Skip to main content

Modeling and Simulation of Silicon Dry Etching

  • Reference work entry
  • First Online:
Micro Electro Mechanical Systems

Part of the book series: Micro/Nano Technologies ((MNT))

  • 3118 Accesses

Abstract

As a widespread form of dry etching, deep reactive ion etching (DRIE) is a highly anisotropic etch process. It alternates switching the chemistry for etching and passivation cycles, typically leads to characteristic scalloping patterns on the sidewalls with high aspect ratios. Measurements of the etch depth per cycle l d and undercut length per cycle l u show a strong dependence of the undercut ratio l u /l d on the trench aspect ratio for a wide range of opening sizes. Although various simulation models have been proposed, the determination of the corresponding parameters from experimental data remains unsolved. We present the use of (i) the continuous cellular automaton (CCA), to simulate the process reliably in three dimensions; (ii) the particle swarm optimization (PSO) method, to determine suitable values for the atomistic CCA parameters directly from experimental data; and (iii) a GPU, parallel implementation of the CCA, to increase the computational efficiency of the simulations. The resultant, parameter-optimized CCA simulations show good agreement with the experiments. The approach has a large potential for the simulation of other MEMS processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam S, Dobbie G, Koh YS, Riddle P, Ur Rehman S (2014) Research on particle swarm optimization based clustering: a systematic review of literature and techniques. Swarm Evol Comput 17:1–13

    Article  Google Scholar 

  • Chienliu C, Yeong-Feng W, Yoshiaki K, Ji-Jheng S, Yusuke K, Chih-Kung L, Kuang-Chong W, Masayoshi E (2005) Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures. J Micromech Microeng 15:580

    Article  Google Scholar 

  • Ertl O, Selberherr S (2010) Three-dimensional level set based Bosch process simulations using ray tracing for flux calculation. Microelectron Eng 87:20–29

    Article  Google Scholar 

  • Ferrando N, Gosálvez MA (2012) Evolutionary continuous cellular automaton for the simulation of wet etching of quartz. J Micromech Microeng 22:025021

    Article  Google Scholar 

  • Ferrando N, Gosálvez MA, Cerdá J, Gadea R, Sato K (2011) Octree-based, GPU implementation of a continuous cellular automaton for the simulation of complex, evolving surfaces. Comput Phys Commun 182:628–640

    Article  Google Scholar 

  • Hernández Encinas A, Hernández Encinas L, Hoya White S, Martín del Rey A, Rodríguez Sánchez G (2007) Simulation of forest fire fronts using cellular automata. Adv Eng Softw 38:372–378

    Article  Google Scholar 

  • Hong L-S, Shimogaki Y, Komjyama H (2000) Macro/microcavity method and its application in modeling chemical vapor deposition reaction systems. Thin Solid Films 365:176–188

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Perth, vol 4, pp 1942–1948

    Google Scholar 

  • Knizikevičius R (2003) Simulation of inverse reactive ion etching lag. Vacuum 72:53–57

    Article  Google Scholar 

  • Lai S, Johnson D, Westerman R (2006) Aspect ratio dependent etching lag reduction in deep silicon etch processes. J Vac Sci Technol A 24:1283–1288

    Article  Google Scholar 

  • Li Y, Gosálvez MA, Pal P, Sato K, Xing Y (2015) Particle swarm optimization-based continuous cellular automaton for the simulation of deep reactive ion etching. J Micromech Microeng 25:450–456

    Google Scholar 

  • Mita Y, Sugiyama M, Kubota M, Marty F, Bourouina T, Shibata T (2006) Aspect ratio dependent scalloping attenuation in drie and an application to low-loss fiber-optical switches. In: Proceedings of IEEE international conference on micro electro mechanical systems, Istanbul, pp 114–117

    Google Scholar 

  • Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J Phys I 2:2221–2229

    Google Scholar 

  • Pilliod JE Jr, Puckett EG (2004) Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J Comput Phys 199:465–502

    Article  MathSciNet  Google Scholar 

  • Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1:33–57

    Article  Google Scholar 

  • Ranganathan N, Lee DY, Youhe L, Lo G-Q, Prasad K, Pey KL (2011) Influence of Bosch etch process on electrical isolation of TSV structures. IEEE Trans Components Packag Manufact Technol 1:1497–1507

    Article  Google Scholar 

  • Rangelow IW (2003) Critical tasks in high aspect ratio silicon dry etching for microelectromechanical systems. J Vac Sci Technol A Vac Surf 21:1550–1562

    Article  Google Scholar 

  • Saraf I, Goeckner M, Goodlin B, Kirmse K, Overzet L (2011) Mask undercut in deep silicon etch. Appl Phys Lett 98:161502

    Article  Google Scholar 

  • Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: Proceedings of IEEE international conference on evolutionary computation, Anchorage, pp 69–73

    Google Scholar 

  • Shi Y, Liu H, Gao L, Zhang G (2011) Cellular particle swarm optimization inform. Science 181:4460–4493

    MATH  Google Scholar 

  • Tan Y, Zhou R, Zhang H, Li Z (2006) Modeling and simulation of the lag effect in a deep reactive ion etching process. J Micromech Microeng 16(12):2570–2575

    Article  Google Scholar 

  • Tsujimoto K, Tachi S, Ninomiya K, Suzuki K, Okudaira S, Nishimatsu S (1986) A new side wall protection technique in microwave plasma etching using a chopping method. International conference on solid state devices & materials, Tokyo, pp 229–232

    Google Scholar 

  • Wang Y, Guo Y, Zhang H (2007) Modeling and simulation of footing effect in DRIE process. IEEE conference on nanotechnology, pp 1135–1138

    Google Scholar 

  • Weymouth G, Yue DK-P (2010) Conservative volume-of-fluid method for free-surface simulations on Cartesian-grids. J Comput Phys 229:2853–2865

    Article  MathSciNet  Google Scholar 

  • Xing Y, Gosalvez MA (2007) Step flow-based cellular automaton for the simulation of anisotropic etching of complex MEMS structures. New J Phys 9:436

    Article  Google Scholar 

  • Yuan L, Yan X, Gosalvez MA, Pal P, Zhou Y (2013) Particle swarm optimization of model parameters: simulation of deep reactive ion etching by the continuous cellular automaton. In: Proceedings of IEEE international conference on transducers & eurosensors, Barcelona, pp 1087–1090

    Google Scholar 

  • Zhibo M, Chengyu J, Weizheng Y (2012) A triple-layer protection process for high-aspect-ratio silicon micromachining by DRIE of SOI substrates. J Micromech Microeng 22:055028

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xing, Y. (2018). Modeling and Simulation of Silicon Dry Etching. In: Huang, QA. (eds) Micro Electro Mechanical Systems. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-5945-2_2

Download citation

Publish with us

Policies and ethics