Skip to main content

Abstract

Extracorporeal membrane oxygenation (ECMO) is increasingly being used as a rescue therapy in patients with severe cardiac and/or respiratory failure. During ECMO, circulating blood from a patient is exteriorised onto the artificial surfaces of circuit tubing and an “artificial lung” (i.e. the oxygenator) membrane in order to provide circulatory and respiratory support. ECMO has been shown to exacerbate the pharmacokinetic (PK)/pharmacodynamic (PD) alterations observed during critical illness for some drugs leading to potential therapeutic failure or toxicity. An increase in volume of distribution and a decrease in drug clearance appear to be the predominant PK alterations induced by ECMO. Sequestration of drugs in the ECMO circuit and pathophysiologic changes induced by ECMO both appear to contribute to these ECMO-induced PK alterations. An advanced understanding of the PK/PD alterations in the setting of ECMO is critical to antibiotic drug dosing in these complex patients pending robust dosing guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shekar K (2014) Extracorporeal respiratory support: breaking conventions? Anaesth Intensive Care 42(2):175–177

    CAS  PubMed  Google Scholar 

  2. Shekar K et al (2014) Extracorporeal life support devices and strategies for management of acute cardiorespiratory failure in adult patients: a comprehensive review. Crit Care 18(3):219

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brodie D, Bacchetta M (2011) Extracorporeal membrane oxygenation for ARDS in adults. N Engl J Med 365(20):1905–1914

    Article  CAS  PubMed  Google Scholar 

  4. Extracorporeal Life Support Organization (2017) ECLS registry report, international summary. Ann Arbor

    Google Scholar 

  5. Sauer CM, Yuh DD, Bonde P (2015) Extracorporeal membrane oxygenation use has increased by 433% in adults in the United States from 2006 to 2011. ASAIO J 61(1):31–36

    Article  CAS  PubMed  Google Scholar 

  6. Zapol WM, Kitz RJ (1972) Buying time with artificial lungs. N Engl J Med 286(12):657–658

    Article  CAS  PubMed  Google Scholar 

  7. Strueber M (2011) Bridges to lung transplantation. Curr Opin Organ Transplant 16(5):458–461

    Article  PubMed  Google Scholar 

  8. Thiagarajan RR et al (2009) Extracorporeal membrane oxygenation to support cardiopulmonary resuscitation in adults. Ann Thorac Surg 87(3):778–785

    Article  PubMed  Google Scholar 

  9. Peek GJ et al (2009) Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 374(9698):1351–1363

    Article  PubMed  Google Scholar 

  10. Tsai D, Lipman J, Roberts JA (2015) Pharmacokinetic/pharmacodynamic considerations for the optimization of antimicrobial delivery in the critically ill. Curr Opin Crit Care 21(5):412–420

    Article  PubMed  Google Scholar 

  11. Blot SI, Pea F, Lipman J (2014) The effect of pathophysiology on pharmacokinetics in the critically ill patient—concepts appraised by the example of antimicrobial agents. Adv Drug Deliv Rev 77:3–11

    Article  CAS  PubMed  Google Scholar 

  12. Shekar K et al (2012) Pharmacokinetic changes in patients receiving extracorporeal membrane oxygenation. J Crit Care 27(6):741.e9–741.18

    Article  CAS  Google Scholar 

  13. Anton-Martin P et al (2017) A retrospective study of sedation and analgesic requirements of pediatric patients on extracorporeal membrane oxygenation (ECMO) from a single-center experience. Perfusion 32(3):183–191

    Article  PubMed  Google Scholar 

  14. Nigoghossian CD et al (2016) Effect of extracorporeal membrane oxygenation use on sedative requirements in patients with severe acute respiratory distress syndrome. Pharmacotherapy 36(6):607–616

    Article  PubMed  CAS  Google Scholar 

  15. Davies A et al (2009) Extracorporeal membrane oxygenation for 2009 influenza A(H1N1) acute respiratory distress syndrome. JAMA 302(17):1888–1895

