Skip to main content

Nanobiosensing Technologies for Prostate Cancer Diagnostics/Prognostics: Tiny Smart Medicine

  • Chapter
  • First Online:
Next Generation Point-of-care Biomedical Sensors Technologies for Cancer Diagnosis
  • 1255 Accesses

Abstract

The widespread incidence of disease, high death rate, and relapse has significantly increased the concern for development of better cancer diagnosis and treatment. Breast cancer being the most prevalent form of cancer among women, prostate cancer (PCa) has turned out to be one of the most common lethal cancer type among men aged 50–80 years old. Tumors develop in the prostate gland of the male reproductive system causing significant pain during urinating and sexual intercourse. Other than lung and skin cancer, prostate cancer is the most common cancer prevalent among American men. As per American Cancer Society’s estimate for prostate cancer, there are ~180,890 new cases and ~26,120 deaths in the United States for year 2016. According to recent statistics, ~1 out of 7 men will be diagnosed with prostate cancer during his lifetime. PCa is very difficult to detect in its early stage which is the cause for increased mortality rates every year. Hence, in such a condition where there is an alarming increase of PCa cases, it is important that the disease is accurately detected at an early stage to improve patient outcomes in terms of morbidity, mortality, and relapse. This demands for an effective diagnosis and prognosis tools with improved sensitivity and specificity towards PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acimovic SS, Ortega MA et al (2014) LSPR Chip for parallel rapid and sensitive detection of cancer markers in serum. Nano Lett 14:2636–2641

    Article  CAS  PubMed  Google Scholar 

  • Alhasan AH, Scott AW, Wu JJ et al (2016) Circulating microRNA signature for the diagnosis of very high-risk prostate cancer. PNAS 113:10655–10660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anran G, Lu N, Dai P et al (2014) Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays. Nanoscale 6:13036–13042

    Article  CAS  Google Scholar 

  • Augustsson P, Magnusson C, Nordin M, Lilja H, Laurell T (2012) Microfluidic label-free enrichment of prostate cancer cells in blood based on Acoustophoresis. Anal Chem 84:7954–7962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnett JM, Wraith P, Kiely J et al (2014) An inexpensive fast and sensitive quantitative lateral flow magneto-immunoassay for total prostate specific antigen. Biosensors 4:204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellan LM, Wu D, Langer RS (2011) Current trends in nanobiosensor technology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:229–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosch ME, Sanchez AJR et al (2007) Review: recent development in optical fiber. Biosensors Sens 7:797–859

    CAS  Google Scholar 

  • Bretton PR (1994) Prostate-specific antigen and digital rectal examination in screening for prostate cancer: a community-based study. South Med J 87:720–723

    Article  CAS  PubMed  Google Scholar 

  • Brock M, Bodman CV, Palisaar J, Becker W, Martin-Seidel P, Noldus J (2015) Detecting prostate cancer—a prospective comparison of systematic prostate biopsy with targeted biopsy guided by fused MRI and Transrectal Ultrasound. Dtsch Arztebl Int 112:605–611

    PubMed  PubMed Central  Google Scholar 

  • Byeon HH, Lee SW, Lee EH, Kim W, Yi H (2016) Biologically templated assembly of hybrid semiconducting nanomesh for high performance field effect transistors and sensors. Sci Rep 6:35591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabaj J, Soloducho J, Nowakowska-Oleksy A (2010) Langmuir–Blodgett film based biosensor for estimation of phenol derivatives. Sensors Actuators B 143:508–515

    Article  CAS  Google Scholar 

  • Cabaj J, Chyla A, Jedrychowska A, Olech K, Soloducho J (2012) Detecting platform for phenolic compounds-characteristic of enzymatic electrode. Opt Mater 34:1677–1681

    Article  CAS  Google Scholar 

  • Camus VL, Stewart G, Nailon WH, McLaren DB, Campbell CJ (2016) Measuring the effects of fractionated radiation therapy in a 3D prostate cancer model system using SERS nanosensors. Analyst 141:5056–5061

    Article  CAS  PubMed  Google Scholar 

  • Catalona WJ, Smith DS, Ratliff TL et al (1991) Measurement of prostate-specific antigen in serum as a screening-test for prostate-cancer. N Engl J Med 324:1156–1161

