Skip to main content

Therapeutic Vaccine of Gastric Cancer

  • Chapter
  • First Online:
Personalized Management of Gastric Cancer
  • 1060 Accesses

Abstract

Gastric cancer is a challenging global health issue with poor outcomes for patients in advanced stages of the disease and, consequently, high mortality rates. Palliative treatment options have remained focused on chemotherapy, even though it only achieves modest survival benefits [1]. Although there have been recent advances in both genetic characterization and development of novel targeting agents, the overall prognosis for advanced cases of the disease remains disappointing. To this end, the median overall survival (OS) has been less than 12 months in the majority of trials [2]. When compared with other cancer types, there has been an increasing interest in the use of immunotherapy to improve gastric cancer outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davidson M, Chau I. Immunotherapy for oesophagogastric cancer. Expert Opin Biol Ther. 2016;16(10):1197–207.

    Article  CAS  PubMed  Google Scholar 

  2. Wagner AD, Unverzagt S, Grothe W, Kleber G, Grothey A, Haerting J, et al. Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev. 2010;3:CD004064.

    Google Scholar 

  3. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.

    Article  PubMed  Google Scholar 

  4. Vonderheide RH, Hahn WC, Schultze JL, Nadler LM. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity. 1999;10(6):673–9.

    Article  CAS  PubMed  Google Scholar 

  5. Vigneron N. Human tumor antigens and cancer immunotherapy. Biomed Res Int. 2015;2015:948501.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Thompson MP, Kurzrock R. Epstein-Barr virus and cancer. Clin Cancer Res. 2004;10(3):803–21.

    Article  CAS  PubMed  Google Scholar 

  7. Kreiter S, Vormehr M, van de Roemer N, Diken M, Lower M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. 2015 [updated Apr 22]. Available from http://www.ncbi.nlm.nih.gov/pubmed/25901682.

  8. Arzumanyan A, Reis HM, Feitelson MA. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer. 2013;13(2):123–35.

    Article  CAS  PubMed  Google Scholar 

  9. Rajasagi M, Shukla SA, Fritsch EF, Keskin DB, DeLuca D, Carmona E, et al. Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood. 2014;124(3):453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Higashihara Y, Kato J, Nagahara A, Izumi K, Konishi M, Kodani T, et al. Phase I clinical trial of peptide vaccination with URLC10 and VEGFR1 epitope peptides in patients with advanced gastric cancer. Int J Oncol. 2014;44(3):662–8.

    CAS  PubMed  Google Scholar 

  11. Maeda Y, Hida N, Niiya F, Katagiri K, Harada M, Yamana H, et al. Detection of peptide-specific CTL-precursors in peripheral blood lymphocytes of cancer patients. Br J Cancer. 2002;87(7):796–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mine T, Sato Y, Noguchi M, Sasatomi T, Gouhara R, Tsuda N, et al. Humoral responses to peptides correlate with overall survival in advanced cancer patients vaccinated with peptides based on pre-existing, peptide-specific cellular responses. Clin Cancer Res. 2004;10(3):929–37.

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka S, Harada M, Mine T, Noguchi M, Gohara R, Azuma K, et al. Peptide vaccination for patients with melanoma and other types of cancer based on pre-existing peptide-specific ctotoxic T-lymphocyte precursors in the periphery. J Immunother. 2003;26(4):357–66.

    Article  CAS  PubMed  Google Scholar 

  14. Sato Y, Shomura H, Maeda Y, Mine T, Une Y, Akasaka Y, et al. Immunological evaluation of peptide vaccination for patients with gastric cancer based on pre-existing cellular response to peptide. Cancer Sci. 2003;94(9):802–8.

    Article  CAS  PubMed  Google Scholar 

  15. Takayama K, Sugawara S, Saijo Y, Maemondo M, Sato A, Takamori S, et al. Randomized phase II study of docetaxel plus personalized peptide vaccination versus docetaxel plus placebo for patients with previously treated advanced wild type EGFR non-small-cell lung cancer. J Immunol Res. 2016;2016:1745108.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yoshimura K, Minami T, Nozawa M, Kimura T, Egawa S, Fujimoto H, et al. A phase 2 randomized controlled trial of personalized peptide vaccine immunotherapy with low-dose dexamethasone versus dexamethasone alone in chemotherapy-naive castration-resistant prostate cancer. Eur Urol. 2016;70(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  17. Huang H, Hao S, Li F, Ye Z, Yang J, Xiang J. CD4+ Th1 cells promote CD8+ Tc1 cell survival, memory response, tumor localization and therapy by targeted delivery of interleukin 2 via acquired pMHC I complexes. Immunology. 2007;120(2):148–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Quezada SA, Simpson TR, Peggs KS, Merghoub T, Vider J, Fan X, et al. Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med. 2010;207(3):637–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Teramoto K, Kontani K, Fujita T, Ozaki Y, Sawai S, Tezuka N, et al. Successful tumor eradication was achieved by collaboration of augmented cytotoxic activity and anti-angiogenic effects following therapeutic vaccines containing helper-activating analog-loaded dendritic cells and tumor antigen DNA. Cancer Immunol Immunother. 2007;56(3):331–42.