    Article  CAS  PubMed  Google Scholar 

  16. Hirai K et al (2016) Augmented renal clearance in patients with febrile neutropenia is associated with increased risk for subtherapeutic concentrations of vancomycin. Ther Drug Monit 38(6):706–710

    Article  CAS  PubMed  Google Scholar 

  17. Udy AA et al (2014) Augmented renal clearance in the ICU: results of a multicenter observational study of renal function in critically ill patients with normal plasma creatinine concentrations*. Crit Care Med 42(3):520–527

    Article  CAS  PubMed  Google Scholar 

  18. Goncalves-Pereira J, Povoa P (2011) Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of beta-lactams. Crit Care 15(5):R206

    Article  PubMed  PubMed Central  Google Scholar 

  19. Buck ML (2003) Pharmacokinetic changes during extracorporeal membrane oxygenation: implications for drug therapy of neonates. Clin Pharmacokinet 42(5):403–417

    Article  CAS  PubMed  Google Scholar 

  20. Ha MA, Sieg AC (2017) Evaluation of altered drug pharmacokinetics in critically ill adults receiving extracorporeal membrane oxygenation. Pharmacotherapy 37(2):221–235

    Article  PubMed  Google Scholar 

  21. Shekar K et al (2012) Increased sedation requirements in patients receiving extracorporeal membrane oxygenation for respiratory and cardiorespiratory failure. Anaesth Intensive Care 40(4):648–655

    CAS  PubMed  Google Scholar 

  22. Shekar K et al (2012) Sedation during extracorporeal membrane oxygenation-why more is less. Anaesth Intensive Care 40(6):1067–1069

    CAS  PubMed  Google Scholar 

  23. Sherwin J, Heath T, Watt K (2016) Pharmacokinetics and dosing of anti-infective drugs in patients on extracorporeal membrane oxygenation: a review of the current literature. Clin Ther 38(9):1976–1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shekar K et al (2015) Protein-bound drugs are prone to sequestration in the extracorporeal membrane oxygenation circuit: results from an ex vivo study. Crit Care 19:164

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shekar K et al (2015) Can physicochemical properties of antimicrobials be used to predict their pharmacokinetics during extracorporeal membrane oxygenation? Illustrative data from ovine models. Crit Care 19:437

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shekar K et al (2012) Sequestration of drugs in the circuit may lead to therapeutic failure during extracorporeal membrane oxygenation. Crit Care 16(5):R194

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wildschut ED et al (2010) Determinants of drug absorption in different ECMO circuits. Intensive Care Med 36(12):2109–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wagner D et al (2013) In vitro clearance of dexmedetomidine in extracorporeal membrane oxygenation. Perfusion 28(1):40–46

    Article  CAS  PubMed  Google Scholar 

  29. Watt KM et al (2012) Pharmacokinetics and safety of fluconazole in young infants supported with extracorporeal membrane oxygenation. Pediatr Infect Dis J 31(10):1042–1047

    PubMed  PubMed Central  Google Scholar 

  30. Preston TJ et al (2007) In vitro drug adsorption and plasma free hemoglobin levels associated with hollow fiber oxygenators in the extracorporeal life support (ECLS) circuit. J Extra Corpor Technol 39(4):234–237

    PubMed  PubMed Central  Google Scholar 

  31. Preston TJ et al (2010) Modified surface coatings and their effect on drug adsorption within the extracorporeal life support circuit. J Extra Corpor Technol 42(3):199–202

    PubMed  PubMed Central  Google Scholar 

  32. Mulla H et al (2000) In vitro evaluation of sedative drug losses during extracorporeal membrane oxygenation. Perfusion 15(1):21–26

    Article  CAS  PubMed  Google Scholar 

  33. Dagan O et al (1993) Preliminary studies of the effects of extracorporeal membrane oxygenator on the disposition of common pediatric drugs. Ther Drug Monit 15(4):263–266

    Article  CAS  PubMed  Google Scholar 

  34. Bhatt-Meht V, Annich G (2005) Sedative clearance during extracorporeal membrane oxygenation. Perfusion 20(6):309–315

    Article  PubMed  Google Scholar 

  35. Caron E, Maguire DP (1990) Current management of pain, sedation, and narcotic physical dependency of the infant on ECMO. J Perinat Neonatal Nurs 4(1):63–74

