Skip to main content

Effects of Different Metal Stresses on the Antioxidant Defense Systems of Medicinal Plants

  • Chapter
  • First Online:
Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress

Abstract

Traditional herbal plant-based medicines were characterized by having good amount of antioxidants. But due to the rapid industrialization and urbanization, addition of heavy metal accumulation in soil-plant affected the growth of plants including medicinal plants. Under metal stress, both the antioxidant enzymes and phytochemicals constituting nonenzymatic components coordinately work to encounter abiotic stresses. Antioxidant enzymes such as polyphenol oxidase (PPO), superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), phenylalanine ammonia-lyase (PAL), ascorbate peroxidase (APX), lipoxygenase (LOX), glutathione reductase (GR), glutathione peroxidase (GPX), guaiacol peroxidase (GPO), glutathione-S-transferase (GST), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR) are altered in stressed conditions which leads to the changes in free radical content. In addition, different components of nonenzymatic defense system such as glycine betaine (GB), proline, glutathione (GSH), ascorbic acid (AsA), tocopherols, carotenoids, flavonoids, and phenolic compounds also play crucial role at cellular level. Almost every type of stress leads to the overproduction of reactive oxygen species (ROS). They are vigorously produced in response to most abiotic stresses and used as signaling molecules by cells. As they are highly reactive species, a balance between their production and detoxification must be ensured. By transformation of plants in which activity of single antioxidant enzyme is overexpressed, it is possible to confer a degree of tolerance to stress. The success of plant transformation has allowed the scientists to confer greater stress tolerance in plants by improvements in the antioxidative defense system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APX:

Ascorbate peroxidase

AsA:

Ascorbic acid

ASO:

Ascorbate oxidase

CA:

Citric acid

CAT:

Catalase

d-ALA-D:

Delta-aminolevulinic acid dehydratase

DHAR:

Dehydroascorbate reductase

FRAP:

Ferric reducing ability of plasma

GB:

Glycine betaine

GPO:

Guaiacol peroxidase

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

GSSG:

Glutathione disulfide

GST:

Glutathione-S-transferase

LOX:

Lipoxygenase

MDA:

Malondialdehyde

MDHAR:

Monodehydroascorbate reductase

NM:

Nonmetalliferous

NPSH:

Nonprotein thiol

PAL:

Phenylalanine ammonia-lyase

PC:

Phosphatidylcholine

PCD:

Programmed cell death

PE:

Phosphatidylethanolamine

PG:

Phophatidylglycerol

PI:

Phosphatidylinositol

PLNH:

Paecilomyces lilacinus NH

PM:

Plasma membrane

POD:

Peroxidase

PPO:

Polyphenol oxidase

PS:

Phosphatidylserine

PSH:

Protein thiol

PSII:

Photosystem II

ROS:

Reactive oxygen species

Rtn:

Rutin

SOD:

Superoxide dismutase

TAST:

Total acid-soluble thiol

TBARS:

Thiobarbituric acid reactive substances

TEM:

Transmission electron microscopy

TSS:

Total soluble sugars

TWC:

Tissue water content

References

  • Acharya S, Sharma DK (2014) Study on the effects of heavy metals on seed germination and plant growth on Jatropha curcas. IJASR 3:031–034

    Google Scholar 

  • Agbor AG, Ngogang YJ (2005) Toxicity of herbal preparations. Cam J Ethnobot 1:23–28

    Google Scholar 

  • Ahire ML, Laxmi S, Walunj PR et al (2014) Effect of potassium chloride and calcium chloride induced stress on in vitro cultures of Bacopa monnieri L. Pennell and accumulation of medicinally important bacoside A. J Plant Biochem Biotechnol 23:366–378

    Article  CAS  Google Scholar 

  • Antolovich M, Prenzler PD, Patsalides E et al (2002) Methods for testing antioxidant activity. Analyst 127:183–198

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defence systems in plants. CRC Press, Boca Raton, pp 77–104