    Article  CAS  PubMed  Google Scholar 

  • Catalona WJ et al (1994) Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6630 men. J Urol 151:1283–1290

    Article  CAS  PubMed  Google Scholar 

  • Chaubey A, Malhotra BD (2002) Mediated biosensors. Biosens Bioelectron 17:441–456

    Article  CAS  PubMed  Google Scholar 

  • Chikkaveeraiah BV, Bhirde A, Malhotra R, Patel V, Gutkind JS, Rusling JF (2009) Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal Chem 81:9129–9134

    Article  PubMed  CAS  Google Scholar 

  • Choi JH, Kim HS, Choi JW, Hong JW, Kim YK, Oh BK (2013) A novel Au-nanoparticle biosensor for the rapid and simple detection of PSA using a sequence-specific peptide cleavage reaction. Biosens Bioelectron 49:415–419

    Article  CAS  PubMed  Google Scholar 

  • Chu X, Zhao ZL, Shen GL, Yu RQ (2006) Quartz crystal microbalance immunoassay with dendritic amplification using colloidal gold immunocomplex. Sensors Actuators B 114:696–704

    Article  CAS  Google Scholar 

  • Crawford ED, De Antoni EP (1993) PSA as a screening test for prostate cancer. Urol Clin North Am 20:637–646

    CAS  PubMed  Google Scholar 

  • Cui Y, Wei QQ, Park HK, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    Article  CAS  PubMed  Google Scholar 

  • D’Orazio P (2003) Biosensors in clinical chemistry. Clinica Chimica Acta 334:41–69

    Article  CAS  Google Scholar 

  • Duan XJ, Gao R, Xie P et al (2012) Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat Nanotechnol 7:174–179

    Article  CAS  Google Scholar 

  • Eggins B (2002) Chemical sensors and biosensors. Wiley, New York

    Google Scholar 

  • Elabbady AA, Khedr MM (2006) Extended 12-core prostate biopsy increases both the detection of prostate cancer and the accuracy of Gleason score. Eur Urol 49:49–53

    Article  PubMed  Google Scholar 

  • Fabrisa L, Ceder Y, Chinnaiyan AM et al (2016) The potential of MicroRNAs as prostate cancer biomarkers. Eur Urol 70:312–322

    Article  CAS  Google Scholar 

  • Gao R, Cheng Z, deMello AJ, Choo J (2016) Wash-free magnetic immunoassay of the PSA cancer marker using SERS and droplet microfluidics. Lab Chip 16:1022–1029

    Article  CAS  PubMed  Google Scholar 

  • Geybels MS, Wright JL, Bibikova M et al (2016) Epigenetic signature of Gleason score and prostate cancer recurrence after radical prostatectomy. Clin Epigenetics 8:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghai S, Toi A (2012) A role of transrectal ultrasonography in prostate cancer. Radiol Clin N Am 50:1061–1073

    Article  PubMed  Google Scholar 

  • Ghosh K, Kim P, Zhang XA et al (2010) A novel imaging approach for early detection of prostate cancer based on endogenous zinc sensing. Cancer Res 70:6119–6127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaever I (1973) The antibody: antigen interaction: a visual observation. J Immunol 110:1424–1426

    CAS  PubMed  Google Scholar 

  • Guardia M, Garrigues S (2012) Handbook of green analytical chemistry. Wiley, Chichester

    Book  Google Scholar 

  • Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:1094–1110

    Article  CAS  PubMed  Google Scholar 

  • Haese A, de la Taille A, van Poppel H et al (2008) Clinical utility of the PCA3 urine assay in European men scheduled for repeat biopsy. Eur Urol 54:1081–1088

    Article  PubMed  Google Scholar 

  • Hammond JL, Formisano N, Estrela P, Carrara S, Tkac J (2016) Electrochemical biosensors and nanobiosensors. Essays Biochem 60:69–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang L, Peng Z, Guo Y, Porter AL (2011) Characterizing a technology development at the stage of early emerging applications: nanomaterial-enhanced biosensors. Tech Anal Strat 23:527–544

    Article  Google Scholar 

  • Hughes AJ, Lina RKC, Peehl DM, Herr AE (2012) Microfluidic integration for automated targeted proteomic assays. PNAS 109:5972–5977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang MP, Lee JW, Lee KE, Lee KH (2013) Think modular: a simple apoferritin-based platform for the multifaceted detection of pancreatic cancer. ACS Nano 7:8167–8174

    Article  CAS  PubMed  Google Scholar 

  • Islam M, Bellah MM, Sajid A et al (2015) Effects of nanotexture on electrical profiling of single tumor cell and detection of cancer from blood in microfluidic channels. Sci Rep 5:13031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jadvar H (2015) PSMA PET in prostate cancer. J Nucl Med 56:1131–1132

    Article  CAS  PubMed  Google Scholar 

  • Jazayeri MH, Amani H, Pourfatollah AA, Avan A, Ferns GA, Pazoki-Toroudi H (2016) Enhanced detection sensitivity of prostate-specific antigen via PSA-conjugated gold nanoparticles based on localized surface plasmon resonance: GNP-coated anti-PSA/LSPR as a novel approach for the identification of prostate anomalies. Cancer Gene Ther 23:365–369

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Chen L, Jiang J, Shen G, Yu R (2009) Piezoelectric immunosensor with gold nanoparticles enhanced competitive immunoreaction technique for quantification of aflatoxin B1. Biosens Bioelectron 24:2580–2585

    Article  CAS  PubMed  Google Scholar 

  • Jolly P, Tamboli V, Harniman RL, Estrela P, Allender CJ, Bowen JL (2016) Aptamer-MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosens Bioelectron 75:188–195

    Article  CAS  PubMed  Google Scholar 

  • Kang BJ, Jeun M, Jang GH, Song SH, Jeong IG, Kim CS, Searson PC, Lee KH (2015) Diagnosis of prostate cancer via nanotechnological approach. Int J Nanomedicine 10:6555–6569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DJ, Sohn IY, Jung JH, Yoon OJ, Lee NE, Park JS (2013) Reduced graphene oxide field-effect transistor for label-free femtomolar protein detection. Biosens Bioelectron 41:621–626

    Article  CAS  PubMed  Google Scholar 

  • Kirby BJ, Jodari M, Loftus MS et al (2012) Functional characterization of circulating tumor cells with a prostate-cancer-specific microfluidic device. PLoS One 7:e35976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoll W (1998) Interfaces and thin films as seen by bound electromagnetic waves. Annu Rev Phys Chem 49:569–638

    Article  CAS  PubMed  Google Scholar 

  • Kong RM, Ding L, Wang Z, You J, Qu F (2015) A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen. Anal Bioanal Chem 407:369–377

    Article  CAS  PubMed  Google Scholar 

  • Kosaka PM, Pini V, Ruz JJ et al (2014) Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor. Nat Nanotechnol 9:1047–1053

    Article  CAS  PubMed  Google Scholar 

  • Kronick MN, Little WA (1975) A new immunoassay based on fluorescent excitation by internal reflection spectroscopy. J Immunol Methods 8:235–240

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Dak P, Lee Y et al (2014) Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci Rep 4:7352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Curreli M, Lin H, Lei B et al (2005) Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. J Am Chem Soc 127:12484–12485

    Article  CAS  PubMed  Google Scholar 

  • Liu GL, Rosa-Bauza YT et al (2007) Peptide-nanoparticle hybrid SERS probes for optical detection of protease activity. J Nanosci Nanotechnol 7(7):2323–2330

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Yang J, Wang HF et al (2014) Glucose oxidase-catalyzed growth of gold nanoparticles enables quantitative detection of attomolar cancer biomarkers. Anal Chem 86:5800–5806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loeb S, Partin AW (2011) Review of the literature: PCA3 for prostate cancer risk assessment and prognostication. Rev Urol 13:e191–e195

    PubMed  PubMed Central  Google Scholar 

  • Lu N, Gao A, Dai P et al (2015) Ultrasensitive detection of dual cancer biomarkers with integrated CMOS-compatible nanowire arrays. Anal Chem 87:11203–11208

    Article  CAS  PubMed  Google Scholar 

  • Ma L, He S, Huang J, Cao L, Yang F, Li L (2009) Maximizing specificity and yield of PCR by the quantum dot itself rather than property of the quantum dot surface. Biochimie 91:969–973

    Article  CAS  PubMed  Google Scholar 

  • Madaboosi N, Pedrosa CR, Reis MF (2014) Microfluidic ELISA for sensing of prostate cancer biomarkers using integrated a–Si:H p–i–n photodiodes. In: IEEE Sensors Proceedings Valencia, pp 881–884