    Article  CAS  PubMed  Google Scholar 

  36. Mulla HGL, Firmin RK, David RU (2001) Drug disposition during extracorporeal membrane oxygenation (ECMO). Paediatr Perinat Drug Ther 4(3):109–120

    CAS  Google Scholar 

  37. Mehta NM et al (2007) Potential drug sequestration during extracorporeal membrane oxygenation: results from an ex vivo experiment. Intensive Care Med 33(6):1018–1024

    Article  CAS  PubMed  Google Scholar 

  38. Harthan AA et al (2014) Medication adsorption into contemporary extracorporeal membrane oxygenator circuits. J Pediatr Pharmacol Ther 19(4):288–295

    PubMed  PubMed Central  Google Scholar 

  39. Rosenbaum S (2016) Basic pharmacokinetics and pharmacodynamics: an integrated textbook and computer simulation, 2nd edn. Wiley, Hoboken, p 576

    Google Scholar 

  40. Mc IRB et al (2010) Plasma concentrations of inflammatory cytokines rise rapidly during ECMO-related SIRS due to the release of preformed stores in the intestine. Lab Investig 90(1):128–139

    Article  CAS  Google Scholar 

  41. Butler J et al (1996) Acute-phase responses to cardiopulmonary bypass in children weighing less than 10 kilograms. Ann Thorac Surg 62(2):538–542

    Article  CAS  PubMed  Google Scholar 

  42. Seghaye MC et al (1996) Inflammatory reaction and capillary leak syndrome related to cardiopulmonary bypass in neonates undergoing cardiac operations. J Thorac Cardiovasc Surg 112(3):687–697

    Article  CAS  PubMed  Google Scholar 

  43. Bartlett RH (1990) Extracorporeal life support for cardiopulmonary failure. Curr Probl Surg 27(10):621–705

    Article  CAS  PubMed  Google Scholar 

  44. Ulldemolins M et al (2011) Antibiotic dosing in multiple organ dysfunction syndrome. Chest 139(5):1210–1220

    Article  PubMed  Google Scholar 

  45. Parrillo JE et al (1990) Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 113(3):227–242

    Article  CAS  PubMed  Google Scholar 

  46. Power BM et al (1998) Pharmacokinetics of drugs used in critically ill adults. Clin Pharmacokinet 34(1):25–56

    Article  CAS  PubMed  Google Scholar 

  47. Kielstein JT et al (2013) Renal function and survival in 200 patients undergoing ECMO therapy. Nephrol Dial Transplant 28(1):86–90

    Article  PubMed  Google Scholar 

  48. Many M et al (1967) The physiologic role of pulsatile and nonpulsatile blood flow. II. Effects on renal function. Arch Surg 95(5):762–767

    Article  CAS  PubMed  Google Scholar 

  49. Alcorn J, McNamara PJ (2003) Pharmacokinetics in the newborn. Adv Drug Deliv Rev 55(5):667–686

    Article  CAS  PubMed  Google Scholar 

  50. Richardson TA et al (2006) Expression of UDP-glucuronosyltransferase isoform mRNAs during inflammation and infection in mouse liver and kidney. Drug Metab Dispos 34(3):351–353

    CAS  PubMed  Google Scholar 

  51. Rivory LP, Slaviero KA, Clarke SJ (2002) Hepatic cytochrome P450 3A drug metabolism is reduced in cancer patients who have an acute-phase response. Br J Cancer 87(3):277–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Siewert E et al (2000) Hepatic cytochrome P450 down-regulation during aseptic inflammation in the mouse is interleukin 6 dependent. Hepatology 32(1):49–55

    Article  CAS  PubMed  Google Scholar 

  53. Abdel-Razzak Z et al (1993) Cytokines down-regulate expression of major cytochrome P-450 enzymes in adult human hepatocytes in primary culture. Mol Pharmacol 44(4):707–715

    CAS  PubMed  Google Scholar 

  54. Aebi C et al (1997) Intravenous ribavirin therapy in a neonate with disseminated adenovirus infection undergoing extracorporeal membrane oxygenation: pharmacokinetics and clearance by hemofiltration. J Pediatr 130(4):612–615

