Skip to main content

Recapitulating Development to Generate Kidney Organoid Cultures

  • Chapter
  • First Online:
Organ Regeneration Based on Developmental Biology

Abstract

Evidence of the successful recreation of kidney cell types via the directed differentiation of human pluripotent stem cells adds the kidney to the list of tissues for which this approach to tissue regeneration is becoming feasible. Arguably, the kidney is one of the most complex organs to recapitulate in vitro with the final adult organ containing more than 25 distinct cell types playing a diverse number of distinct functional roles. This organ also has a heavy reliance upon the architectural accuracy of the component cellular structures as well as their appropriate co-localisation and interaction with surrounding cell types. Here we will focus on the generation of complex multicellular kidney organoids in vitro and examine both the rationale for the protocol developed, the advantages of a complex kidney organoid and the short- and long-term applications of such an approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMP:

Bone morphogenetic protein

CM:

Cap mesenchyme

EE:

Embryonic ectoderm

FGF:

Fibroblast growth factor

GBM:

Glomerular basement membrane

GDNF:

Glial derived neutrophilic factor

hESC:

Human embryonic stem cell

IM:

Intermediate mesoderm

iPSC:

Induced pluripotent stem cell

MM:

Metanephric mesenchyme

PS:

Primitive streak RA retinoic acid

UB:

Ureteric bud

References

  • Araoka T, Mae S, Kurose Y, Uesugi M, Ohta A, Yamanaka S, Osafune K (2014) Efficient and rapid induction of human iPSCs/ESCs into nephrogenic intermediate mesoderm using small molecule-based differentiation methods. PLoS One 9:e84881. doi:10.1371/journal.pone.0084881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bachiller D, Klingensmith J, Kemp C, Belo JA, Anderson RM, May SR, McMahon JA, McMahon AP, Harland RM, Rossant J, De Robertis EM (2000) The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403:658–661. doi:10.1038/35001072

    Article  CAS  PubMed  Google Scholar 

  • Barak H, Huh S-H, Chen S, Jeanpierre C, Martinovic J, Parisot M, Bole-Feysot C, Nitschké P, Salomon R, Antignac C, Ornitz DM, Kopan R (2012) FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev Cell 22:1191–1207. doi:10.1016/j.devcel.2012.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker N, Rookmaaker MB, Kujala P, Ng A, Leushacke M, Snippert H, van de Wetering M, Tan S, Van Es JH, Huch M, Poulsom R, Verhaar MC, Peters PJ, Clevers H (2012) Lgr5+ve stem/progenitor cells contribute to nephron formation during kidney development. Cell Rep 2:540–552. doi:10.1016/j.celrep.2012.08.018

    Article  CAS  PubMed  Google Scholar 

  • Becker GJ, Hewitson TD (2013) Animal models of chronic kidney disease: useful but not perfect. Nephrol Dial Transplant 28:2432–2438. doi:10.1093/ndt/gft071

    Article  PubMed  Google Scholar 

  • Ben-Haim N, Lu C, Guzman-Ayala M, Pescatore L, Mesnard D, Bischofberger M, Naef F, Robertson EJ, Constam DB (2006) The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4. Dev Cell 11:313–323. doi:10.1016/j.devcel.2006.07.005

    Article  CAS  PubMed  Google Scholar 

  • Berger K, Bangen J-M, Hammerich L, Liedtke C, Floege J, Smeets B, Moeller MJ (2014) Origin of regenerating tubular cells after acute kidney injury. Proc Natl Acad Sci U S A 111:1533–1538. doi:10.1073/pnas.1316177111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biben C, Stanley E, Fabri L, Kotecha S, Rhinn M, Drinkwater C, Lah M, Wang CC, Nash A, Hilton D, Ang SL, Mohun T, Harvey RP (1998) Murine cerberus homologue mCer-1: a candidate anterior patterning molecule. Dev Biol 194:135–151. doi:10.1006/dbio.1997.8812