    Google Scholar 

  • Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors Actuators B Chem 1:244–248

    Article  CAS  Google Scholar 

  • Meharvar M, Bis C et al (2000) Fiber optic biosensors-trends and applications. Anal Sci 16

    Google Scholar 

  • Mintz A (2014) PET/CT in prostate cancer: an unmet clinical need. Oncology (Williston Park) 28:1065–1066

    Google Scholar 

  • Moltzahn F, Olshen AB, Baehner L et al (2011) Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. Cancer Res 71:550–560

    Article  CAS  PubMed  Google Scholar 

  • Mouli SK, Zhao LC, Omary RA, Thaxton CS (2010) Lymphotropic nanoparticle enhanced MRI for the staging of genitourinary tumors. Nat Rev Urol 7:84–93

    Article  PubMed  Google Scholar 

  • Munge B, Liu G, Collins G, Wang J (2005) Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies. Anal Chem 77:4662–4666

    Article  CAS  PubMed  Google Scholar 

  • Najeeb MA, Jasmine SH, Chavali M (2014) Recent advancements in nano-based biosensor for early detection of prostate cancer. IJRTE 3:112–120

    Google Scholar 

  • Nam JM, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301:1884–1886

    Article  CAS  PubMed  Google Scholar 

  • Narayanaswamy R, Wolfbeis O (2004) Optical sensors. Springer, Berlin

    Book  Google Scholar 

  • Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 74:504–509

    Article  CAS  PubMed  Google Scholar 

  • No D, Duyne RV, Bingham J (2008) Localized surface plasmon resonance nanobiosensors for the detection of a prostate cancer. Biomarker Nanoscape 5:15

    Google Scholar 

  • Oesterling JE, Jacobsen SJ, Chute CG, Guess HA, Girman CJ, Panser LA, Lieber MM (1993) Serum prostate-specific antigen in a community-based population of healthy men establishment of age-specific reference ranges. JAMA 270:860–864

    Article  CAS  PubMed  Google Scholar 

  • Omidi M, Choolaei M, Asjodi F, Haghiralsadat F, Yazdian F (2014) Measurement of prostate specific antigen using self-sensing nanomechanical membrane. Proc Eng 87:660–663

    Article  CAS  Google Scholar 

  • Park H, Hwang MP, Lee JW, Choi J, Lee KH (2013a) Harnessing immunomagnetic separation and quantum dot-based quantification capacities for the enumeration of absolute levels of biomarker. Nanotechnology 24:285103

    Article  PubMed  CAS  Google Scholar 

  • Park H, Hwang MP, Lee KH (2013b) Immunomagnetic nanoparticle-based assays for detection of biomarkers. Int J Nanomedicine 8:4543–4552

    PubMed  PubMed Central  Google Scholar 

  • Ploussard G, Masson-Lecomtec A, Beauval JB et al (2011) Radical prostatectomy for high-risk prostate cancer defined by preoperative criteria: oncologic follow-up in national multicenter study in 813 patients and assessment of easy-to-use prognostic substratification. Urology 78:607–613

    Article  PubMed  Google Scholar 

  • Prakrankamanant P (2014) Quartz crystal microbalance biosensors: prospects for point-of-care diagnostics. J Med Assoc Thail 97:S56–S64

    Google Scholar 

  • Prasad PN (2003) Introduction to biophotonics. Wiley, Hoboken

    Book  Google Scholar 

  • Reske SN, Blumstein NM, Neumaier B et al (2006) Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med 47:1249–1254

    CAS  PubMed  Google Scholar 

  • Rodríguez-Lorenzo L, de la Rica R, Álvarez-Puebla RA, Liz-Marzán LM, Stevens MM (2012) Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat Mater 11:604

    Article  PubMed  CAS  Google Scholar 

  • Samiei E, Tabrizian M, Hoorfar M (2016) A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip 16:2376

    Article  CAS  PubMed  Google Scholar 

  • Sant W, Pourciel ML et al (2003) Development of chemical field effect transistors for the detection of urea. Sensors Actuators B 95:309–314

    Article  CAS  Google Scholar 

  • Sanz G, Rioja J, Zudaire JJ, Berian JM, Richter JA (2004) PET and prostate cancer. World J Urol 22:351–352