    Article  CAS  PubMed  Google Scholar 

  55. Lindsay CA, Bawdon R, Quigley R (1996) Clearance of ticarcillin-clavulanic acid by continuous venovenous hemofiltration in three critically ill children, two with and one without concomitant extracorporeal membrane oxygenation. Pharmacotherapy 16(3):458–462

    CAS  PubMed  Google Scholar 

  56. Bizzarro MJ et al (2011) Infections acquired during extracorporeal membrane oxygenation in neonates, children, and adults. Pediatr Crit Care Med 12(3):277–281

    Article  PubMed  Google Scholar 

  57. Abdul-Aziz MH et al (2015) Applying pharmacokinetic/pharmacodynamic principles in critically ill patients: optimizing efficacy and reducing resistance development. Semin Respir Crit Care Med 36(1):136–153

    Article  PubMed  Google Scholar 

  58. Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26(1):1–10; quiz 11-2

    Google Scholar 

  59. Pea F et al (2017) Might real-time pharmacokinetic/pharmacodynamic optimisation of high-dose continuous-infusion meropenem improve clinical cure in infections caused by KPC-producing Klebsiella pneumoniae? Int J Antimicrob Agents 49(2):255–258

    Article  CAS  PubMed  Google Scholar 

  60. Rhodes NJ et al (2015) Defining clinical exposures of cefepime for Gram-negative bloodstream infections that are associated with improved survival. Antimicrob Agents Chemother 60(3):1401–1410

    Article  PubMed  CAS  Google Scholar 

  61. Aitken SL et al (2015) Cefepime free minimum concentration to minimum inhibitory concentration (fCmin/MIC) ratio predicts clinical failure in patients with Gram-negative bacterial pneumonia. Int J Antimicrob Agents 45(5):541–544

    Article  CAS  PubMed  Google Scholar 

  62. Crandon JL et al (2010) Clinical pharmacodynamics of cefepime in patients infected with Pseudomonas aeruginosa. Antimicrob Agents Chemother 54(3):1111–1116

    Article  CAS  PubMed  Google Scholar 

  63. McKinnon PS, Paladino JA, Schentag JJ (2008) Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents 31(4):345–351

    Article  CAS  PubMed  Google Scholar 

  64. Tam VH et al (2002) Pharmacodynamics of cefepime in patients with Gram-negative infections. J Antimicrob Chemother 50(3):425–428

    Article  CAS  PubMed  Google Scholar 

  65. Osthoff M et al (2016) Prolonged administration of beta-lactam antibiotics—a comprehensive review and critical appraisal. Swiss Med Wkly 146:w14368

    PubMed  Google Scholar 

  66. Leven C et al (2017) Ex vivo model to decipher the impact of extracorporeal membrane oxygenation on beta-lactam degradation kinetics. Ther Drug Monit 39(2):180–184

    Article  CAS  PubMed  Google Scholar 

  67. Donadello K et al (2015) beta-Lactam pharmacokinetics during extracorporeal membrane oxygenation therapy: a case-control study. Int J Antimicrob Agents 45(3):278–282

    Article  CAS  PubMed  Google Scholar 

  68. Welsch C et al (2015) Alveolar and serum concentrations of imipenem in two lung transplant recipients supported with extracorporeal membrane oxygenation. Transpl Infect Dis 17(1):103–105

    Article  CAS  PubMed  Google Scholar 

  69. Shekar K et al (2014) The combined effects of extracorporeal membrane oxygenation and renal replacement therapy on meropenem pharmacokinetics: a matched cohort study. Crit Care 18(6):565

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cies JJ et al (2014) Pharmacokinetics of continuous-infusion meropenem in a pediatric patient receiving extracorporeal life support. Pharmacotherapy 34(10):e175–e179

    Article  CAS  PubMed  Google Scholar 

  71. Shekar K et al (2013) Altered antibiotic pharmacokinetics during extracorporeal membrane oxygenation: cause for concern? J Antimicrob Chemother 68(3):726–727