    Google Scholar 

  • Baxter-Roshek JL, Petrov AN, Dinman JD (2007) Optimization of ribosome structure and function by rRNA base modification. PLoS One 2:e174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Becana M, Moran JF, Iturbe OI (1998) Iron dependent oxygen free radical generation in plants subjected to environmental stress toxicity and antioxidant protection. Plant Soil 201:137–147

    Google Scholar 

  • Bennoun P (1994) Chlororespiration revisited: mitochondrial plastid interactions in chlamydomonas. Biochim Biophys Acta 1186:59–66

    Article  CAS  Google Scholar 

  • Blokhina O, Fagerstedt KV (2010) Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. Physiol Plant 138:447–462

    Article  CAS  PubMed  Google Scholar 

  • Calgaroto NS, Castro GY, Cargnelutti D et al (2010) Antioxidant system activation by mercury in Pfaffia glomerata plantlets. Biometals 23:295–305

    Article  CAS  PubMed  Google Scholar 

  • Calgaroto NS, Cargnelutti D, Rossato LV et al (2011) Zinc alleviates mercury-induced oxidative stress in Pfaffia glomerata (Spreng). Biometals 24:959–971

    Google Scholar 

  • Carocho M, Ferreira IC (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food ChemToxicol 51:15–25

    Article  CAS  Google Scholar 

  • Castillo FJ, Greppin H (1988) Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum alba L. leaves after ozone exposure. Environ Exp Bot 28:231–238

    Article  CAS  Google Scholar 

  • Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352

    Article  CAS  PubMed  Google Scholar 

  • Dehabadi SZ, Shoushtari A, Asrar Z (2013) Modulation of arsenic toxicity-induced oxidative damage by coronatine pretreatment in sweet basil (Ocimum basilicum) seedlings. Botany 91:442–448

    Article  CAS  Google Scholar 

  • del Rio LA, Sandalio LM, Corpas FJ et al (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes: production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desikan R, Mackerness SAH, Hancock JT et al (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devi CM, Anu MS, Mahesh B et al (2014) A comparative study of heavy metal accumulation and antioxidant responses in Jatropha curcas (L.) IOSR-JESTFT 8:58–67

    Google Scholar 

  • Dey S, Mazumder PB, Paul SB (2015) Copper-induced changes in growth and antioxidative mechanisms of tea plant (Camellia sinensis (L.) O. Kuntze). Afr J Biotechnol 14:582–592

    Article  CAS  Google Scholar 

  • Elstner EF, Wagner GA, Schutz W (1988) Activated oxygen in green plants in relation to stress situations. Curr Topics Plant Biochem Physiol 7:159–187

    Google Scholar 

  • Fidalgo F, Azenha M, Silva AF (2013) Copper-induced stress in Solanum nigrum L. and antioxidant defense system responses. Food Ene Sec 2:70–80

    Article  Google Scholar 

  • Foyer CH (1997) Oxygen metabolism and electron transport in photosynthesis. In: Scandalios J (ed) Molecular biology of free radical scavenging systems. CSHL Press, New York, pp 587–621

    Google Scholar 

  • Foyer CH, Harbinson J (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stresses and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 1–42

    Google Scholar 

  • Gao S, Yan R, Wu J et al (2009) Growth and antioxidant responses in Jatropha curcas cotyledons under lead stress. Z Naturforsch C 64:859–863

    CAS  PubMed  Google Scholar 

  • Gao Y, Miao C, Mao L et al (2010) Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid. J Haz Mat 181:771–777

    Article  CAS  Google Scholar 

  • Ghanati F, Morita A, Yokota H (2005) Effects of aluminium on the growth of tea plant and activation of antioxidant system. Plant Soil 276:133–141

    Article  CAS  Google Scholar 

  • Ghasemi H, Yousefirad M, Sepehr MF (2014) Effect of cadmium on oxidative enzymes activity in persian clover (Trifolium resupinatum L.) IJPP 5:1203–1208

