleverlaan CJ. Prestresses in bilayered all-ceramic restorations. J Biomed Mater Res B Appl Biomater. 2008;87((1):139–45.

    Article  Google Scholar 

  36. Tunc EP. Finite element analysis of heat generation from different light-polymerization sources during cementation of all-ceramic crowns. J Prosthet Dent. 2007;97(6):366–74.

    Article  Google Scholar 

  37. Jakubinek MB, O'Neill C, Felix C, Price RB, White MA. Temperature excursions at the pulp-dentin junction during the curing of light-activated dental restorations. Dent Mater. 2008;24(11):1468–76.

    Article  Google Scholar 

  38. Sabaeian M, Shahzadeh M. Simulation of temperature and thermally induced stress of human tooth under CO2 pulsed laser beams using finite element method. Lasers Med Sci. 2015;30(2):645–51.

    Article  Google Scholar 

  39. Zhou X, Chen Y, Wei X, Liu L, Zhang F, Shi Y, et al. Heat transfers to periodontal tissues and gutta-percha during thermoplasticized root canal obturation in a finite element analysis model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110(2):257–63.

    Article  Google Scholar 

  40. Liu YF, Wu JL, Zhang JX, Peng W, Liao WQ. Numerical and experimental analyses on the temperature distribution in the dental implant preparation area when using a surgical guide. J Prosthodont. 2018;27(1):42–51.

    Google Scholar 

  41. Li J, Li H, Shi L, Fok AS, Ucer C, Devlin H, et al. A mathematical model for simulating the bone remodeling process under mechanical stimulus. Dent Mater. 2007;23(9):1073–8.

    Article  Google Scholar 

  42. Lin CL, Chang YH, Chang CY, Pai CA, Huang SF. Finite element and Weibull analyses to estimate failure risks in the ceramic endocrown and classical crown for endodontically treated maxillary premolar. Eur J Oral Sci. 2010;118(1):87–93.

    Article  Google Scholar 

  43. Liao SH, Zhu XH, Xie J, Sohodeb VK, Ding X. Influence of trabecular bone on peri-implant stress and strain based on micro-CT finite element modeling of beagle dog. Biomed Res Int. 2016;2016:3926941.

    Google Scholar 

  44. Piccinini M, Cugnoni J, Botsis J, Ammann P, Wiskott A. Peri-implant bone adaptations to overloading in rat tibiae: experimental investigations and numerical predictions. Clin Oral Implants Res. 2016;27(11):1444–53.

    Article  Google Scholar 

  45. Chang YH, Lee H, Lin CL. Early resin luting material damage around a circular fiber post in a root canal treated premolar by using micro-computerized tomographic and finite element sub-modeling analyses. J Mech Behav Biomed Mater. 2015;51:184–93.

    Article  Google Scholar 

  46. Garriga-Majo D, Paterson RJ, Curtis RV, Said R, Wood RD, Bonet J. Optimisation of the superplastic forming of a dental implant for bone augmentation using finite element simulations. Dent Mater. 2004;20(5):409–18.

    Article  Google Scholar 

  47. XJ X, Eng M, Zheng YF, Eng D. Comparative study of torsional and bending properties for six models of nickel-titanium root canal instruments with different cross-sections. J Endod. 2006;32(4):372–5.

    Article  Google Scholar 

  48. Mahmoud AA, Wakabayashi N, Takahashi H. Prediction of permanent deformation in cast clasps for denture prostheses using a validated nonlinear finite element model. Dent Mater. 2007;23(3):317–24.

    Article  Google Scholar 

  49. Mahmoud A. Pre-overloading to extend fatigue life of cast clasps. J Dent Res. 2007;86(9):868–72.

    Article  Google Scholar 

  50. Sawada A, Wakabayashi N, Ona M, Suzuki T. Viscoelasticity of human oral mucosa: implications for masticatory biomechanics. J Dent Res. 2011;90(5):590–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Wakabayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wakabayashi, N., Murakami, N., Takaichi, A. (2019). Current Applications of Finite Element Methods in Dentistry. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6884-3_37

Download citation

Publish with us

Policies and ethics