    Article  CAS  PubMed  Google Scholar 

  20. Hu Y, Kim H, Blackwell CM, Slingluff Jr CL. Long-term outcomes of helper peptide vaccination for metastatic melanoma. Ann Surg. 2015;262(3):456–64. discussion 62-4

    Article  PubMed  PubMed Central  Google Scholar 

  21. Inderberg-Suso EM, Trachsel S, Lislerud K, Rasmussen AM, Gaudernack G. Widespread CD4+ T-cell reactivity to novel hTERT epitopes following vaccination of cancer patients with a single hTERT peptide GV1001. Oncoimmunology. 2012;1(5):670–86.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kyte JA. Cancer vaccination with telomerase peptide GV1001. Expert Opin Investig Drugs. 2009;18(5):687–94.

    Article  CAS  PubMed  Google Scholar 

  23. Brunsvig PF, Kyte JA, Kersten C, Sundstrom S, Moller M, Nyakas M, et al. Telomerase peptide vaccination in NSCLC: a phase II trial in stage III patients vaccinated after chemoradiotherapy and an 8-year update on a phase I/II trial. Clin Cancer Res. 2011;17(21):6847–57.

    Article  CAS  PubMed  Google Scholar 

  24. Kyte JA, Gaudernack G, Dueland S, Trachsel S, Julsrud L, Aamdal S. Telomerase peptide vaccination combined with temozolomide: a clinical trial in stage IV melanoma patients. Clin Cancer Res. 2011;17(13):4568–80.

    Article  CAS  PubMed  Google Scholar 

  25. Staff C, Mozaffari F, Frodin JE, Mellstedt H, Liljefors M. Telomerase (GV1001) vaccination together with gemcitabine in advanced pancreatic cancer patients. Int J Oncol. 2014;45(3):1293–303.

    CAS  PubMed  Google Scholar 

  26. Schlapbach C, Yerly D, Daubner B, Yawalkar N, Hunger RE. Telomerase-specific GV1001 peptide vaccination fails to induce objective tumor response in patients with cutaneous T cell lymphoma. J Dermatol Sci. 2011;62(2):75–83.

    Article  CAS  PubMed  Google Scholar 

  27. Sayem MA, Tomita Y, Yuno A, Hirayama M, Irie A, Tsukamoto H, et al. Identification of glypican-3-derived long peptides activating both CD8+ and CD4+ T cells; prolonged overall survival in cancer patients with Th cell response. Oncoimmunology. 2016;5(1):e1062209.

    Article  PubMed  Google Scholar 

  28. Gross S, Lennerz V, Gallerani E, Mach N, Bohm S, Hess D, et al. Short peptide vaccine induces CD4+ T helper cells in patients with different solid cancers. Cancer Immunol Res. 2016;4(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  29. Iwahashi M, Katsuda M, Nakamori M, Nakamura M, Naka T, Ojima T, et al. Vaccination with peptides derived from cancer-testis antigens in combination with CpG-7909 elicits strong specific CD8+ T cell response in patients with metastatic esophageal squamous cell carcinoma. Cancer Sci. 2010;101(12):2510–7.

    Article  CAS  PubMed  Google Scholar 

  30. Ishikawa H, Imano M, Shiraishi O, Yasuda A, Peng YF, Shinkai M, et al. Phase I clinical trial of vaccination with LY6K-derived peptide in patients with advanced gastric cancer. Gastric Cancer. 2014;17(1):173–80.

    Article  CAS  PubMed  Google Scholar 

  31. Chen XH, Liu BY, Zhang DQ, Zhang Y, Zhang Y, Li JF, et al. [Expression of MAGE-1 and MAGE-3 genes in gastric cancer and gastric biopsy tissues and its clinical significance]. Xi bao yu fen zi mian yi xue za zhi (Chinese Journal of Cellular and Molecular Immunology). 2004;20(3):310–3.

    Google Scholar 

  32. Ofuji S, Ikeda M, Tsujitani S, Ikeguchi M, Kaibara N, Yuasa I, et al. Expression of MAGE-1, MAGE-2 and MAGE-3 genes in human gastric carcinomas; lack of evidence for cytotoxic effects in cases with simultaneous expression of MAGE-3 and HLA-A2. Anticancer Res. 1998;18(5B):3639–44.

    CAS  PubMed  Google Scholar 

  33. Sadanaga N, Nagashima H, Mashino K, Tahara K, Yamaguchi H, Ohta M, et al. Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas. Clin Cancer Res. 2001;7(8):2277–84.

    CAS  PubMed  Google Scholar 

  34. Chua TC, Merrett ND. Clinicopathologic factors associated with HER2-positive gastric cancer and its impact on survival outcomes—a systematic review. Int J Cancer. 2012;130(12):2845–56.

    Article  CAS  PubMed  Google Scholar 

  35. Kono K, Takahashi A, Sugai H, Fujii H, Choudhury AR, Kiessling R, et al. Dendritic cells pulsed with HER-2/neu-derived peptides can induce specific T-cell responses in patients with gastric cancer. Clin Cancer Res. 2002;8(11):3394–400.

    CAS  PubMed  Google Scholar 

  36. Rapisarda A, Melillo G. Role of the VEGF/VEGFR axis in cancer biology and therapy. Adv Cancer Res. 2012;114:237–67.

    Article  CAS  PubMed  Google Scholar 

  37. Tsuboi A, Oka Y, Udaka K, Murakami M, Masuda T, Nakano A, et al. Enhanced induction of human WT1-specific cytotoxic T lymphocytes with a 9-mer WT1 peptide modified at HLA-A*2402-binding residues. Cancer Immunol Immunother. 2002;51(11-12):614–20.

    Article  CAS  PubMed  Google Scholar 

  38. Kobayashi M, Chiba A, Izawa H, Yanagida E, Okamoto M, Shimodaira S, et al. The feasibility and clinical effects of dendritic cell-based immunotherapy targeting synthesized peptides for recurrent ovarian cancer. J Ovarian Res. 2014;7:48.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kobayashi M, Sakabe T, Chiba A, Nakajima A, Okamoto M, Shimodaira S, et al. Therapeutic effect of intratumoral injections of dendritic cells for locally recurrent gastric cancer: a case report. World J Surg Oncol. 2014;12:390.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sato Y, Fujiwara T, Mine T, Shomura H, Homma S, Maeda Y, et al. Immunological evaluation of personalized peptide vaccination in combination with a 5-fluorouracil derivative (TS-1) for advanced gastric or colorectal carcinoma patients. Cancer Sci. 2007;98(7):1113–9.

    Article  CAS  PubMed  Google Scholar 

  41. Burnet FM. The clonal selection theory of acquired immunity. Nashville: Vanderbilt University Press; 1959. p. xiii, 209.

    Google Scholar 

  42. Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994;12:337–65.

    Article  CAS  PubMed  Google Scholar 

  43. Brichard V, Van Pel A, Wolfel T, Wolfel C, De Plaen E, Lethe B, et al. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med. 1993;178(2):489–95.

    Article  CAS  PubMed  Google Scholar 

  44. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science (New York, NY). 2015;348(6230):69–74. Epub 2015/04/04.

    Article  CAS  Google Scholar 

  45. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014;14(2):135–46.

    Article  CAS  PubMed  Google Scholar 

  46. Gilboa E. The makings of a tumor rejection antigen. Immunity. 1999;11(3):263–70.

    Article  CAS  PubMed  Google Scholar 

  47. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Klebanoff CA, Rosenberg SA, Restifo NP. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nat Med. 2016;22(1):26–36. Epub 2016/01/07.

    Article  CAS  PubMed  Google Scholar 

  49. Takenoyama M, Baurain JF, Yasuda M, So T, Sugaya M, Hanagiri T, et al. A point mutation in the NFYC gene generates an antigenic peptide recognized by autologous cytolytic T lymphocytes on a human squamous cell lung carcinoma. Int J Cancer. 2006;118(8):1992–7.

    Article  CAS  PubMed  Google Scholar 

  50. Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ, et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature. 2012;482(7385):400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Castle JC, Kreiter S, Diekmann J, Lower M, van de Roemer N, de Graaf J, et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 2012;72(5):1081–91.

    Article  CAS  PubMed  Google Scholar 

  52. Hinrichs CS, Rosenberg SA. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev. 2014;257(1):56–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mahony DE, Li A. Comparative study of ten bacteriocins of Clostridium perfringens. Antimicrob Agents Chemother. 1978;14(6):886–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(32):5233–9.