    Google Scholar 

  • Gill SS, Khan NA, Anjum NK et al (2011) Amelioration of cadmium stress in crop plants by nutrient management: morphological, physiological and biochemical aspects. Plant Stress 5:1–23

    Google Scholar 

  • Gjorgieva D, Panovska TK, Ruskovska T (2013) Influence of heavy metal stress on antioxidant status and DNA damage in Urtica dioica. Biomed Res Int 2013:1–6

    Article  Google Scholar 

  • Gomes MP, Marques TCLLSM, Martins GA et al (2012) Cd-tolerance markers of Pfaffia glomerata (Spreng.) pedersen plants: anatomical and physiological features. Braz J Plant Physiol 24:293–304

    Article  CAS  Google Scholar 

  • Halliwell B (1991) Drug antioxidant effects. Drugs 42:569–505

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han C, Liu Q, Yang Y (2009) Short-term effects of experimental warming and enhanced ultraviolet-B radiation on photosynthesis and antioxidant defense of Picea asperata seedlings. Plant Growth Regul 58:153–162

    Article  CAS  Google Scholar 

  • Haribabu TE, Sudha PN (2011) Effect of heavy metals copper and cadmium exposure on the antioxidant properties of the plant Cleome gynandra. IJPAES 1:80–87

    CAS  Google Scholar 

  • Heo JH (2013) The possible role of antioxidant vitamin C in Alzheimer’s disease treatment and prevention. Am J Alzheimers Dis Other Demen 28:120–125

    Article  PubMed  Google Scholar 

  • Heyno E, Mary V, Schopfer P et al (2011) Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes. Planta 234:35–45

    Article  CAS  PubMed  Google Scholar 

  • Hu WH, Song XS, Shi K et al (2008) Changes in electron transport, superoxide dismutase and ascorbate peroxidase isoenzymes in chloroplasts and mitochondria of cucumber leaves as influenced by chilling. Photosynthetica 46:581–588

    Article  CAS  Google Scholar 

  • Jomova K, Valko M (2013) Health protective effects of carotenoids and their interactions with other biological antioxidants. Eur J Med Chem 70:102–110

    Article  CAS  PubMed  Google Scholar 

  • Kasote DM (2012) Flax seed phenolics as natural antioxidants. Int Food Res J 20:1797–1804

    Google Scholar 

  • Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic-nitrogen use efficiency and antioxidant metabolism. Protoplasma 251:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.) Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 178:9–18

    Article  CAS  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Mobin M, Anjum NA, Khan NA (2016a) Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regul 78:1–11

    Article  CAS  Google Scholar 

  • Khan MIR, Khan NA, Masood A, Per TS, Asgher M (2016b) Hydrogen peroxide alleviates nickel-inhibited photosynthetic responses through increase in use-efficiency of nitrogen and sulfur, and glutathione production in mustard. Front Plant Sci 7:44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khatamipour M, Piri E, Esmaeilian Y et al (2011) Toxic effect of cadmium on germination, seedling growth and proline content of milk thistle (Silybum marianum). Ann Biol Res 2:527–532

    CAS  Google Scholar 

  • Khatun S, Ali MB, Hahn EJ et al (2008) Copper toxicity in Withania somnifera: growth and antioxidant enzymes responses of in vitro grown plants. Environ Exp Bot 64:279–285

    Article  CAS  Google Scholar 

  • Khavari-Nejad RA, Najafi F, Angaji SA et al (2013) Molecular and physiological studies on basil (Ocimum basilicum L.) under cadmium stress. Am-Eurasian J Agri Environ Sci 13:754–762

    Google Scholar 

  • Krishnaiah D, Sarbatly R, Nithyanandam R (2011) A review of the antioxidant potential of medicinal plant species. Food Bioprod Process 89:217–233