    Article  CAS  PubMed  Google Scholar 

  72. Ahsman MJ et al (2010) Pharmacokinetics of cefotaxime and desacetylcefotaxime in infants during extracorporeal membrane oxygenation. Antimicrob Agents Chemother 54(5):1734–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roberts JA, Kumar A, Lipman J (2017) Right dose, right now: customized drug dosing in the critically ill. Crit Care Med 45(2):331–336

    Article  PubMed  Google Scholar 

  74. Jager NG et al (2016) Therapeutic drug monitoring of anti-infective agents in critically ill patients. Expert Rev Clin Pharmacol 9(7):961–979

    Article  CAS  PubMed  Google Scholar 

  75. Lowdin E, Odenholt I, Cars O (1998) In vitro studies of pharmacodynamic properties of vancomycin against Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother 42(10):2739–2744

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Larsson AJ et al (1996) The concentration-independent effect of monoexponential and biexponential decay in vancomycin concentrations on the killing of Staphylococcus aureus under aerobic and anaerobic conditions. J Antimicrob Chemother 38(4):589–597

    Article  CAS  PubMed  Google Scholar 

  77. Chambers HF, Kennedy S (1990) Effects of dosage, peak and trough concentrations in serum, protein binding, and bactericidal rate on efficacy of teicoplanin in a rabbit model of endocarditis. Antimicrob Agents Chemother 34(4):510–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Knudsen JD et al (2000) Pharmacodynamics of glycopeptides in the mouse peritonitis model of Streptococcus pneumoniae or Staphylococcus aureus infection. Antimicrob Agents Chemother 44(5):1247–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zelenitsky S et al (2013) Vancomycin pharmacodynamics and survival in patients with methicillin-resistant Staphylococcus aureus-associated septic shock. Int J Antimicrob Agents 41(3):255–260

    Article  CAS  PubMed  Google Scholar 

  80. Moise-Broder PA et al (2004) Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet 43(13):925–942

    Article  CAS  PubMed  Google Scholar 

  81. Kalil AC et al (2016) Management of adults with hospital-acquired and ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 63(5):e61–e111

    Article  PubMed  PubMed Central  Google Scholar 

  82. Rybak MJ et al (2009) Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin Infect Dis 49(3):325–327

    Article  PubMed  Google Scholar 

  83. Mulla H, Pooboni S (2005) Population pharmacokinetics of vancomycin in patients receiving extracorporeal membrane oxygenation. Br J Clin Pharmacol 60(3):265–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Buck ML (1998) Vancomycin pharmacokinetics in neonates receiving extracorporeal membrane oxygenation. Pharmacotherapy 18(5):1082–1086

    CAS  PubMed  Google Scholar 

  85. Amaker RD, DiPiro JT, Bhatia J (1996) Pharmacokinetics of vancomycin in critically ill infants undergoing extracorporeal membrane oxygenation. Antimicrob Agents Chemother 40(5):1139–1142

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hoie EB et al (1990) Vancomycin pharmacokinetics in infants undergoing extracorporeal membrane oxygenation. Clin Pharm 9(9):711–715

    CAS  PubMed  Google Scholar 

  87. Moore JN et al (2016) A population pharmacokinetic model for vancomycin in adult patients receiving extracorporeal membrane oxygenation therapy. CPT Pharmacometrics Syst Pharmacol 5(9):495–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wu CC et al (2016) Pharmacokinetics of vancomycin in adults receiving extracorporeal membrane oxygenation. J Formos Med Assoc 115(7):560–570

    Article  CAS  PubMed  Google Scholar 

  89. Park SJ et al (2015) Trough concentrations of vancomycin in patients undergoing extracorporeal membrane oxygenation. PLoS One 10(11):e0141016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Donadello K et al (2014) Vancomycin population pharmacokinetics during extracorporeal membrane oxygenation therapy: a matched cohort study. Crit Care 18(6):632