    Article  CAS  PubMed  Google Scholar 

  • Sarkar P, Ghosh D, Bhattacharyay D, Setford SJ, Turner APF (2008) Electrochemical immunoassay for free prostate specific antigen (f-PSA) using magnetic beads. Electroanalysis 20:1414–1420

    Article  CAS  Google Scholar 

  • Sauerbrey G (1959) The use of quartz oscillators for weighing thin layers and for microweighing. Zeitschrift Fuer Physik 115:206–222

    Article  Google Scholar 

  • Schlensog MD, Gronewold TM, Tewe M, Famulok M, Quandt E (2004) A Love-wave biosensor using nucleic acids as ligands. Sensors Actuators B 101:308–315

    Article  CAS  Google Scholar 

  • Schoning MJ, Poghossian A (2002) Recent advances in biologically sensitive field-effect transistors (biofets). Analyst 12:1137–1151

    Article  Google Scholar 

  • Schroder FH, van der Cruijsen-Koeter I, de Koning HJ et al (2000) Prostate cancer detection at low prostate specific antigen. J Urol 163:806–811

    Article  CAS  PubMed  Google Scholar 

  • Schröder FH, Hugosson J, Roobol MJ et al (2009) Screening and prostate-cancer mortality in a randomized European study. N Engl J Med 360:1320–1328

    Article  PubMed  Google Scholar 

  • Sharma A, Hong S, Singh R, Jang J (2015) Single-walled carbon nanotube based transparent immunosensor for detection of a prostate cancer biomarker osteopontin. Anal Chim Acta 869:68–73

    Article  CAS  PubMed  Google Scholar 

  • Shobha BN, Muniraj NJR (2014) Design modeling and simulation of prostate cancer biosensor with ssDNA biomarker and DGFET biosensor. IJCSIT 5:2612–2262

    Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2016) Cancer statistics 2016. CA Cancer J Clin 66:7–30

    Article  PubMed  Google Scholar 

  • Singh R, Prasad R, Sumana G, Arora K et al (2009) STD sensor based on nucleic acid functionalized nanostructured polyaniline. Biosens Bioelectron 24:2232–2238

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Dhand C, Sumana G, Verma R, Sood S, Gupta RK, Malhotra BD (2010) Polyaniline/carbon nanotubes platform for sexually transmitted disease detection. J Mol Recognit 23:472–479

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Verma R, Kaushik A et al (2011) Chitosan-Iron Oxide Nano-composite Platform for Mismatch-Discriminating DNA Hybridization for detection of Neisseria gonorrhoeae causing Sexually Transmitted Disease. Biosensens Bioelectron 26:2967–2974

    Article  CAS  Google Scholar 

  • Singh R, Matharu Z, Srivastava AK, Sood S, Gupta RK, Malhotra BD (2012a) Nanostructured platform for the detection of Neisseria gonorrhoeae using electrochemical impedance spectroscopy and differential pulse voltammetry. Microchim Acta 177:201–210

    Article  CAS  Google Scholar 

  • Singh R, Verma R, Sumana G et al (2012b) Nanobiocomposite platform based on polyaniline-iron oxide-carbon nanotubes for bacterial detection. Bioelectrochemistry 86:30–37

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Mukherjee MD, Sumana D, Gupta RK, Sood S, Malhotra BD (2014a) Biosensors for pathogen detection: a smart approach towards clinical diagnosis. Sensors Actuators B 197:385–404

    Article  CAS  Google Scholar 

  • Singh R, Sharma A, Hong S, Jang J (2014b) Electrical immunosensor based on dielectrophoretically-deposited carbon nanotubes for detection of influenza virus H1N1. Analyst 139:5415–5421

    Article  CAS  PubMed  Google Scholar 

  • Streeter I, Wildgoose GG, Shao L, Compton RG (2008) Cyclic voltammetry on electrode surfaces covered with porous layers: an analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes. Sensors Actuators B Chem 133:462–466

    Article  CAS  Google Scholar 

  • Stuopelyte K, Daniunaite K, Bakavicius A et al (2016) The utility of urine-circulating miRNAs for detection of prostate cancer. Br J Cancer 115:707–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang CK, Vaze A, Shen M, Rusling JF (2016a) High-throughput electrochemical microfluidic immunoarray for multiplexed detection of cancer biomarker proteins. ACS Sensors 1:1036–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Z, Wang L, Ma Z (2016b) Triple sensitivity amplification for ultrasensitive electrochemical detection of prostate specific antigen. Biosens Bioelectron 92:577–582

