Skip to main content

The Lipid Droplet and the Endoplasmic Reticulum

  • Chapter
  • First Online:
Organelle Contact Sites

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 997))

Abstract

Lipid droplets (LDs) are often found adjacent to the endoplasmic reticulum (ER). The ER–LD association may appear morphologically similar to the prototypical membrane contact sites found between the ER and other organelles, but the functional relationship between the ER and LDs is unique in that highly hydrophobic lipid esters are transported between them. This transportation is thought to occur through some form of membrane continuity, but its details are yet to be defined. Lipin, seipin, and FIT proteins, which are located at the ER–LD interface, may be involved in the lipid ester transport and probably play important roles for functional connectivity of the two organelles. More recently, LDs in the nucleus were found to be closely adhered to the inner nuclear membrane, representing a specialized form of the ER–LD association. In this article, we will give an overview of the ER–LD association, which is still filled with many unanswered questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeyo O, Horn PJ, Lee S, Binns DD, Chandrahas A, Chapman KD, Goodman JM (2011) The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J Cell Biol 192:1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal AK, Arioglu E, De Almeida S, Akkoc N, Taylor SI, Bowcock AM, Barnes RI, Garg A (2002) AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet 31:21–23

    Article  CAS  PubMed  Google Scholar 

  • Barbosa AD, Savage DB, Siniossoglou S (2015) Lipid droplet-organelle interactions: emerging roles in lipid metabolism. Curr Opin Cell Biol 35:91–97

    Article  CAS  PubMed  Google Scholar 

  • Bernardi R, Pandolfi PP (2007) Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8:1006–1016

    Article  CAS  PubMed  Google Scholar 

  • Bi J, Wang W, Liu Z, Huang X, Jiang Q, Liu G, Wang Y, Huang X (2014) Seipin promotes adipose tissue fat storage through the ER Ca2+-ATPase SERCA. Cell Metab 19:861–871

    Article  CAS  PubMed  Google Scholar 

  • Binns D, Lee S, Hilton CL, Jiang QX, Goodman JM (2010) Seipin is a discrete homooligomer. Biochemistry 49:10747–10755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartwright BR, Binns DD, Hilton CL, Han S, Gao Q, Goodman JM (2015) Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Mol Biol Cell 26:726–739

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang TY, Li BL, Chang CC, Urano Y (2009) Acyl-coenzyme A:cholesterol acyltransferases. Am J Physiol Endocrinol Metab 297:E1–E9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Chang B, Saha P, Hartig SM, Li L, Reddy VT, Yang Y, Yechoor V, Mancini MA, Chan L (2012) Berardinelli-seip congenital lipodystrophy 2/seipin is a cell-autonomous regulator of lipolysis essential for adipocyte differentiation. Mol Cell Biol 32:1099–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary V, Ojha N, Golden A, Prinz WA (2015) A conserved family of proteins facilitates nascent lipid droplet budding from the ER. J Cell Biol 211:261–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csaki LS, Dwyer JR, Fong LG, Tontonoz P, Young SG, Reue K (2013) Lipins, lipinopathies, and the modulation of cellular lipid storage and signaling. Prog Lipid Res 52:305–316

    Article  CAS  PubMed  Google Scholar 

  • de Las Heras JI, Meinke P, Batrakou DG, Srsen V, Zuleger N, Kerr AR, Schirmer EC (2013) Tissue specificity in the nuclear envelope supports its functional complexity. Nucleus 4:460–477

    Article  PubMed  Google Scholar 

  • Fei W, Shui G, Gaeta B, Du X, Kuerschner L, Li P, Brown AJ, Wenk MR, Parton RG, Yang H (2008) Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol 180:473–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei W, Li H, Shui G, Kapterian TS, Bielby C, Du X, Brown AJ, Li P, Wenk MR, Liu P et al (2011a) Molecular characterization of seipin and its mutants: implications for seipin in triacylglycerol synthesis. J Lipid Res 52:2136–2147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei W, Shui G, Zhang Y, Krahmer N, Ferguson C, Kapterian TS, Lin RC, Dawes IW, Brown AJ, Li P et al (2011b) A role for phosphatidic acid in the formation of “supersized” lipid droplets. PLoS Genet 7:e1002201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Q, Goodman JM (2015) The lipid droplet-a well-connected organelle. Front Cell Dev Biol 3:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Gehrig K, Cornell RB, Ridgway ND (2008) Expansion of the nucleoplasmic reticulum requires the coordinated activity of lamins and CTP:phosphocholine cytidylyltransferase α. Mol Biol Cell 19:237–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbons GF, Islam K, Pease RJ (2000) Mobilisation of triacylglycerol stores. Biochim Biophys Acta 1483:37–57

    Article  CAS  PubMed  Google Scholar 

  • Goh VJ, Tan JS, Tan BC, Seow C, Ong WY, Lim YC, Sun L, Ghosh S, Silver DL (2015) Postnatal Deletion of Fat Storage-inducing Transmembrane Protein 2 (FIT2/FITM2) Causes Lethal Enteropathy. J Biol Chem 290:25686–25699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorrissen H, Tulloch AP, Cushley RJ (1980) Deuterium magnetic resonance of selectively deuterated cholesteryl esters in phosphatidylcholine vesicles. Biochemistry 19:3422–3429

    Article  CAS  PubMed  Google Scholar 

  • Gorrissen H, Tulloch AP, Cushley RJ (1982) Deuterium magnetic resonance of triacylglycerols in phospholipid bilayers. Chem Phys Lipids 31:245–255

    Article  CAS  PubMed  Google Scholar 

  • Grippa A, Buxo L, Mora G, Funaya C, Idrissi FZ, Mancuso F, Gomez R, Muntanya J, Sabido E, Carvalho P (2015) The seipin complex Fld1/Ldb16 stabilizes ER-lipid droplet contact sites. J Cell Biol 211:829–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross DA, Zhan C, Silver DL (2011) Direct binding of triglyceride to fat storage-inducing transmembrane proteins 1 and 2 is important for lipid droplet formation. Proc Natl Acad Sci USA 108:19581–19586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han S, Bahmanyar S, Zhang P, Grishin N, Oegema K, Crooke R, Graham M, Reue K, Dixon JE, Goodman JM (2012) Nuclear envelope phosphatase 1-regulatory subunit 1 (formerly TMEM188) is the metazoan Spo7p ortholog and functions in the lipin activation pathway. J Biol Chem 287:3123–3137

    Article  CAS  PubMed  Google Scholar 

  • Han S, Binns DD, Chang YF, Goodman JM (2015) Dissecting seipin function: the localized accumulation of phosphatidic acid at ER/LD junctions in the absence of seipin is suppressed by Sei1p(DeltaNterm) only in combination with Ldb16p. BMC Cell Biol 16:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito D, Suzuki N (2007) Molecular pathogenesis of seipin/BSCL2-related motor neuron diseases. Ann Neurol 61:237–250

    Article  CAS  PubMed  Google Scholar 

  • Jacquier N, Choudhary V, Mari M, Toulmay A, Reggiori F, Schneiter R (2011) Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Sci 124:2424–2437

    Article  CAS  PubMed  Google Scholar 

  • Kadereit B, Kumar P, Wang WJ, Miranda D, Snapp EL, Severina N, Torregroza I, Evans T, Silver DL (2008) Evolutionarily conserved gene family important for fat storage. Proc Natl Acad Sci USA 105:94–99

    Article  CAS  PubMed  Google Scholar 

  • Karanasios E, Han GS, Xu Z, Carman GM, Siniossoglou S (2010) A phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase. Proc Natl Acad Sci USA 107:17539–17544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karanasios E, Barbosa AD, Sembongi H, Mari M, Han GS, Reggiori F, Carman GM, Siniossoglou S (2013) Regulation of lipid droplet and membrane biogenesis by the acidic tail of the phosphatidate phosphatase Pah1p. Mol Biol Cell 24:2124–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khandelia H, Duelund L, Pakkanen KI, Ipsen JH (2010) Triglyceride blisters in lipid bilayers: implications for lipid droplet biogenesis and the mobile lipid signal in cancer cell membranes. PLoS One 5:e12811

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Gentry MS, Harris TE, Wiley SE, Lawrence JC Jr, Dixon JE (2007) A conserved phosphatase cascade that regulates nuclear membrane biogenesis. Proc Natl Acad Sci USA 104:6596–6601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krahmer N, Guo Y, Wilfling F, Hilger M, Lingrell S, Heger K, Newman HW, Schmidt-Supprian M, Vance DE, Mann M et al (2011) Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab 14:504–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundin C, Nordstrom R, Wagner K, Windpassinger C, Andersson H, von Heijne G, Nilsson I (2006) Membrane topology of the human seipin protein. FEBS Lett 580:2281–2284

    Article  CAS  PubMed  Google Scholar 

  • Magre J, Delepine M, Khallouf E, Gedde-Dahl T Jr, Van Maldergem L, Sobel E, Papp J, Meier M, Megarbane A, Bachy A et al (2001) Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 28:365–370