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cristallini S et al (2016) New regimen for continuous infusion of vancomycin in critically ill patients. Antimicrob Agents Chemother 60(8):4750–4756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Roberts JA et al (2011) Vancomycin dosing in critically ill patients: robust methods for improved continuous-infusion regimens. Antimicrob Agents Chemother 55(6):2704–2709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kashuba AD et al (1999) Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram-negative bacteria. Antimicrob Agents Chemother 43(3):623–629

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Drusano GL et al (2007) Back to the future: using aminoglycosides again and how to dose them optimally. Clin Infect Dis 45(6):753–760

    Article  CAS  PubMed  Google Scholar 

  95. Roger C et al (2016) Impact of 30 mg/kg amikacin and 8 mg/kg gentamicin on serum concentrations in critically ill patients with severe sepsis. J Antimicrob Chemother 71(1):208–212

    Article  CAS  PubMed  Google Scholar 

  96. Roger C et al (2015) Standard dosing of amikacin and gentamicin in critically ill patients results in variable and subtherapeutic concentrations. Int J Antimicrob Agents 46(1):21–27

    Article  CAS  PubMed  Google Scholar 

  97. de Montmollin E et al (2014) Predictors of insufficient amikacin peak concentration in critically ill patients receiving a 25 mg/kg total body weight regimen. Intensive Care Med 40(7):998–1005

    Article  PubMed  Google Scholar 

  98. Taccone FS et al (2010) Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit Care 14(2):R53

    Article  PubMed  PubMed Central  Google Scholar 

  99. Dodge WF et al (1994) Population pharmacokinetic models: effect of explicit versus assumed constant serum concentration assay error patterns upon parameter values of gentamicin in infants on and off extracorporeal membrane oxygenation. Ther Drug Monit 16(6):552–559

    Article  CAS  PubMed  Google Scholar 

  100. Bhatt-Mehta V, Johnson CE, Schumacher RE (1992) Gentamicin pharmacokinetics in term neonates receiving extracorporeal membrane oxygenation. Pharmacotherapy 12(1):28–32

    CAS  PubMed  Google Scholar 

  101. Munzenberger PJ, Massoud N (1991) Pharmacokinetics of gentamicin in neonatal patients supported with extracorporeal membrane oxygenation. ASAIO Trans 37(1):16–18

    Article  CAS  PubMed  Google Scholar 

  102. Cohen P et al (1990) Gentamicin pharmacokinetics in neonates undergoing extracorporal membrane oxygenation. Pediatr Infect Dis J 9(8):562–566

    Article  CAS  PubMed  Google Scholar 

  103. Southgate WM, DiPiro JT, Robertson AF (1989) Pharmacokinetics of gentamicin in neonates on extracorporeal membrane oxygenation. Antimicrob Agents Chemother 33(6):817–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zelenitsky SA, Ariano RE (2010) Support for higher ciprofloxacin AUC 24/MIC targets in treating Enterobacteriaceae bloodstream infection. J Antimicrob Chemother 65(8):1725–1732

    Article  CAS  PubMed  Google Scholar 

  105. Drusano GL et al (2004) Relationship between fluoroquinolone area under the curve: minimum inhibitory concentration ratio and the probability of eradication of the infecting pathogen, in patients with nosocomial pneumonia. J Infect Dis 189(9):1590–1597

    Article  CAS  PubMed  Google Scholar 

  106. Forrest A et al (1993) Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 37(5):1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Peloquin CA et al (1989) Evaluation of intravenous ciprofloxacin in patients with nosocomial lower respiratory tract infections. Impact of plasma concentrations, organism, minimum inhibitory concentration, and clinical condition on bacterial eradication. Arch Intern Med 149(10):2269–2273

    Article  CAS  PubMed  Google Scholar 

  108. Wishart DS et al (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34(Database issue):D668–D672

    Article  CAS  PubMed  Google Scholar 

  109. Rayner CR et al (2003) Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet 42(15):1411–1423

    Article  CAS  PubMed  Google Scholar 

  110. Andes D et al (2002) In vivo pharmacodynamics of a new oxazolidinone (linezolid). Antimicrob Agents Chemother 46(11):3484–3489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Buchanan LV et al (2002) Time-dependent antibacterial effects of linezolid in experimental rabbit endocarditis. J Antimicrob Chemother 50(3):440–442