    Article  CAS  Google Scholar 

  56. Kvistborg P, Shu CJ, Heemskerk B, Fankhauser M, Thrue CA, Toebes M, et al. TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients. Oncoimmunology. 2012;1(4):​409–18.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114(3):535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lu YC, Yao X, Li YF, El-Gamil M, Dudley ME, Yang JC, et al. Mutated PPP1R3B is recognized by T cells used to treat a melanoma patient who experienced a durable complete tumor regression. J Immunol. 2013;190(12):6034–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med. 2013;19(6):747–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.

    Article  CAS  PubMed  Google Scholar 

  61. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515(7528):577–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015;350(6257):207–11.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Katsnelson A. Mutations as munitions: Neoantigen vaccines get a closer look as cancer treatment. Nat Med. 2016;22(2):122–4.

    Article  CAS  PubMed  Google Scholar 

  68. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med. 2015;372(26):2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature. 2014;515(7528):572–6.

    Article  CAS  PubMed  Google Scholar 

  70. Kalaora S, Barnea E, Merhavi-Shoham E, Qutob N, Teer JK, Shimony N, et al. Use of HLA peptidomics and whole exome sequencing to identify human immunogenic neo-antigens. Oncotarget. 2016;7(5):5110–7.

    PubMed  PubMed Central  Google Scholar 

  71. Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science. 2014;344(6184):641–5.

    Article  CAS  PubMed  Google Scholar 

  72. Tran E, Ahmadzadeh M, Lu YC, Gros A, Turcotte S, Robbins PF, et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science. 2015;350(6266):1387–90.

    Article  CAS  PubMed  Google Scholar 

  73. Schumacher T, Bunse L, Wick W, Platten M. Mutant IDH1: An immunotherapeutic target in tumors. Oncoimmunology. 2014;3(12):e974392.

    Article  PubMed  Google Scholar 

  74. Kreiter S, Vormehr M, van de Roemer N, Diken M, Lower M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520(7549):692–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9.

    Article  Google Scholar 

  76. Vigneron N, Stroobant V, Van den Eynde BJ, van der Bruggen P. Database of T cell-defined human tumor antigens: the 2013 update. Cancer Immun. 2013;13:15.

    PubMed  PubMed Central  Google Scholar 

  77. Robbins PF, El-Gamil M, Li YF, Kawakami Y, Loftus D, Appella E, et al. A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med. 1996;183(3):1185–92.

    Article  CAS  PubMed  Google Scholar 

  78. Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E, et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science. 1995;269(5228):1281–4.

    Article  CAS  PubMed  Google Scholar 

  79. Kaiser E, Loch EG. Newer aspects of hormonal therapy in gynecology. Z Allgemeinmed. 1975;51(13):600–5.

    CAS  PubMed  Google Scholar 

  80. Gaudin C, Kremer F, Angevin E, Scott V, Triebel F. A hsp70-2 mutation recognized by CTL on a human renal cell carcinoma. J Immunol. 1999;162(3):1730–8.

    CAS  PubMed  Google Scholar 

  81. Kawakami Y, Wang X, Shofuda T, Sumimoto H, Tupesis J, Fitzgerald E, et al. Isolation of a new melanoma antigen, MART-2, containing a mutated epitope recognized by autologous tumor-infiltrating T lymphocytes. J Immunol. 2001;166(4):2871–7.

    Article  CAS  PubMed  Google Scholar 

  82. Karanikas V, Colau D, Baurain JF, Chiari R, Thonnard J, Gutierrez-Roelens I, et al. High frequency of cytolytic T lymphocytes directed against a tumor-specific mutated antigen detectable with HLA tetramers in the blood of a lung carcinoma patient with long survival. Cancer Res. 2001;61(9):3718–24.

    CAS  PubMed  Google Scholar 

  83. Ito D, Visus C, Hoffmann TK, Balz V, Bier H, Appella E, et al. Immunological characterization of missense mutations occurring within cytotoxic T cell-defined p53 epitopes in HLA-A*0201+ squamous cell carcinomas of the head and neck. Int J Cancer. 2007;120(12):2618–24.

    Article  CAS  PubMed  Google Scholar 

  84. Gjertsen MK, Bjorheim J, Saeterdal I, Myklebust J, Gaudernack G. Cytotoxic CD4+ and CD8+ T lymphocytes, generated by mutant p21-ras (12Val) peptide vaccination of a patient, recognize 12Val-dependent nested epitopes present within the vaccine peptide and kill autologous tumour cells carrying this mutation. Int J Cancer. 1997;72(5):784–90.