    Article  CAS  Google Scholar 

  • Li C, Xu H, Xu J et al (2011) Effects of aluminium on ultrastructure and antioxidant activity in leaves of tea plant. Acta Physiolo Plant 33:973–978

    Article  CAS  Google Scholar 

  • Liang J, Yang Z, Tang L et al (2012) Growth performance and tolerance responses of jatropha (Jatropha curcas) seedling subjected to isolated or combined cadmium and lead stresses. Int J Agric Biol 14:861–869

    CAS  Google Scholar 

  • Lu Y, Li XR, He MZ et al (2010) Nickel effects on growth and antioxidative enzymes activities in desert plant Zygophyllum xanthoxylon (Bunge) Maxim. Sci Cold Arid Reg 2:436–444

    Google Scholar 

  • Luo ZB, Xiao-Jia HE, Chen L et al (2010) Effects of zinc on growth and antioxidant responses in Jatropha curcas seedlings. Int J Agric Biol 12:119–124

    CAS  Google Scholar 

  • Luwe MWF, Takkahama U, Heber U (1993) Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiol 101:969–976

    Google Scholar 

  • Maheshwari R, Dubey RS (2009) Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Regul 59:37–49

    Article  CAS  Google Scholar 

  • Maiga A, Diallo D, Bye R et al (2005) Determination of some toxic and essential metal ions in medicinal and edible plants from Mali. JAFC 53:2316–2321

    Article  CAS  Google Scholar 

  • Maleva MG, Nekrasova GF, Borisova GG et al (2012) Effect of heavy metals on photosynthetic apparatus and antioxidant status of Elodea densa Planch. Russ J Plant Physiol 59:190–197

    Article  CAS  Google Scholar 

  • Marques TCLLSM, Soares AM (2011) Antioxidant system of ginseng under stress by cadmium. Sci Agric (Piracicaba, Braz) 68:482–488

    Article  CAS  Google Scholar 

  • Meriga B, Reddy BK, Rao KR et al (2004) Aluminium-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa). J Plant Physiol 161:63–68

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248:565–577

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M et al (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Morsy AA, Salama KHA, Kamel HA et al (2012) Effect of heavy metals on plasma membrane lipids and antioxidant enzymes of Zygophyllum species. Eurasia J Biosci 6:1–10

    Article  CAS  Google Scholar 

  • Mukhopadyay M, Bantawa P, Das A et al (2012) Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea [Camellia sinensis (L.) O. Kuntze] seedlings under aluminum stress. Biometals 25:1141–1154

    Article  CAS  PubMed  Google Scholar 

  • Nadgorska-Socha A, Ptasinski B, Kita A (2013) Heavy metal bioaccumulation and antioxidative responses in Cardaminopsis arenosa and Plantago lanceolata leaves from metalliferous and non-metalliferous sites: a field study. Ecotoxicol 22:1422–1434

    Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signaling. Curr Opin Plant Biol 5:388–395

    Article  CAS  PubMed  Google Scholar 

  • Ou-yang C, Gao S, Mei L et al (2014) Effect of aluminum toxicity on the growth and antioxidant status in Jatropha curcas seedlings. J Med Plants Res 8:178–185

    Google Scholar 

  • Ozcan MM, Akbulut M (2008) Estimation of minerals, nitrate and nitrite contents of medicinal and aromatic plants used as spices, condiments and herbal tea. Food Chem 106:852–858

    Article  CAS  Google Scholar 

  • Patel A, Pandey V, Patra DD (2016) Metal absorption properties of Mentha spicata grown under tannery sludge amended soil- its effect on antioxidant system and quality. Chemosphere 147:67–73

    Article  CAS  PubMed  Google Scholar 

  • Pauln S, Shakya K (2013) Arsenic, chromium and NaCl induced artemisinin biosynthesis in Artemisia annua L.: a valuable antimalarial plant. Ecotoxicol Environ Saf 98:59–6560