    Article  CAS  PubMed  Google Scholar 

  112. De Rosa FG et al (2013) Pharmacokinetics of linezolid during extracorporeal membrane oxygenation. Int J Antimicrob Agents 41(6):590–591

    Article  PubMed  CAS  Google Scholar 

  113. Sazdanovic P et al (2016) Pharmacokinetics of linezolid in critically ill patients. Expert Opin Drug Metab Toxicol 12(6):595–600

    Article  CAS  PubMed  Google Scholar 

  114. Minichmayr IK et al (2017) Clinical determinants of target non-attainment of linezolid in plasma and interstitial space fluid: a pooled population pharmacokinetic analysis with focus on critically ill patients. Clin Pharmacokinet 56(6):617–633

    Article  CAS  PubMed  Google Scholar 

  115. Taubert M et al (2016) Predictors of inadequate linezolid concentrations after standard dosing in critically ill patients. Antimicrob Agents Chemother 60(9):5254–5261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zoller M et al (2014) Variability of linezolid concentrations after standard dosing in critically ill patients: a prospective observational study. Crit Care 18(4):R148

    Article  PubMed  PubMed Central  Google Scholar 

  117. Yagi T et al (2013) Plasma exposure of free linezolid and its ratio to minimum inhibitory concentration varies in critically ill patients. Int J Antimicrob Agents 42(4):329–334

    Article  CAS  PubMed  Google Scholar 

  118. Dong H et al (2011) Clinical pharmacokinetic/pharmacodynamic profile of linezolid in severely ill intensive care unit patients. Int J Antimicrob Agents 38(4):296–300

    Article  CAS  PubMed  Google Scholar 

  119. Adembri C et al (2008) Linezolid pharmacokinetic/pharmacodynamic profile in critically ill septic patients: intermittent versus continuous infusion. Int J Antimicrob Agents 31(2):122–129

    Article  CAS  PubMed  Google Scholar 

  120. Bartal C et al (2003) Pharmacokinetic dosing of aminoglycosides: a controlled trial. Am J Med 114(3):194–198

    Article  CAS  PubMed  Google Scholar 

  121. Streetman DS et al (2001) Individualized pharmacokinetic monitoring results in less aminoglycoside-associated nephrotoxicity and fewer associated costs. Pharmacotherapy 21(4):443–451

    Article  CAS  PubMed  Google Scholar 

  122. van Lent-Evers NA et al (1999) Impact of goal-oriented and model-based clinical pharmacokinetic dosing of aminoglycosides on clinical outcome: a cost-effectiveness analysis. Ther Drug Monit 21(1):63–73

    Article  PubMed  Google Scholar 

  123. De Waele JJ et al (2014) Therapeutic drug monitoring-based dose optimisation of piperacillin and meropenem: a randomised controlled trial. Intensive Care Med 40(3):380–387

    Article  PubMed  CAS  Google Scholar 

  124. Scaglione F et al (2009) Feedback dose alteration significantly affects probability of pathogen eradication in nosocomial pneumonia. Eur Respir J 34(2):394–400

    Article  CAS  PubMed  Google Scholar 

  125. Ye ZK, Tang HL, Zhai SD (2013) Benefits of therapeutic drug monitoring of vancomycin: a systematic review and meta-analysis. PLoS One 8(10):e77169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pea F et al (2010) Therapeutic drug monitoring of linezolid: a retrospective monocentric analysis. Antimicrob Agents Chemother 54(11):4605–4610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. H. Abdul-Aziz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Abdul-Aziz, M.H., Shekar, K., Roberts, J.A. (2018). Antibiotic Dosing During Extracorporeal Membrane Oxygenation. In: Udy, A., Roberts, J., Lipman, J. (eds) Antibiotic Pharmacokinetic/Pharmacodynamic Considerations in the Critically Ill. Adis, Singapore. https://doi.org/10.1007/978-981-10-5336-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5336-8_8

  • Published:

  • Publisher Name: Adis, Singapore

  • Print ISBN: 978-981-10-5335-1

  • Online ISBN: 978-981-10-5336-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics