Skip to main content

Mycorrhiza: An Alliance for the Nutrient Management in Plants

  • Chapter
  • First Online:
Probiotics in Agroecosystem

Abstract

Mycorrhizal fungi are a wide ranging group of heterogeneous fungal taxa found to be allied with the roots of over 90% of all plant species. Among several types of mycorrhizal associations, two types are of high ecological and economic importance, i.e. arbuscular and ectotrophic mycorrhizal interactions. We have given a brief account on habitat, host specificity, and structural components of these mycorrhizal groups. An elaborated discussion on mineral absorption, different absorption pathways and the mechanisms involved has been presented in this chapter. Besides improving plant uptake of mineral nutrients already present in soil, many mycorrhizal fungi play a significant role in mobilizing nutrients either from organic substrate, mineral particles or rock surface. Mycorrhizal fungi take on several mechanisms to accomplish the function successfully, such as enhanced absorbing area of plant roots, release of biochemicals and consortium with other microorganisms. In addition to mobilizing nutrients, mycorrhizal fungi also serves as an important C sink in the soil, thus having an important influence on the cycling of these elements. The contributions of each partner in a mycorrhizal association are starting to be revealed by the use of molecular and genetic tools, coupled to high-throughput sequencing and advanced microscopy. Signalling pathways between plants and fungi have now been marked out, and the recognition of various novel nutrient transporters has unveiled some of the cellular processes that are fundamental to the mycorrhizal symbiosis. Different transporters, especially proton-coupled phosphate transporters, have been recognized on both the plant and fungal membranes and contribute to delivering phosphate from fungi to plants. Although much work has been previously done on several aspects of such symbioses, the extent to which they are functionally important in agriculture remains unclear. We are in urgent need to focus on the questions, the answers of which will give the new perspectives on mycorrhizal function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahonen-Jonnarth U, Van Hees PAW, Lundström US, Finlay RD (2000) Production of organic acids by mycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings exposed to elevated concentrations of aluminium and heavy metals. New Phytol 146:557–567

    Article  CAS  Google Scholar 

  • Allen JW, Shachar-Hill Y (2009) Sulfur transfer through an Arbuscular mycorrhiza. Plant Physiol 149(1):549–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atul-Nayyar A, Hamel C, Hanson K, Germida J (2009) The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Mycorrhiza 19:239–246

    Article  CAS  PubMed  Google Scholar 

  • Barker SJ, Stummer B, Gao L, Dispain I, O'Connor PJ, Smith SE (1998) A mutant in Lycopersicon esculentum mill, with highly reduced VA mycorrhizal colonization: isolation and preliminary characterization. Plant J 15:791–797

    Article  CAS  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48. doi:10.1038/ncomms1046

    Article  PubMed  Google Scholar 

  • Breemen NV, Finlay R, Lundstrom U, Jongmans AG, Giesler R, Olsson M (2000) Mycorrhizal weathering: a true case of mineral plant nutrition? Biogeochemistry 49:53–67

    Article  Google Scholar 

  • Brundrett MC (2002) Tansley review no. 134: Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Bücking H (2011) Ectomycoremediation: an eco-friendly technique for the remediation of polluted sites. In: Rai M, Varma A (eds) Diversity and biotechnology of ectomycorrhizae. Soil biology. Springer, Heidelberg, pp 209–229

    Chapter  Google Scholar 

  • Bücking H, Heyser W (2001) Microautoradiographic localization of phosphate and carbohydrates in mycorrhizal roots of Populus tremula x Populus alba and the implications for transfer processes in ectomycorrhizal associations. Tree Physiol 21(2):101–107

    Article  PubMed  Google Scholar 

  • Bücking H, Kafle A (2015) Role of Arbuscular Mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5:587–612

    Article  Google Scholar 

  • Bücking H, Kuhn AJ, Schröder WH, Heyser W (2002) The fungal sheath of ectomycorrhizal pine roots: an apoplastic barrier for the entry of calcium, magnesium, and potassium into the root cortex? J Exp Bot 53:1659–1669

    Article  PubMed  Google Scholar 

  • Bücking H, Liepold E, Ambilwade P (2012) The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes In: Dhal NK, Sahu SC (eds) Plant science, ISBN 978-953-51-0905-1

    Google Scholar 

  • Cairney JWG, Burke RM (1996) Physiological heterogeneity within fungal mycelia: an important concept for a functional understanding of the ectomycorrhizal symbiosis. New Phytol 134:685–695

    Article  Google Scholar 

  • Casieri L, Gallardo K, Wipf D (2012) Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without Sulphur stress. Planta. doi:10.1007/s00425-012-1645-7

    PubMed  Google Scholar 

  • Chiou TJ, Liu H, Harrison MJ (2001) The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. Plant J 25(3):281–293

    Article  CAS  PubMed  Google Scholar 

  • Clark RB (1997) Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant Soil 192:15–22

    Article  CAS  Google Scholar 

  • Coelho ID, de Queiroz MV, Costa MD, Kasuya MCM, de Araujo EF (2010) Identification of differentially expressed genes of the fungus Hydnangiumsp during the pre-symbiotic phase of the ectomycorrhizal association with Eucalyptus grandis. Mycorrhiza 20(8):531–540

    Article  Google Scholar 

  • Couturier J, Montanini B, Martin F, Brun A, Blaudez D, Chalot M (2007) The expanded family of ammonium transporters in the perennial poplar plant. New Phytol 174:137–150

    Article  CAS  PubMed  Google Scholar 

  • Finlay RD, Rosling A (2006) Integrated nutrient cycles in forest ecosystems, the role of ectomycorrhizal fungi. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, pp 28–50

    Chapter  Google Scholar 

  • Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradial mycelium. J Exp Bot 59(5):1115–1126

    Article  CAS  PubMed  Google Scholar 

  • Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48–52

    PubMed  Google Scholar 

  • Giri B, Giang PH, Kumari R, Prasad R, Sachdev M, Garg AP, Oelmüller R, Varma A (2005) Mycorrhizosphere: strategies and functions. Soil Biol 3:213–252

    Article  CAS  Google Scholar 

  • Goltapeh EM, Danesh YR, Prasad R, Varma A (2008) Mycorrhizal fungi: What we know and what should we know? In Mycorrhiza Springer, Berlin, Heidelberg, pp. 3–27

    Google Scholar 

  • Grunwald U, Guo W, Fischer K, Isayenkov S, Ludwig-Müller J, Hause B, Guo W, Yan X, Frankene P (2009) Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots. Planta 229:1023–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guether M, Neuhauser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009) A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150(1):73–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habte M (2000) Mycorrhizal fungi and plant nutrition In: Silva JA and Uchida R (eds) Plant nutrient management in Hawaii’s soils, approaches for tropical and subtropical agriculture, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, US.

    Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, Toronto, pp 112–115

    Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp. Is crucial for the symbiotic relationship with plants. Plant Cell 23:3812–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman DJ, Firestone MK, Nuccio E, Hodge A (2012) Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition. FEMS Microbiolol Ecol 80:236–247

    Article  CAS  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299. doi:10.1038/35095041

    Article  CAS  PubMed  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Nat Acad Sci USA 107:13754–13759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge A, Robinson D, Fitter AH (2000) An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient-rich patches in soil. New Phytol 145:575–584

    Article  CAS  Google Scholar 

  • Jeff H, Taylor PCA (2005) Ectomycorrhizal impacts on nutrient uptake pathways in woody roots. New For 30:203–214

    Article  Google Scholar 

  • Kilpeläinena J, Vestbergb M, Repoc T, Lehtoa T (2016) Arbuscular and ectomycorrhizal root colonisation and plant nutrition in soils exposed to freezing temperatures. Soil Biol Biochem 99:85–93

    Article  Google Scholar 

  • Klironomos JN, Hart MM (2001) Animal nitrogen swap for plant carbon. Nature 41:651–652

    Article  Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254

    Article  CAS  PubMed  Google Scholar 

  • Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181:199–207

    Article  CAS  PubMed  Google Scholar 

  • Li HY, Smith SE, Holloway RE, Zhu YG, Smith FA (2006) Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol 172:536–5343

    Article  CAS  PubMed  Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Hogberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620

    Article  CAS  PubMed  Google Scholar 

  • Lindahl B, Olsson S, Stenlid J, Finlay RD (2001) Effects of resource availability on mycelial interactions and 32P–transfer between a saprotrophic and an ectomycorrhizal fungus in soil microcosms. FEMS Microbiol Ecol 38:43–52

    Article  CAS  Google Scholar 

  • Lindahl B, Stenlid J, Olsson S, Finlay RD (1999) Translocation of 32P between interacting mycelia of a wood decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytol 44:183–193

    Article  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    Article  CAS  Google Scholar 

  • Martin F, Nehls U (2009) Harnessing ectomycorrhizal genomics for ecological insights. Curr Opi Biotechnol 12:509–515

    Google Scholar 

  • Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M (2009) Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol 181:950–959

    Article  CAS  PubMed  Google Scholar 

  • Nehls U, Mikolajewski S, Magel E, Hampp R (2001) The role of carbohydrates in ectomycorrhizal functioning: gene expression and metabolic control. New Phytol 150:533–541

    Google Scholar 

  • Nielsen KL, Bouma TJ, Lynch JP, Eissenstat DM (1998) Effects of phosphorus availability and vesicular–arbuscular mycorrhizas on the carbon budget of common bean (Phaseolus vulgaris). New Phytol 139:647–656

    Article  Google Scholar 

  • Ouahmane L, Revel JC, Hafidi M, Thioulouse J, Prin Y, Galiana A, Dreyfus B, Duponnois R (2009) Responses of Pinus halepensis growth, soil microbial catabolic functions and phosphate-solubilizing bacteria after rock phosphate amendment and ectomycorrhizal inoculation. Plant Soil 320(1–2):169–179

    Article  CAS  Google Scholar 

  • Parrent JL, James TY, Vasaitis R, Taylor AFS (2009) Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses. BMC Evol Biol 9:148–154

    Article  PubMed  PubMed Central  Google Scholar 

  • Paszkowski U, Kroken U, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Nat Acad Sci USA 99(20):13324–13329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Moreno J, Read DJ (2001a) Exploitation of pollen by mycorrhizal mycelial systems with special reference to nutrient cycling in boreal forests. Proc Royal Soc B 268:1329–1335

    Article  CAS  Google Scholar 

  • Perez-Moreno J, Read DJ (2001b) Nutrient transfer from soil nematodes to plants: a direct pathway provided by the mycorrhizal mycelial network. Plant Cell Environ 24:1219–1226

    Article  CAS  Google Scholar 

  • Postma JA, Lynch JP (2011) Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium. Plant Physiol 156:1190–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravnskov S, Jakobsen I (1995) Functional compatibility in arbuscular mycorrhizas measured as hyphal p transport to the plant. New Phytol 129:611–618

    Article  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems: a journey towards relevance? New Phytol 157:475–492

    Article  Google Scholar 

  • Reynolds HL, Hartley AE, Vogelsang KM, Bever JD, Schultz PA (2005) Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytol 167:869–880

    Article  CAS  PubMed  Google Scholar 

  • Rousseau JVD, Reid CPP, English RJ (1992) Relationship between biomass of the mycorrhizal fungus Pisolithus tinctorius and phosphorus uptake in loblolly pine seedlings. Soil Biol Biochem 24(2):183–184

    Article  Google Scholar 

  • Salzer P, Hager A (1996) Sucrose utilization of the ectomycorrhizal fungi Amanita muscaria and Hebeloma crus-tuliniforme depends on the cell wall-bound invertase activity of their host Picea abies. Botanica Acta 104:439–445

    Article  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116(2):44–53

    Article  Google Scholar 

  • Selle A, Willmann M, Grunze N, Gessler A, Weiss M, Nehls U (2005) The high-affinity poplar ammonium importer PttAMT1.2 and its role in ectomycorrhizal symbiosis. New Phytol 168(3):697–706

    Article  CAS  PubMed  Google Scholar 

  • Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Academic Press, London, p 787

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Ann Rev Plant Biol 62:227–250

    Article  CAS  Google Scholar 

  • Taylor JH, Peterson CA (2002) Morphometric analysis of Pinus banksiana lamb. Root anatomy during a 3-month field study. Trees 14:239–247

    Article  Google Scholar 

  • Taylor JH, Peterson CA (2005) Ectomycorrhizal impacts on nutrient uptake pathways in woody roots. New For 30(2–3):203–214

    Article  Google Scholar 

  • Thirkell JD, Cameron DD, Hodge A (2015) Resolving the “nitrogen paradox” of arbuscular mycorrhizas: fertilization with organic matter brings considerable benefits for plant nutrition and growth. Plant Cell Environ. doi:10.1111/pce.12667

    Google Scholar 

  • Unestam T (1991) Water repellency, mat formation, and leaf-stimulated growth of some ectomycorrhizal fungi. Mycorrhiza 1:13–20

    Article  Google Scholar 

  • Unestam T, Sun YP (1995) Extramatrical structures of hydrophobic and hydrophilic ectomycorrhizal fungi. Mycorrhiza 5:301–311

    Article  Google Scholar 

  • Wahl R, Wippel K, Goos S, Kämper J, Sauer N (2010) A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. PLoS Biol 8:1000303. doi:10.1371/journal.pbio.1000303

    Article  Google Scholar 

  • Wallander H, Bonfante P, Wickman T, Jacks G (1997) Apatite as a source of mycorrhizal and non- mycorrhizal Pinus sylvestris. Plant Soil 196:123–131

    Article  CAS  Google Scholar 

  • Wallander H (2006) Uptake of P from apatite by Pinus sylvestris seedlings colonized by different ectomycorrhizal fungi. Plant Soil 218:249–256

    Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizae in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Willmann A, Weiss M, Nehls U (2007) Ectomycorrhiza-mediated repression of the high affinity ammonium importer Gene AmAMT2 in Amanita muscaria. Curr Genet 51(2):71–78

    Article  CAS  PubMed  Google Scholar 

  • Wright DP, Read DJ, Scholes JD (1998) Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ 21:881–891

    Article  Google Scholar 

  • Xu GH, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama KG, Levy AA, Silber A (2007) Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression. J Expt Bot 258(10):2491–2501

    Article  Google Scholar 

  • Zhang X, Chen B, Ohtomo R (2015) Mycorrhizal effects on growth, P uptake and Cd tolerance of the host plant vary among different AM fungal species. Soil Sci Plant Nutri 61(2):359–368

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aisha Sumbul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sumbul, A., Mahmood, I., Rizvi, R., Ansari, R.A., Safiuddin (2017). Mycorrhiza: An Alliance for the Nutrient Management in Plants. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics in Agroecosystem. Springer, Singapore. https://doi.org/10.1007/978-981-10-4059-7_19

Download citation

Publish with us

Policies and ethics