    Article  CAS  PubMed  Google Scholar 

  • Malhas A, Goulbourne C, Vaux DJ (2011) The nucleoplasmic reticulum: form and function. Trends Cell Biol 21:362–373

    Article  CAS  PubMed  Google Scholar 

  • Markgraf DF, Klemm RW, Junker M, Hannibal-Bach HK, Ejsing CS, Rapoport TA (2014) An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER. Cell Rep 6:44–55

    Article  CAS  PubMed  Google Scholar 

  • Miranda DA, Kim JH, Nguyen LN, Cheng W, Tan BC, Goh VJ, Tan JS, Yaligar J, Kn BP, Velan SS et al (2014) Fat storage-inducing transmembrane protein 2 is required for normal fat storage in adipose tissue. J Biol Chem 289:9560–9572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moir RD, Gross DA, Silver DL, Willis IM (2012) SCS3 and YFT2 link transcription of phospholipid biosynthetic genes to ER stress and the UPR. PLoS Genet 8:e1002890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori E, Fujikura J, Noguchi M, Nakao K, Matsubara M, Sone M, Taura D, Kusakabe T, Ebihara K, Tanaka T et al (2016) Impaired adipogenic capacity in induced pluripotent stem cells from lipodystrophic patients with BSCL2 mutations. Metabolism 65:543–556

    Article  CAS  PubMed  Google Scholar 

  • Ohsaki Y, Cheng J, Suzuki M, Fujita A, Fujimoto T (2008) Lipid droplets are arrested in the ER membrane by tight binding of lipidated apolipoprotein B-100. J Cell Sci 121:2415–2422

    Article  CAS  PubMed  Google Scholar 

  • Ohsaki Y, Suzuki M, Fujimoto T (2014) Open questions in lipid droplet biology. Chem Biol 21:86–96

    Article  CAS  PubMed  Google Scholar 

  • Ohsaki Y, Kawai T, Yoshikawa Y, Cheng J, Jokitalo E, Fujimoto T (2016) PML isoform II plays a critical role in nuclear lipid droplet formation. J Cell Biol 212:29–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T (2005) Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 118:2601–2611

    Article  CAS  PubMed  Google Scholar 

  • Payne VA, Grimsey N, Tuthill A, Virtue S, Gray SL, Dalla Nora E, Semple RK, O’Rahilly S, Rochford JJ (2008) The human lipodystrophy gene BSCL2/seipin may be essential for normal adipocyte differentiation. Diabetes 57:2055–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips MJ, Voeltz GK (2016) Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol 17:69–82

    Article  CAS  PubMed  Google Scholar 

  • Quiroga AD, Lehner R (2012) Liver triacylglycerol lipases. Biochim Biophys Acta 1821:762–769

    Article  CAS  PubMed  Google Scholar 

  • Raiborg C, Wenzel EM, Stenmark H (2015) ER-endosome contact sites: molecular compositions and functions. EMBO J 34:1848–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sembongi H, Miranda M, Han GS, Fakas S, Grimsey N, Vendrell J, Carman GM, Siniossoglou S (2013) Distinct roles of the phosphatidate phosphatases lipin 1 and 2 during adipogenesis and lipid droplet biogenesis in 3T3-L1 cells. J Biol Chem 288:34502–34513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sim MF, Talukder MM, Dennis RJ, O’Rahilly S, Edwardson JM, Rochford JJ (2013) Analysis of naturally occurring mutations in the human lipodystrophy protein seipin reveals multiple potential pathogenic mechanisms. Diabetologia 56:2498–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Murakami T, Cheng J, Kano H, Fukata M, Fujimoto T (2015) ELMOD2 is anchored to lipid droplets by palmitoylation and regulates adipocyte triglyceride lipase recruitment. Mol Biol Cell 26:2333–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szymanski KM, Binns D, Bartz R, Grishin NV, Li WP, Agarwal AK, Garg A, Anderson RG, Goodman JM (2007) The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc Natl Acad Sci USA 104:20890–20895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talukder MM, Sim MF, O’Rahilly S, Edwardson JM, Rochford JJ (2015) Seipin oligomers can interact directly with AGPAT2 and lipin 1, physically scaffolding critical regulators of adipogenesis. Mol Metab 4:199–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T (2002) The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem 277:44507–44512

    Article  CAS  PubMed  Google Scholar 

  • Thiam AR, Antonny B, Wang J, Delacotte J, Wilfling F, Walther TC, Beck R, Rothman JE, Pincet F (2013a) COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function. Proc Natl Acad Sci USA 110:13244–13249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiam AR, Farese RV Jr, Walther TC (2013b) The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol 14:775–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdearcos M, Esquinas E, Meana C, Gil-de-Gomez L, Guijas C, Balsinde J, Balboa MA (2011) Subcellular localization and role of lipin-1 in human macrophages. J Immunol 186:6004–6013

    Article  CAS  PubMed  Google Scholar 

  • Vance JE (2014) MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim Biophys Acta 1841:595–609

    Article  CAS  PubMed  Google Scholar 

  • Walther TC, Farese RV Jr (2012) Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 81:687–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Zhang J, Qiu W, Han GS, Carman GM, Adeli K (2011) Lipin-1gamma isoform is a novel lipid droplet-associated protein highly expressed in the brain. FEBS Lett 585:1979–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CW, Miao YH, Chang YS (2014) Control of lipid droplet size in budding yeast requires the collaboration between Fld1 and Ldb16. J Cell Sci 127:1214–1228

    Article  PubMed  Google Scholar 

  • Wang H, Becuwe M, Housden BE, Chitraju C, Porras AJ, Graham MM, Liu XN, Thiam AR, Savage DB, Agarwal AK et al (2016) Seipin is required for converting nascent to mature lipid droplets. Elife 5:e16582

    PubMed  PubMed Central  Google Scholar 

  • Wanner G, Formanek H, Theimer RR (1981) The ontogeny of lipid bodies (spherosomes) in plant cells : Ultrastructural evidence. Planta 151:109–123

    Article  CAS  PubMed  Google Scholar 

  • Weber-Boyvat M, Kentala H, Peranen J, Olkkonen VM (2015) Ligand-dependent localization and function of ORP-VAP complexes at membrane contact sites. Cell Mol Life Sci 72:1967–1987

    Article  CAS  PubMed  Google Scholar 

  • Welte MA (2015) Expanding roles for lipid droplets. Curr Biol 25:R470–R481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, Uchida A, Cheng JX, Graham M, Christiano R, Frohlich F et al (2013) Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 24:384–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilfling F, Thiam AR, Olarte MJ, Wang J, Beck R, Gould TJ, Allgeyer ES, Pincet F, Bewersdorf J, Farese RV Jr et al (2014) Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. Elife 3:e01607

    Article  PubMed  PubMed Central  Google Scholar 

  • Windpassinger C, Auer-Grumbach M, Irobi J, Patel H, Petek E, Horl G, Malli R, Reed JA, Dierick I, Verpoorten N et al (2004) Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome. Nat Genet 36:271–276

    Article  CAS  PubMed  Google Scholar 

  • Wolinski H, Hofbauer HF, Hellauer K, Cristobal-Sarramian A, Kolb D, Radulovic M, Knittelfelder OL, Rechberger GN, Kohlwein SD (2015) Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast. Biochim Biophys Acta 1851:1450–1464

    Article  CAS  PubMed  Google Scholar 

  • Xu N, Zhang SO, Cole RA, McKinney SA, Guo F, Haas JT, Bobba S, Farese RV Jr, Mak HY (2012) The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface. J Cell Biol 198:895–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Thein S, Guo X, Xu F, Venkatesh B, Sugii S, Radda GK, Han W (2013) Seipin differentially regulates lipogenesis and adipogenesis through a conserved core sequence and an evolutionarily acquired C-terminus. Biochem J 452:37–44

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Thein S, Wang X, Bi X, Ericksen RE, Xu F, Han W (2014) BSCL2/seipin regulates adipogenesis through actin cytoskeleton remodelling. Hum Mol Genet 23:502–513

    Article  CAS  PubMed  Google Scholar 

  • Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV Jr (2008) Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 49:2283–2301

    CAS  PubMed  Google Scholar 

  • Zehmer JK, Bartz R, Bisel B, Liu P, Seemann J, Anderson RG (2009) Targeting sequences of UBXD8 and AAM-B reveal that the ER has a direct role in the emergence and regression of lipid droplets. J Cell Sci 122:3694–3702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to our lab members for their helpful discussions.

Funding

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of the Government of Japan to YO (15K08152) and TF (15H02500, 15H05902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toyoshi Fujimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ohsaki, Y., Sołtysik, K., Fujimoto, T. (2017). The Lipid Droplet and the Endoplasmic Reticulum. In: Tagaya, M., Simmen, T. (eds) Organelle Contact Sites. Advances in Experimental Medicine and Biology, vol 997. Springer, Singapore. https://doi.org/10.1007/978-981-10-4567-7_8

Download citation

Publish with us

Policies and ethics