    Article  CAS  PubMed  Google Scholar 

  85. Abrams SI, Khleif SN, Bergmann-Leitner ES, Kantor JA, Chung Y, Hamilton JM, et al. Generation of stable CD4+ and CD8+ T cell lines from patients immunized with ras oncogene-derived peptides reflecting codon 12 mutations. Cell Immunol. 1997;182(2):137–51.

    Article  CAS  PubMed  Google Scholar 

  86. Gjertsen MK, Saeterdal I, Saeboe-Larssen S, Gaudernack G. HLA-A3 restricted mutant ras specific cytotoxic T-lymphocytes induced by vaccination with T-helper epitopes. J Mol Med. 2003;81(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  87. Linard B, Bezieau S, Benlalam H, Labarriere N, Guilloux Y, Diez E, et al. A ras-mutated peptide targeted by CTL infiltrating a human melanoma lesion. J Immunol. 2002;168(9):4802–8.

    Article  CAS  PubMed  Google Scholar 

  88. Sharkey MS, Lizee G, Gonzales MI, Patel S, Topalian SL. CD4(+) T-cell recognition of mutated B-RAF in melanoma patients harboring the V599E mutation. Cancer Res. 2004;64(5):1595–9.

    Article  CAS  PubMed  Google Scholar 

  89. Nishimura Y, Chen YZ, Uemura Y, Tanaka Y, Tsukamoto H, Kanai T, et al. Degenerate recognition and response of human CD4+ Th cell clones: implications for basic and applied immunology. Mol Immunol. 2004;40(14-15):1089–94.

    Article  CAS  PubMed  Google Scholar 

  90. Gedde-Dahl 3rd T, Spurkland A, Eriksen JA, Thorsby E, Gaudernack G. Memory T cells of a patient with follicular thyroid carcinoma recognize peptides derived from mutated p21 ras (Gln→Leu61). Int Immunol. 1992;4(11):1331–7.

    Article  PubMed  Google Scholar 

  91. Gedde-Dahl 3rd T, Spurkland A, Fossum B, Wittinghofer A, Thorsby E, Gaudernack G. T cell epitopes encompassing the mutational hot spot position 61 of p21 ras. Promiscuity in ras peptide binding to HLA. Eur J Immunol. 1994;24(2):410–4.

    Article  CAS  PubMed  Google Scholar 

  92. Gedde-Dahl 3rd T, Eriksen JA, Thorsby E, Gaudernack G. T-cell responses against products of oncogenes: generation and characterization of human T-cell clones specific for p21 ras-derived synthetic peptides. Hum Immunol. 1992;33(4):266–74.

    Article  CAS  PubMed  Google Scholar 

  93. Novellino L, Renkvist N, Rini F, Mazzocchi A, Rivoltini L, Greco A, et al. Identification of a mutated receptor-like protein tyrosine phosphatase kappa as a novel, class II HLA-restricted melanoma antigen. J Immunol. 2003;170(12):6363–70.

    Article  CAS  PubMed  Google Scholar 

  94. Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature. 2014;512(7514):324–7.

    Article  CAS  PubMed  Google Scholar 

  95. Moehler M, Delic M, Goepfert K, Aust D, Grabsch HI, Halama N, et al. Immunotherapy in gastrointestinal cancer: recent results, current studies and future perspectives. Eur J Cancer. 2016;59:160–70.

    Article  CAS  PubMed  Google Scholar 

  96. Liu Y. Neoantigen: a long march toward cancer immunotherapy. Clin Cancer Res. 2016;22(11):2602–4.

    Article  CAS  PubMed  Google Scholar 

  97. Leisegang M, Engels B, Schreiber K, Yew PY, Kiyotani K, Idel C, et al. Eradication of large solid tumors by gene therapy with a T-cell receptor targeting a single cancer-specific point mutation. Clin Cancer Res. 2016;22(11):2734–43.

    Article  CAS  PubMed  Google Scholar 

  98. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–9.

    Article  CAS  PubMed  Google Scholar 

  99. Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC, et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 2009;28(5):578–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Khalil DN, Budhu S, Gasmi B, Zappasodi R, Hirschhorn-Cymerman D, Plitt T, et al. The new era of cancer immunotherapy: manipulating T-cell activity to overcome malignancy. Adv Cancer Res. 2015;128:1–68.

    Article  PubMed  Google Scholar 

  101. Hirayama M, Nishimura Y. The present status and future prospects of peptide-based cancer vaccines. Int Immunol. 2016;28(7):319–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanyan Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chen, F., Meng, F. (2017). Therapeutic Vaccine of Gastric Cancer. In: Wei, J., Liu, B. (eds) Personalized Management of Gastric Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-10-3978-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3978-2_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3977-5

  • Online ISBN: 978-981-10-3978-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics