Skip to main content
Log in

Identification of differentially expressed genes of the fungus Hydnangium sp. during the pre-symbiotic phase of the ectomycorrhizal association with Eucalyptus grandis

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The pre-symbiotic phase that precedes physical contact between symbionts is a crucial phase in determining their compatibility, allowing the formation of the ectomycorrhiza. A subtractive cDNA library representing the differentially expressed genes of the fungus Hydnangium sp. in the pre-symbiotic phase was constructed using fungal mycelia obtained through the in vitro mycorrhization technique. The fungus was cultured in the presence of Eucalyptus grandis roots, but with no contact between the hyphae and the root system of the host plant. Genes that code for proteins related to carbohydrate, amino acid, and energy metabolisms, transcription, and protein synthesis, cellular communication, signal transduction, stress response, transposons, and proteins related to the biogenesis of cell components were identified among the 131 expressed sequence tags. Expression of the genes that code for acetyl-CoA acetyltransferase, pyruvate dehydrogenase, ATP synthase, a voltage-dependent protein from the selective ion channel, and hydrophobin was evaluated by the RT-qPCR technique, confirming the activation of these genes in this phase of the association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acioli-Santos B, Sebastiana M, Pessoa F, Sousa L, Figueiredo A, Fortes AM, Baldé A, Maia L, Pais M (2008) Fungal transcript pattern during the preinfection stage (12 h) of ectomycorrhiza formed between Pisolithus tinctorius and Castanea sativa roots, identified using cDNA microarrays. Curr Microbiol 57:620–625. doi:10.1007/s00284-008-9253-2

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  • Burgess T, Dell B, Malajczuk N (1996) In vitro synthesis of Pisolithus-Eucalyptus ectomycorrhizae: synchronization of lateral tip emergence and ectomycorrhizal development. Mycorrhiza 6:189–196. doi:10.1007/s005720050125

    Article  Google Scholar 

  • Campos DTS (2004) Diversidade de fungos ectomicorrízicos em povoamentos de eucalipto. Thesis, Federal University of Viçosa

  • Chu-Chou M, Grace LJ (1983) Hypogeous fungi associated with some forest trees in New Zealand. N Z J Bot 21:183–190

    Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030. doi:10.1073/pnas.93.12.6025

    Article  PubMed  CAS  Google Scholar 

  • Duplessis S, Courty PE, Tagu D, Martin F (2005) Transcript patterns associated with ectomycorrhiza development in Eucalyptus globulus and Pisolithus microcarpus. New Phytol 165:599–611. doi:10.1111/j.1469-8137.2004.01248.x

    Article  PubMed  CAS  Google Scholar 

  • Frettinger P, Derory J, Herrmann S, Plomion C, Lapeyrie F, Oelmüller R, Martin F, Buscot F (2007) Transcriptional changes in two types of pre-mycorrhizal roots and in ectomycorrhizas of oak microcuttings inoculated with Piloderma croceum. Planta 225:331–340. doi:10.1007/s00425-006-0355-4

    Article  PubMed  CAS  Google Scholar 

  • Heller G, Adomas A, Li G, Osborne J, Van Zyl L, Sederoff R, Finlay RD, Stenlid J, Asiegbu FO (2008) Transcriptional analysis of Pinus sylvestris roots challenged with the ectomycorrhizal fungus Laccaria bicolor. BMC Plant Biology 8:19–32. doi:10.1186/1471-2229-8-19

    Article  PubMed  CAS  Google Scholar 

  • Hiremath ST, Balasubramanian S, Zheng J, Podila GK (2006) Symbiosis-regulated expression of an acetylCoA acetyltransferase gene in the ectomycorrhizal fungus Laccaria bicolor. Can J Bot 84:1405–1416

    Article  CAS  Google Scholar 

  • Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28. doi:10.1016/0378-1119(90)90336-P

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Bernreuther D, Thumm M, Podila GK (1999) LB-AUT7, a novel symbiosis-regulated gene from an ectomycorrhizal fungus, Laccaria bicolor, is functionally related to vesicular transport and autophagocytosis. J Bacteriol 181:1963–1967

    PubMed  CAS  Google Scholar 

  • Krüger A, Peskan-Berghöfer T, Frettinger P, Herrmann S, Buscot F, Oelmüller R (2004) Identification of premycorrhiza-related plant genes in the association between Quercus robur and Piloderma croceum. New Phytol 163:149–157. doi:10.1111/j.1469-8137.2004.01091.x

    Article  CAS  Google Scholar 

  • Laurent P, Voiblet C, Tagu D, De Carvalho D, Nehls U, De Bellis R, Balestrini R, Bauw G, Bonfante P, Martin F (1999) A novel class of ectomycorrhiza-regulated cell wall polypeptides in Pisolithus tinctorius. Mol Plant-Microbe Interact 12:862–871. doi:10.1094/MPMI.1999.12.10.862

    Article  PubMed  CAS  Google Scholar 

  • Le Quéré A, Wright D, Söderström B, Tunlid A, Johansson T (2005) Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula Roth.) and Paxillus involutus (Batsch) Fr. Mol Plant-Microb Interact 18:659–673. doi:10.1094/MPMI-18-0659

    Article  CAS  Google Scholar 

  • Malajczuck N, Hartney VL (1986) Procedure for inoculation of micropropagated plantlets of Eucalyptus camaldulensis whith ectomycorrhizal fungi and comparison with seedling inoculation using inoculum contained in a peat/vermiculite carrier. Aust For Res 16:199–206

    Google Scholar 

  • Malajczuk N, Molina R, Trappe JM (1982) Ectomycorrhiza formation in Eucalyptus: pure culture synthesis, host specificity and mycorrhizal compatibility with Pinus radiate. New Phytol 91:467–482. doi:10.1111/j.1469-8137.1982.tb03325.x

    Article  Google Scholar 

  • Martin F, Kohler A, Duplessis S (2007) Living in harmony in the wood underground: ectomycorrhizal genomics. Curr Opin Plant Biol 10:204–210. doi:10.1016/j.pbi.2007.01.006

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Aerts A, Ahrén D, Brun A, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buée M, Brokstein P, Canbäck B, Cohen D, Courty PE, Coutinho P, Danchin EGJ, Delaruelle C, Detter J, Deveau A, Difazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Gérard J, Grimwood J, Hoegger PJ, Jain P, Kilaru S, Labbé J, Lin YC, Legué V, Letacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Lesecq MP, Peter G, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kües U, Lucas S, Van De Peer Y, Podila G, Polle A, Pukkila PJ, Richardson P, Rouzé P, Sanders I, Stajich JE, Tunlid A, Tuskan G, Grigoriev I (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92. doi:10.1038/nature06556

    Article  PubMed  CAS  Google Scholar 

  • Marx DH (1969) The influence of ectotropic mycorrhizal fungi on the resisteance if pine roots to pathogenic fungi and soil bacteria. Phytopathology 59:153–163

    Google Scholar 

  • Melin P, Schnürer J, Wagner EGH (2002) Proteome analysis of Aspergillus nidulans reveals proteins associated with the response to the antibiotic concanamycin A, produced by Streptomyces species. Mol Genet Genom 267:695–702. doi:10.1007/s00438-002-0695-0

    Article  CAS  Google Scholar 

  • Menotta M, Amicucci A, Sisti D, Gioacchini AM, Stocchi V (2004) Differential gene expression during pre-symbiotic interaction between Tuber borchii Vitad. and Tilia americana L. Curr Genet 46:158–165

    Article  PubMed  CAS  Google Scholar 

  • Morel M, Jacob C, Kohler A, Johansson T, Martin F, Chalot M, Brun A (2005) Identification of genes differentially expressed in extraradical mycelium and ectomycorrhizal roots during Paxillus involutus- Betula pendula ectomycorrhizal symbiosis. Appl Environ Microbiol 71:382–391. doi:10.1128/AEM.71.1.382-391.2005

    Article  PubMed  CAS  Google Scholar 

  • Peter M, Courty PE, Kohler A, Delaruelle C, Martin D, Tagu D, Frey-Klett P, Duplessis S, Chalot M, Podila G, Martin F (2003) Analysis of expressed sequence tags from the ectomycorrhizal basidiomycetes Laccaria bicolor and Pisolithus microcarpus. New Phytol 159:17–129. doi:10.1046/j.1469-8137.2003.00796.x

    Google Scholar 

  • Podila GK, Zheng J, Balasubramanian S, Sundaram S, Hiremath S, Brand J, Hymes M (2002) Molecular interactions in ectomycorrhizas: identification of fungal genes involved in early symbiotic interactions between Laccaria bicolor and red pine. Plant and Soil 244:117–128

    Article  CAS  Google Scholar 

  • Prins TW, Wagemakers L, Van Kan JAL (2000) Structure and expression in planta of Botrytis cinerea ubiquitin genes. Eur J Plant Pathol 106:693–698

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sanger F, Nicklen S, CoulsoN AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467. doi:10.1073/pnas.74.12.5463

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academy, New York, 605p

    Google Scholar 

  • Tagu D, Nasse B, Martin F (1996) Cloning and characterization of hydrophobins-encoding cDNAs from the ectomycorrhizal basidiomycete Pisolithus tinctorius. Gene 168:93–97. doi:10.1016/0378-1119(95)00725-3

    Article  PubMed  CAS  Google Scholar 

  • Tagu D, Lapeyrie F, Martin F (2002) The ectomycorrhizal symbiosis: genetics and development. Plant Soil 244:97–105

    Article  CAS  Google Scholar 

  • Voiblet C, Duplessis S, Encelot N, Martin F (2001) Identification of symbiosis-regulated genes in Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs. Plant J 25:1–12. doi:10.1046/j.1365-313x.2001.00953.x

    Article  Google Scholar 

  • Zaretsky M, Sitrit Y, Mills D, Roth-Bejerano N, Kagan-Zur V (2006) Differential expression of fungal genes at preinfection and mycorrhiza establishment between Terfezia boudieri isolates and Cistus incanus hairy root clones. New Phytol 171:837–846. doi:10.1111/j.1469-8137.2006.01791.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank FAPEMIG and CNPq (Brazilian Institutions) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elza Fernandes de Araújo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva Coelho, I., de Queiroz, M.V., Costa, M.D. et al. Identification of differentially expressed genes of the fungus Hydnangium sp. during the pre-symbiotic phase of the ectomycorrhizal association with Eucalyptus grandis . Mycorrhiza 20, 531–540 (2010). https://doi.org/10.1007/s00572-010-0301-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-010-0301-y

Keywords

Navigation