    Article  PubMed  CAS  Google Scholar 

  • Thompson IM, Pauler DK, Goodman PJ et al (2004) Prevalence of prostate cancer among men with a prostate-specific antigen level 40 ng per milliliter. N Engl J Med 351:2239–2246

    Article  Google Scholar 

  • Topkaya SN, Ozkan-Ariksoysal D, Kosova B, Ozel R, Ozsoz M (2012) Electrochemical DNA biosensor for detecting cancer biomarker related to glutathione S-transferase P1 (GSTP1) hypermethylation in real samples. Biosens Bioelectron 31:516–522

    Article  CAS  PubMed  Google Scholar 

  • Truong PL, Kim BW, Sim SJ (2012) Rational aspect ratio and suitable antibody coverage of gold nanorod for ultra-sensitive detection of a cancer biomarker. Lab Chip 12:1102–1109

    Article  CAS  PubMed  Google Scholar 

  • Uludag Y, Tothill IE (2010) Development of a sensitive detection method of cancer biomarkers in human serum (75%) using a quartz crystal microbalance sensor and nanoparticles amplification system. Talanta 82:277–282

    Article  CAS  PubMed  Google Scholar 

  • Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116

    Article  CAS  PubMed  Google Scholar 

  • Velonas VM, Woo HH, dos Remedios CG, Assinder SJ (2013) Current status of biomarkers for prostate cancer. Int J Mol Sci 14:11034–11060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28:232–254

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Liu G, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126:3010–3011

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Renu L, Liu W et al (2009) Microfluidics: a new cosset for neurobiology. Lab Chip 9:644–652

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhao M, Nolte DD, Ratliff TL (2011) Prostate specific antigen detection in patient sera by fluorescence-free BioCD protein array. Biosens Bioelectron 26:1871–1875

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang Y, Yu H et al (2013) Label-free electrochemical immunosensor for prostate-specific antigen based on silver hybridized mesoporous silica nanoparticles. Anal Biochem 434:123–127

    Article  CAS  PubMed  Google Scholar 

  • Welch HG, Fisher ES, Gottlieb DJ, Barry MJ (2007) Detection of prostate cancer via biopsy in the Medicare-SEER population during the PSA era. J Natl Cancer Inst 99:1395–1400

    Article  PubMed  Google Scholar 

  • Wu C, Ko F, Wu C, Pan T, Chuang C (2011) Prostate cancer marker sensing under nanostructural biochip technique. In: 5th European IFMBE conference IFMBE proceedings, vol 37, pp 983–986

    Google Scholar 

  • Wu CC, Pan TM, Wu CS et al (2012) Label-free detection of prostate specific antigen using a silicon nanobelt field-effect transistor. Int J Electrochem Sci 7:4432–4442

    CAS  Google Scholar 

  • Xiaoqing C, Zhou G, Song P et al (2014) Ultrasensitive electrochemical detection of prostate-specific antigen by using antibodies anchored on a DNA nanostructural scaffold. Anal Chem 86:7337–7342

    Article  CAS  Google Scholar 

  • Zhang Y, Hong H, Myklejord DV, Cai W (2011) Molecular imaging with SERS-active nanoparticle. Small 7:3261–3269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Li S, Cao K et al (2015) A microfluidic Love-wave biosensing device for PSA detection based on an aptamer beacon probe. Sensors 15:13839–13850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Zieglschmid V, Hollmann C, Gutierrez B, Albert W, Strothoff D, Gross E, Böcher O (2005) Combination of immunomagnetic enrichment with multiplex rt-pcr analysis for the detection of disseminated tumor cells. Anticancer Res 25:1803–1810

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Department of Bioproducts and Biosystems Engineering, University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Singh, R., Mohan, C.C. (2017). Nanobiosensing Technologies for Prostate Cancer Diagnostics/Prognostics: Tiny Smart Medicine. In: Chandra, P., Tan, Y., Singh, S. (eds) Next Generation Point-of-care Biomedical Sensors Technologies for Cancer Diagnosis. Springer, Singapore. https://doi.org/10.1007/978-981-10-4726-8_10

Download citation

Publish with us

Policies and ethics