    Article  CAS  Google Scholar 

  • Putchala MC, Ramani P, Sherlin HJ et al (2013) Ascorbic acid and its pro-oxidant activity as a therapy for tumours of oral cavity: a systematic review. Arch Oral Biol 58:563–574

    Article  CAS  PubMed  Google Scholar 

  • Raj S, Mohan S (2016) Impact on proline content of Jatropha curcas in fly ash amended soil with respect to heavy metals. Int J Pharm Pharm Sci 8:244–247

    Article  CAS  Google Scholar 

  • Rimbach G, Fuchs J, Packer L (2005) Application of nutrigenomics tools to analyze the role of oxidants and antioxidants in gene expression. In: Rimbach G, Fuchs J, Packer L (eds) Nutrigenomics. Taylor and Francis Boca Raton Publishers, Boca Raton, pp 1–12

    Chapter  Google Scholar 

  • Ross JA, Kasum CM (2002) Dietary flavonoids bioavailability, metabolic effects, and safety. Annu Rev Nut 22:19–34

    Article  CAS  Google Scholar 

  • Rout JR, Behera S, Keshari N et al (2015) Effect of iron stress on Withania somnifera L.: antioxidant enzyme response and nutrient elemental uptake of in vitro grown plants. Ecotoxicology 24:401–413

    Article  CAS  PubMed  Google Scholar 

  • Saha D, Mandal S, Saha A (2012) Copper induced oxidative stress in tea (Camellia sinensis) leave. J Environ Biol 33:861–866

    CAS  PubMed  Google Scholar 

  • Sandmann G, Gonzales HG (1989) Peroxidative processes induced in bean leaves by fumigation with sulphur dioxide. Environ Pollut 56:145–154

    Article  CAS  PubMed  Google Scholar 

  • Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nut 130:2073S–2085S

    CAS  Google Scholar 

  • Shah K, Kumar RG, Verma S et al (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–221

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26:2027–2038

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Gontia I, Agarwal PK et al (2010) Accumulation of heavy metals and its biochemical responses in Salicornia brachiata, an extreme halophyte. Mar Biol Res 6:511–518

    Article  Google Scholar 

  • Shengjun MA, Wenquan W, Runqing DU et al (2015) Effects of manganese stress on physiological and growth characteristics of Glycyrrhiza uralensis Fisch. Northwest Pharma J 30:1–7

    Google Scholar 

  • Shu X, Zhang QF, Wang WB (2014) Lead induced changes in growth and micronutrient uptake of Jatropha curcas (L.) Bull Environ Contam Toxicol 93:611–617

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 62:233–246

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Anjum NA, Khan NA et al (2008) Metal-binding peptides and antioxidant defence system in plants: significance in cadmium tolerance. In: Khan NA, Singh S (eds) Abiotic stress and plant responses. IK International, New Delhi, pp 159–189

    Google Scholar 

  • Singh A, Lawrencea K, Pandita S et al (2014) Response of leaves, stems and roots of Withania somnifera to copper stress. IJPAES 4:60–67

    CAS  Google Scholar 

  • Sinha S, Saxena R (2006) Effect of iron on lipid peroxidation, and enzymatic and non-enzymatic antioxidants and bacoside-A content in medicinal plant Bacopa monnieri (L.) Chemosphere 62:1340–1350

    Article  CAS  PubMed  Google Scholar 

  • Somashekaraiah BV, Padmaja K, Prasad ARK et al (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris) involvement of lipid peroxides in chlorophyll degradation. Plant Physiol 85:85–89

    Article  CAS  Google Scholar 

  • Srivastava S, Dubey RS (2011) Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul 64:1–16

    Article  CAS  Google Scholar 

  • Srivastava S, Tripathi D, Raghavan G et al (2006) Phytochelatin synthesis and responses of antioxidants during cadmium stress in Bacopa monnieri (L.) Plant Physiol Biochem 44:25–37

