Skip to main content
Log in

Nanostructured platform for the detection of Neisseria gonorrhoeae using electrochemical impedance spectroscopy and differential pulse voltammetry

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a nanocomposite based genosensor for the detection of Neisseria gonorrhoeae, a bacterium causing the sexually transmitted disease gonorrhoea. Amino-labeled probe DNA was covalently immobilized on electrochemically prepared polyaniline and iron oxide (PANI-Fe3O4) nanocomposite film on an indium tin oxide (ITO) electrode. Scanning electron microscopy, transmission electron microscopy, electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) techniques have been employed to characterize surface of the modified electrode. The genosensor has detection limits of 1 × 10-15 M and 1 × 10-17 M, respectively, using the EIS and DPV techniques. This biosensor can discriminate a complementary sequence from a single-base mismatch and from non-complementary DNA, and has been utilized for detection of DNA extracted from N. gonorrhoeae culture, and from patient samples with N. gonorrhoeae. It is found to exhibit good specificity for N. gonorrhoeae species and shows no response towards non-gonorrhoeae type of Neisseria species (NgNs) and other gram-negative bacterias (GNBs). The affinity constant for hybridization calculated using the Langmuir adsorption isotherm model is found to be 3.39 × 108 M-1.

Electrochemically deposited nanostructured platform for Neisseria gonorrhoeae detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang L, Wan M, Wei Y (2005) Polyaniline/TiO2 microspheres prepared by a template free method. Synth Met 151:1–5

    Article  CAS  Google Scholar 

  2. Zhang Z, Wan M (2002) Composite films of nanostructured polyaniline with poly(vinyl alcohol). Synth Met 128:83–89

    Article  CAS  Google Scholar 

  3. Malinauskas A (2004) Self doped polyanilines. J Power Sources 126:214–220

    Article  CAS  Google Scholar 

  4. Chandrasekhar P (1999) Conducting polymers, fundamentals and applications: a practical approach, 1st edn. Kluwer Academic Publishers, London

    Book  Google Scholar 

  5. Olmedo L, Hourquebie P, Jousse F (1997) Handbook of Organic Conductive Molecules and Polymers (Ed.: H. S. Nalwa), John Wiley and Sons Ltd, Chichester.

  6. MacDiarmid AG (2002) Synthetic metals: a novel role for organic polymers. Synth Met 125:11–22

    Article  CAS  Google Scholar 

  7. Tran HD, Kaner RB (2006) A general synthetic route to nanofibers of polyaniline Derivatives. Chem Commun 3915-3917.

  8. Skotheim JR, Elsenbaumer RL, Reynolds JR (1998) Handbook of conducting polymers. Marcel Dekker, New York

    Google Scholar 

  9. Diaz AF, Logan JA (1980) Electroactive polyaniline films. J Electroanal Chem 111:111–14

    Article  CAS  Google Scholar 

  10. Singh R, Dhand C, Sumana G, Verma R, Sood S, Gupta RK, Malhotra BD (2010) Polyaniline/carbon nanotubes platform for sexually transmitted disease detection. J Mol Recognit 23:472–479

    Article  CAS  Google Scholar 

  11. Dormann JL (1991) Fioranim D magnetic properties of fine particles. North-Holland, Amsterdam, pp 309–423

    Google Scholar 

  12. Ankamwar B, Lai TC, Huang JH, Liu RS, siao MH, Chen CH, Hwu YK (2010) Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology 21:075102 (9 pp).

    Google Scholar 

  13. Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X, Li M (2007) Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J Biomed Mater Res A 80A:333–34

    Article  CAS  Google Scholar 

  14. Lu X, Yu Y, Chen L, Mao H, Zhang W, Wei Y (2004) Preparation and characterization of polyaniline microwires containing CdS nanoparticles. Chem Commun 1522-1523.

  15. Lu X, Yu Y, Chen L, Mao H, Gao H, Wang J, Zhang W, Wei Y (2005) Aniline dimer-COOH assisted preparation of well-dispersed polyaniline-Fe3O4 nanoparticles. Nanotechnology 16:1660–1665

    Article  CAS  Google Scholar 

  16. Ahmad R, Kumar R (2010) Conducting polyaniline/iron oxide composite: a novel adsorbent for the removal of amido black 10B. J Chem Eng Data 55:3489

    Google Scholar 

  17. Watterson J, Piunno PAE, Krull UJ (2002) Practical physical aspects of interfacial nucleic acid oligomer hybridization for biosensor design. Anal Chim Acta 469:115–127

    Article  CAS  Google Scholar 

  18. Yang M, McGovem ME, Thompson M (1997) Genosensor technology and the detection of interfacial nucleic acid chemistry. Anal Chim Acta 346:259–275

    CAS  Google Scholar 

  19. Arotiba OA, Ignaszak A, Malgas R, Al-Ahmad A, Baker PGL, Mapolie SF, Iwuoha I (2007) An electrochemical DNA biosensor developed on novel multinuclear nickel (II) salicylaldimine metallodendrimer platform. Electrochim Acta 53:1689–1696

    Article  CAS  Google Scholar 

  20. de-los Santos-Alvarez P, Lobo-Castanon MJ, Miranda-Ordieres AJ, Tunon-Blanco P (2004) Current strategies for electrochemical detection of DNA with solid electrodes. Anal Bioanal Chem 378:104–118

    Article  Google Scholar 

  21. Sun X, He P, Liu S, Ye L, Fang Y (1998) Immobilization of single-stranded deoxyribonucleic acid on gold electrode with self-assembled aminoethanethiol monolayer for DNA electrochemical sensor applications. Talanta 47:487–495

    Article  CAS  Google Scholar 

  22. Ge C, Miao W, Ji M, Gu N (2005) Glutaraldehyde-modified electrode for nonlabeling voltammetric detection of p16 INK4A gene. Anal Bioanal Chem 383:651–659

    Article  CAS  Google Scholar 

  23. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21:1192–1199

    Article  CAS  Google Scholar 

  24. Christopoulos TK (1999) Nucleic acid analysis. Anal Chem 71:425R–438R

    Article  CAS  Google Scholar 

  25. Farabullini F, Lucarelli F, Palchetti I, Marrazza G, Mascini M (2007) Disposable electrochemical genosensor for simultaneous analysis of different bacterial food contaminants. Biosens Bioelectron 22:1544–1549

    Article  CAS  Google Scholar 

  26. Bagni G, Osella D, Sturchio E, Mascini M (2006) Deoxyribonucleic acid (DNA) biosensors for environmental risk assessment and drug studies. Anal Chim Acta 573:81–89

    Article  Google Scholar 

  27. Odenthal KJ, Gooding JJ (2007) An introduction to electrochemical DNA biosensors. Analyst 132:603–610

    Article  CAS  Google Scholar 

  28. Kafka J, Pänke O, Abendroth B, Lisdat F (2008) A label-free DNA sensor based on impedance spectroscopy. Electrochim Acta 53:7467–7474

    Article  CAS  Google Scholar 

  29. Keighley SD, Li P, Estrela P, Migliorato P (2008) Optimization of DNA immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy. Biosens Bioelectron 23:1291–1297

    Article  CAS  Google Scholar 

  30. Suni II (2008) Impedance methods for electrochemical sensors using nanomaterials. Trends Anal Chem 27:604–611

    Article  CAS  Google Scholar 

  31. Ricci F, Plaxco KW (2008) E-DNA sensors for convenient, label-free electrochemical detection of hybridization. Microchimica Acta 163:149–155

    Article  CAS  Google Scholar 

  32. Rodríguez LS, Pomales GS, Cabrera CR (2010) Single-walled carbon nanotubes modified gold electrodes as an impedimetric DNA sensor. Electroanalysis 22:399–405

    Article  Google Scholar 

  33. Zhou N, Yang T, Jiang C, Du M, Jiao K (2009) Highly sensitive electrochemical impedance spectroscopic detection of DNA hybridization based on Au(nano)-CNT/PAN(nano) films. Talanta 77:1021–1026

    Article  CAS  Google Scholar 

  34. Solanki PR, Arya SK, Nishimura Y, Iwamoto M, Malhotra BD (2007) Cholesterol biosensor based on aminoundecanethiol self-assembled monolayer using surface plasmon resonance technique. Langmuir 23:7398–7403

    Article  CAS  Google Scholar 

  35. Chen SA, Lee HT (1995) Structure and properties of poly(acrylic acid)-doped polyaniline. Macromolecules 28:2858–2866

    Article  CAS  Google Scholar 

  36. Cornell RM, Schwertmann U (1996) The iron oxide. VCH, New York

    Google Scholar 

  37. Kryszewski M, Jeszka JK (1998) Nanostructured conducting polymer composites - superparamagnetic particles in conducting polymers. Synth Met 94:99–104

    Article  CAS  Google Scholar 

  38. Neault JF, Naoui M, Manfait M, Tajmir-Riahi HA (1996) Aspirin-DNA interaction studied by FTIR and laser Raman difference spectroscopy. FEBSLett 382:26–30

    Article  CAS  Google Scholar 

  39. Kanakis CD, Tarantilis PA, Polissiou MG (2006) Interaction of antioxidant flavonoids with tRNA: intercalation or external binding and comparison with flavonoid-DNA adducts. DNA Cell Biol 25:116–123

    Article  CAS  Google Scholar 

  40. Prabhakar N, Arora K, Singh SP, Pandey MK, Singh H, Malhotra BD (2007) Polypyrrole-polyvinyl sulphonate film based disposable nucleic acid biosensor. Analytica Chimica Acta 589:6–13

    Article  CAS  Google Scholar 

  41. Caliskan A, Erdem A, Karadeniz H (2009) Direct DNA hybridization on the single-walled carbon nanotubes modified sensors detected by voltammetry and electrochemical impedance spectroscopy. Electroanalysis 21:2116–2124

    Article  CAS  Google Scholar 

  42. Gu H, Su XD, Loh KP (2005) Electrochemical impedance sensing of DNA hybridization on conducting polymer film-modified diamond. J Phys Chem B 109:13611–13618

    Article  CAS  Google Scholar 

  43. Fu Z, Yuan R, Xu L, Chai Y, Liu Y, Tang D, Zhang Y (2005) Electrochemical impedance behavior of DNA biosensor based on colloidal Ag and bilayer two-dimensional sol-gel as matrices. J Biochem Biophys Methods 62:163–174

    Article  CAS  Google Scholar 

  44. Singh R, Prasad R, Sumana G, Arora K, Sood S, Gupta RK, Malhotra BD (2009) STD sensor based on nucleic acid functionalized nanostructured polyaniline. Biosens Bioelectron 24:2232–2238

    Article  CAS  Google Scholar 

  45. Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15:913–947

    Article  CAS  Google Scholar 

  46. Szymańska I, Radecka H, Radecki J, Kaliszan R (2007) Electrochemical impedance spectroscopy for study of amyloid beta-peptide interactions with (–) nicotine ditartrate and (–) cotinine. Biosens Bioelectron 22:1955–1960

    Article  Google Scholar 

  47. Matharu Z, Bandodkar AJ, Gupta V, Malhotra BD (2012) Fundamentals and application of ordered molecular assemblies to affinity biosensing. Chem Soc Rev 41:1363–1402

    Google Scholar 

Download references

Acknowledgements

The authors thank Director, National Physical Laboratory, New Delhi, India for the facilities. Renu Singh and Zimple Matharu are thankful to Council of Scientific and Industrial Research (CSIR), India for the award of Senior Research Fellowships. The authors thank Mr. K. N. Sood and Mr. Jai Tawale, NPL for SEM measurements. We thank Dr. G. Sumana, Mrs. Rachna verma, Dr. V. K. Sharma, Professor and Head, Dermatology, AIIMS, Dr. J.C. Samantaray, Professor and Head and Dr. Arti Kapil, Professor, Microbiology, AIIMS, Dr. Manju Bala, Senior Microbiologist, Safdarjang hospital, New Delhi for useful discussions. We acknowledge the financial support received from DST [DST/TSG/ME/2008/18 and GAP-070932], in-house project (OLP-070632D) and Department of Biotechnology, Govt. of India (DBT/GAP070832).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bansi Dhar Malhotra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM. 1

Supplementary data (DOC 110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R., Matharu, Z., Srivastava, A.K. et al. Nanostructured platform for the detection of Neisseria gonorrhoeae using electrochemical impedance spectroscopy and differential pulse voltammetry. Microchim Acta 177, 201–210 (2012). https://doi.org/10.1007/s00604-012-0765-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0765-x

Keywords

Navigation