    Article  PubMed  CAS  Google Scholar 

  • Stancheva I, Geneva M, Markovska Y et al (2014) A comparative study on plant morphology, gas exchange parameters, and antioxidant response of Ocimum basilicum L. and Origanum vulgare L. grown on industrially polluted soil. Turk J Biol 38:89–102

    Article  CAS  Google Scholar 

  • Streb P, Michael KA, Feierabend J (1993) Referential inactivation of catalase and photo inhibition of PS II are common early symptoms under various osmotic and chemical stress conditions. Plant Physiol 88:590–598

    Article  CAS  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    Article  CAS  PubMed  Google Scholar 

  • Tanou G, Molassiotis A, Diamantidis G (2009) Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environ Exp Bot 65:270–281

    Article  CAS  Google Scholar 

  • Tarhan L, Kavakcioglu B (2016) Glutathione metabolism in Urtica dioica in response to cadmium based oxidative stress. Biol Planta 60:163–172

    Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Meth Enzymol: Osmosens Osmosignal 428:419–438

    Article  CAS  Google Scholar 

  • Uddin I, Bano A, Masood S (2015) Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation. Ecotoxicol Environ Saf 113:271–278

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya H, Panda SK (2013) Abiotic stress responses in tea (Camellia sinensis L): an overview. RAS 1:1–10

    Google Scholar 

  • Van AF, Clijsters H (1990) Effects of metal on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Vijayalakshmi VK, Revathi K, Sudha PN (2010) Comparative studies on the effect of antioxidant properties of the plants Helianthus annuus and Solanum nigrum exposed to the heavy metal chromium. J Pharm Sci Res 2:889–895

    Google Scholar 

  • Wagner BA, Buettner GR, Burns CP (1996) Vitamin E slows the rate of free radical-mediated lipid peroxidation in cells. Arch Biochem Biophys 334:261–267

    Article  CAS  PubMed  Google Scholar 

  • Woolhouse HW (1983) Toxicity and tolerance in the responses of plants to metals. In: Lange OL, Nobel PS, Osmond CB et al (eds) Encyclopedia of plant physiology, New series, 12C. Physiological plant ecology III. Springer-Verlag, Berlin, pp 245–300

    Google Scholar 

  • Xu J, Yin HX, Li X (2009) Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum (L.) Plant Cell Rep 28:325–333

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Tsuichihara N, Etoh T et al (2007) Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening. Plant Cell Environ 30:1320–1325

    Article  CAS  PubMed  Google Scholar 

  • Yan R, Gao S, Yang W et al (2008) Nickel toxicity induced antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. cotyledons. Plant Soil Environ 54:294–300

    CAS  Google Scholar 

  • Yildiztugay E, Ozfidan-Konakci C (2015) Profiling of rutin-mediated alleviation of cadmium-induced oxidative stress in Zygophyllum fabago. Environ Toxicol 30:816–835

    Google Scholar 

  • Young AJ, Lowe GM (2001) Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys 385:20–27

    Article  CAS  PubMed  Google Scholar 

  • Zhang FQ, Wang YS, Lou ZP et al (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:44–50

    Article  CAS  PubMed  Google Scholar 

  • Zheng G, Lv HP, Gao S et al (2010) Effect of cadmium on growth and antioxidant responses in Glycyrrhiza uralensis seedlings. Plant Soil Environ 56:508–515

    CAS  Google Scholar 

  • Zouari M, Ahmed CB, Elloumi N et al (2016) Impact of proline application on cadmium accumulation, mineral nutrition and enzymatic antioxidant defense system of Olea europaea L. cv chemlali exposed to cadmium stress. Ecotoxicol Environ Saf 128:195–205

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iffat Zareen Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ahmad, I.Z., Ahmad, A., Mabood, A., Tabassum, H. (2017). Effects of Different Metal Stresses on the Antioxidant Defense Systems of Medicinal Plants. In: Khan, M., Khan, N. (eds) Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-10-5254-5_9

Download citation

Publish with us

Policies and ethics