    Article  CAS  PubMed  Google Scholar 

  • Bonandrini B, Figliuzzi M, Papadimou E, Morigi M, Perico N, Casiraghi F, Dipl C, Sangalli F, Conti S, Benigni A, Remuzzi A, Remuzzi G (2014) Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Eng Part A 20:1486–1498. doi:10.1089/ten.TEA.2013.0269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AC, Muthukrishnan SD, Guay JA, Adams DC, Schafer DA, Fetting JL, Oxburgh L (2013) Role for compartmentalization in nephron progenitor differentiation. Proc Natl Acad Sci U S A 110:4640–4645. doi:10.1073/pnas.1213971110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AC, Muthukrishnan SD, Oxburgh L (2015) A synthetic niche for nephron progenitor cells. Dev Cell 34:229–241. doi:10.1016/j.devcel.2015.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunskill EW, Potter SS (2012) Changes in the gene expression programs of renal mesangial cells during diabetic nephropathy. BMC Nephrol 13:70. doi:10.1186/1471-2369-13-70

    Article  PubMed  PubMed Central  Google Scholar 

  • Burn SF, Webb A, Berry RL, Davies JA, Ferrer-Vaquer A, Hadjantonakis AK, Hastie ND, Hohenstein P (2011) Calcium/NFAT signalling promotes early nephrogenesis. Dev Biol 352:288–298. doi:10.1016/j.ydbio.2011.01.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burridge PW, Keller G, Gold JD, Wu JC (2012) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10:16–28. doi:10.1016/j.stem.2011.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caralt M, Uzarski JS, Iacob S, Obergfell KP, Berg N, Bijonowski BM, Kiefer KM, Ward HH, Wandinger-Ness A, Miller WM, Zhang ZJ, Abecassis MM, Wertheim JA (2015) Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. Am J Transplant 15:64–75. doi:10.1111/ajt.12999

    Article  CAS  PubMed  Google Scholar 

  • Carroll TJ, Park J-S, Hayashi S, Majumdar A, McMahon AP (2005) Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 9:283–292. doi:10.1016/j.devcel.2005.05.016

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee R, Ramos E, Hoffman M, VanWinkle J, Martin DR, Davis TK, Hoshi M, Hmiel SP, Beck A, Hruska K, Coplen D, Liapis H, Mitra R, Druley T, Austin P, Jain S (2012) Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations. Hum Genet 131:1725–1738. doi:10.1007/s00439-012-1181-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Brunskill EW, Potter SS, Dexheimer PJ, Salomonis N, Aronow BJ, Hong CI, Zhang T, Kopan R (2015a) Intrinsic age-dependent changes and cell-cell contacts regulate nephron progenitor lifespan. Dev Cell 35:49–62. doi:10.1016/j.devcel.2015.09.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen W, Huang J, Yu X, Lin X, Dai Y (2015b) Generation of induced pluripotent stem cells from renal tubular cells of a patient with Alport syndrome. Int J Nephrol Renov Dis 8:101–109. doi:10.2147/IJNRD.S85733

    Google Scholar 

  • Ciampi O, Iacone R, Longaretti L, Benedetti V, Graf M, Magnone MC, Patsch C, Xinaris C, Remuzzi G, Benigni A, Tomasoni S (2016) Generation of functional podocytes from human induced pluripotent stem cells. Stem Cell Res 17:130–139. doi:10.1016/j.scr.2016.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colvin JS, Feldman B, Nadeau JH, Goldfarb M, Ornitz DM (1999) Genomic organization and embryonic expression of the mouse fibroblast growth factor 9 gene. Dev Dyn 216:72–88. doi:10.1002/(SICI)1097-0177(199909)216:1<72::AID-DVDY9>3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  • Combes AN, Davies JA, Little MH (2015) Chapter fourteen–cell–cell interactions driving kidney morphogenesis. In: Yap AS (ed) current topics in developmental biology. Academic, New York, pp 467–508

    Google Scholar 

  • Combes AN, Lefevre JG, Wilson S, Hamilton NA, Little MH (2016) Cap mesenchyme cell swarming during kidney development is influenced by attraction, repulsion, and adhesion to the ureteric tip. Dev Biol. doi: 10.1016/j.ydbio.2016.06.028

  • Costantini F, Kopan R (2010) Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 18:698–712. doi:10.1016/j.devcel.2010.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies JA (2015) Self-organized kidney rudiments: prospects for better in vitro nephrotoxicity assays. Biomark Insights 10:117–123. doi:10.4137/BMI.S20056

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis RP, Ng ES, Costa M, Mossman AK, Sourris K, Elefanty AG, Stanley EG (2008) Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors. Blood 111:1876–1884. doi:10.1182/blood-2007-06-093609

    Article  CAS  PubMed  Google Scholar 

  • Dekel B, Amariglio N, Kaminski N, Schwartz A, Goshen E, Arditti FD, Tsarfaty I, Passwell JH, Reisner Y, Rechavi G (2002) Engraftment and differentiation of human metanephroi into functional mature nephrons after transplantation into mice is accompanied by a profile of gene expression similar to normal human kidney development. J Am Soc Nephrol 13:977–990

    CAS  PubMed  Google Scholar 

  • DesRochers TM, Suter L, Roth A, Kaplan DL (2013) Bioengineered 3D human kidney tissue, a platform for the determination of nephrotoxicity. PLoS One 8:e59219. doi:10.1371/journal.pone.0059219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devuyst O, NVAM K, Remuzzi G, Schaefer F, Board of the Working Group for Inherited Kidney Diseases of the European Renal Association and European Dialysis and Transplant Association (2014) Rare inherited kidney diseases: challenges, opportunities, and perspectives. Lancet 383:1844–1859. doi:10.1016/S0140-6736(14)60659-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Diep CQ, Peng Z, Ukah TK, Kelly PM, Daigle RV, Davidson AJ (2015) Development of the zebrafish mesonephros. Genesis 53:257–269. doi:10.1002/dvg.22846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleig SV, Humphreys BD (2014) Rationale of mesenchymal stem cell therapy in kidney injury. Nephron Clin Pract 127:75–80. doi:10.1159/000363680

    Article  CAS  PubMed  Google Scholar 

  • Fleming BM, Yelin R, James RG, Schultheiss TM (2013) A role for Vg1/Nodal signaling in specification of the intermediate mesoderm. Development 140:1819–1829. doi:10.1242/dev.093740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher J, McDonald S, Alexander SI, Australian and New Zealand Pediatric Nephrology Association (ANZPNA) (2013) Prevalence of genetic renal disease in children. Pediatr Nephrol 28:251–256. doi:10.1007/s00467-012-2306-6

    Article  PubMed  Google Scholar 

  • Freedman BS, Lam AQ, Sundsbak JL, Iatrino R, Su X, Koon SJ, Wu M, Daheron L, Harris PC, Zhou J, Bonventre JV (2013) Reduced ciliary polycystin-2 in induced pluripotent stem cells from polycystic kidney disease patients with PKD1 mutations. J Am Soc Nephrol 24:1571–1586. doi:10.1681/ASN.2012111089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V, Saad AF, Li MK, Hughes MR, Werff RV, Peters DT, Lu J, Baccei A, Siedlecki AM, Valerius MT, Musunuru K, McNagny KM, Steinman TI, Zhou J, Lerou PH, Bonventre JV (2015) Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. doi:10.1038/ncomms9715

  • Frumkin T, Malcov M, Telias M, Gold V, Schwartz T, Azem F, Amit A, Yaron Y, Ben-Yosef D (2010) Human embryonic stem cells carrying mutations for severe genetic disorders. In Vitro Cell Dev Biol Anim 46:327–336. doi:10.1007/s11626-010-9275-5

    Article  PubMed  Google Scholar 

  • Funa NS, Schachter KA, Lerdrup M, Ekberg J, Hess K, Dietrich N, Honoré C, Hansen K, Semb H (2015) Β-catenin regulates primitive streak induction through collaborative interactions with SMAD2/SMAD3 and OCT4. Cell Stem Cell 16:639–652. doi:10.1016/j.stem.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  • Fung M, Thornton A, Mybeck K, Wu JH, Hornbuckle K, Muniz E (2001) Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide pharmaceutical markets-1960 to 1999*. Drug Inf J 35:293–317

    Google Scholar 

  • Georgas K, Rumballe B, Valerius MT, Chiu HS, Thiagarajan RD, Lesieur E, Aronow BJ, Brunskill EW, Combes AN, Tang D, Taylor D, Grimmond SM, Potter SS, McMahon AP, Little MH (2009) Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev Biol 332:273–286. doi:10.1016/j.ydbio.2009.05.578

    Article  CAS  PubMed  Google Scholar 

  • Hains DS, Bates CM, Ingraham S, Schwaderer AL (2009) Management and etiology of the unilateral multicystic dysplastic kidney: a review. Pediatr Nephrol 24:233. doi:10.1007/s00467-008-0828-8

    Article  PubMed  Google Scholar 

  • Hart AH, Hartley L, Sourris K, Stadler ES, Li R, Stanley EG, Tam PPL, Elefanty AG, Robb L (2002) Mixl1 is required for axial mesendoderm morphogenesis and patterning in the murine embryo. Development 129:3597–3608

    CAS  PubMed  Google Scholar 

  • Hartman HA, Lai HL, Patterson LT (2007) Cessation of renal morphogenesis in mice. Dev Biol 310:379–387. doi:10.1016/j.ydbio.2007.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hildebrandt F (2010) Genetic kidney diseases. Lancet Lond Engl 375:1287–1295. doi:10.1016/S0140-6736(10)60236-X

    Article  CAS  Google Scholar 

  • Hinchliffe SA, Sargent PH, Howard CV, Chan YF, van Velzen D (1991) Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and Cavalieri principle. Lab Invest J Tech Methods Pathol 64:777–784

    CAS  Google Scholar 

  • Howden SE, Maufort JP, Duffin BM, Elefanty AG, Stanley EG, Thomson JA (2015) Simultaneous reprogramming and gene correction of patient fibroblasts. Stem Cell Rep 5:1109–1118. doi:10.1016/j.stemcr.2015.10.009

    Article  CAS  Google Scholar 

  • Hoy WE, Douglas-Denton RN, Hughson MD, Cass A, Johnson K, Bertram JF (2003) A stereological study of glomerular number and volume: preliminary findings in a multiracial study of kidneys at autopsy. Kidney Int Suppl 83:S31–S37. doi:10.1046/j.1523-1755.63.s83.8.x

  • Hughson M, Farris AB, Douglas-Denton R, Hoy WE, Bertram JF (2003) Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 63:2113–2122. doi:10.1046/j.1523-1755.2003.00018.x

    Article  PubMed  Google Scholar 

  • Humes HD, Weitzel WF, Bartlett RH, Swaniker FC, Paganini EP, Luderer JR, Sobota J (2004) Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure. Kidney Int 66:1578–1588. doi:10.1111/j.1523-1755.2004.00923.x

    Article  CAS  PubMed  Google Scholar 

  • Hynes AM, Giles RH, Srivastava S, Eley L, Whitehead J, Danilenko M, Raman S, Slaats GG, Colville JG, Ajzenberg H, Kroes HY, Thelwall PE, Simmons NL, Miles CG, Sayer JA (2014) Murine Joubert syndrome reveals Hedgehog signaling defects as a potential therapeutic target for nephronophthisis. Proc Natl Acad Sci U S A 111:9893–9898. doi:10.1073/pnas.1322373111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imberti B, Tomasoni S, Ciampi O, Pezzotta A, Derosas M, Xinaris C, Rizzo P, Papadimou E, Novelli R, Benigni A, Remuzzi G, Morigi M (2015) Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury. Sci Rep 5:8826. doi:10.1038/srep08826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jackson SA, Schiesser J, Stanley EG, Elefanty AG (2010) Differentiating embryonic stem cells pass through “temporal windows” that mark responsiveness to exogenous and paracrine mesendoderm inducing signals. PLoS One 5:e10706. doi:10.1371/journal.pone.0010706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jain S (2009) The many faces of RET dysfunction in kidney. Organogenesis 5:177–190

    Article  PubMed  PubMed Central  Google Scholar 

  • James RG, Schultheiss TM (2005) Bmp signaling promotes intermediate mesoderm gene expression in a dose-dependent, cell-autonomous and translation-dependent manner. Dev Biol 288:113–125. doi:10.1016/j.ydbio.2005.09.025

    Article  CAS  PubMed  Google Scholar 

  • Jansen J, Fedecostante M, Wilmer MJ, Peters JG, Kreuser UM, van den Broek PH, Mensink RA, Boltje TJ, Stamatialis D, Wetzels JF, van den Heuvel LP, Hoenderop JG, Masereeuw R (2016) Bioengineered kidney tubules efficiently excrete uremic toxins. Sci Rep 6:26715. doi:10.1038/srep26715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkinson SE, Chung GW, van Loon E, Bakar NS, Dalzell AM, Brown CDA (2012) The limitations of renal epithelial cell line HK-2 as a model of drug transporter expression and function in the proximal tubule. Pflugers Arch 464:601–611. doi:10.1007/s00424-012-1163-2

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy K, Chuah JKC, Su R, Huang P, Eng KG, Xiong S, Li Y, Chia CS, Loo L-H, Zink D (2015) Prediction of drug-induced nephrotoxicity and injury mechanisms with human induced pluripotent stem cell-derived cells and machine learning methods. Sci Rep 5:12337. doi:10.1038/srep12337

    Article  PubMed  PubMed Central  Google Scholar 

  • Kao RM, Vasilyev A, Miyawaki A, Drummond IA, McMahon AP (2012) Invasion of distal nephron precursors associates with tubular interconnection during nephrogenesis. J Am Soc Nephrol JASN 23:1682–1690. doi:10.1681/ASN.2012030283

    Article  CAS  PubMed  Google Scholar 

  • Karner CM, Das A, Ma Z, Self M, Chen C, Lum L, Oliver G, Carroll TJ (2011) Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Dev Camb Engl 138:1247–1257. doi:10.1242/dev.057646

    CAS  Google Scholar 

  • Keller G, Zimmer G, Mall G, Ritz E, Amann K (2003) Nephron number in patients with primary hypertension. N Engl J Med 348:101–108. doi:10.1056/NEJMoa020549

    Article  PubMed  Google Scholar 

  • Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3:169–181. doi:10.1016/j.stem.2008.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi A, Mugford JW, Krautzberger AM, Naiman N, Liao J, McMahon AP (2014) Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Rep 3:650–662. doi:10.1016/j.stemcr.2014.08.008

    Article  CAS  Google Scholar 

  • Koepsell H (2013) The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Asp Med 34:413–435. doi:10.1016/j.mam.2012.10.010

    Article  CAS  Google Scholar 

  • Kopan R, Chen S, Little M (2014) Nephron progenitor cells: shifting the balance of self-renewal and differentiation. Curr Top Dev Biol 107:293–331. doi:10.1016/B978-0-12-416022-4.00011-1

    Article  CAS  PubMed  Google Scholar 

  • Lacombe C, Da Silva JL, Bruneval P, Casadevall N, Camilleri JP, Bariety J, Tambourin P, Varet B (1991) Erythropoietin: sites of synthesis and regulation of secretion. Am J Kidney Dis 18:14–19

    CAS  PubMed  Google Scholar 

  • Lam AQ, Freedman BS, Bonventre JV (2014a) Directed differentiation of pluripotent stem cells to kidney cells. Semin Nephrol 34:445–461. doi:10.1016/j.semnephrol.2014.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam AQ, Freedman BS, Morizane R, Lerou PH, Valerius MT, Bonventre JV (2014b) Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J Am Soc Nephrol 25:1211–1225. doi:10.1681/ASN.2013080831

    Article  CAS  PubMed  Google Scholar 

  • Lazzeri E, Crescioli C, Ronconi E, Mazzinghi B, Sagrinati C, Netti GS, Angelotti ML, Parente E, Ballerini L, Cosmi L, Maggi L, Gesualdo L, Rotondi M, Annunziato F, Maggi E, Lasagni L, Serio M, Romagnani S, Vannelli GB, Romagnani P (2007) Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J Am Soc Nephrol 18:3128–3138. doi:10.1681/ASN.2007020210

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Oo ZY, Chang SY, Huang P, Eng KG, Zeng JL, Kaestli AJ, Gopalan B, Kandasamy K, Tasnim F, Zink D (2013) An in vitro method for the prediction of renal proximal tubular toxicity in humans. Toxicol Res 2:352. doi:10.1039/c3tx50042j

    Article  CAS  Google Scholar 

  • Lin F, Moran A, Igarashi P (2005) Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest 115:1756–1764. doi:10.1172/JCI23015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindström NO, Lawrence ML, Burn SF, Johansson JA, Bakker ER, Ridgway RA, Chang C-H, Karolak MJ, Oxburgh L, Headon DJ, Sansom OJ, Smits R, Davies JA, Hohenstein P (2015) Integrated β-catenin, BMP, PTEN, and Notch signalling patterns the nephron. eLife 4:e04000. doi:10.7554/eLife.04000

    Article  PubMed Central  CAS  Google Scholar 

  • Little MH (2015) Improving our resolution of kidney morphogenesis across time and space. Curr Opin Genet Dev 32:135–143. doi:10.1016/j.gde.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  • Little MH, McMahon AP (2012) Mammalian kidney development: principles, progress, and projections. Cold Spring Harb Perspect Biol 4:a008300. doi:10.1101/cshperspect.a008300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Little MH, Takasato M (2015) Generating a self-organizing kidney from pluripotent cells. Curr Opin Organ Transplant 20:178–186. doi:10.1097/MOT.0000000000000174

    Article  CAS  PubMed  Google Scholar 

  • Lusis M, Li J, Ineson J, Christensen ME, Rice A, Little MH (2010) Isolation of clonogenic, long-term self renewing embryonic renal stem cells. Stem Cell Res 5:23–39. doi:10.1016/j.scr.2010.03.003

    Article  CAS  PubMed  Google Scholar 

  • Mae S-I, Shono A, Shiota F, Yasuno T, Kajiwara M, Gotoda-Nishimura N, Arai S, Sato-Otubo A, Toyoda T, Takahashi K, Nakayama N, Cowan CA, Aoi T, Ogawa S, McMahon AP, Yamanaka S, Osafune K (2013) Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat Commun 4:1367. doi:10.1038/ncomms2378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mallett A, Patel C, Salisbury A, Wang Z, Healy H, Hoy W (2014) The prevalence and epidemiology of genetic renal disease amongst adults with chronic kidney disease in Australia. Orphanet J Rare Dis 9:98. doi:10.1186/1750-1172-9-98

    Article  PubMed  PubMed Central  Google Scholar 

  • McNamara BJ, Diouf B, Hughson MD, Douglas-Denton RN, Hoy WE, Bertram JF (2008) Renal pathology, glomerular number and volume in a West African urban community. Nephrol Dial Transplant 23:2576–2585. doi:10.1093/ndt/gfn039

    Article  PubMed  PubMed Central  Google Scholar 

  • Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV (2015) Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol 33:1193–1200. doi:10.1038/nbt.3392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mummery CL, Davis RP, Krieger JE (2010) Challenges in using stem cells for cardiac repair. Sci Transl Med 2:27ps17. doi:10.1126/scitranslmed.3000558

    Article  PubMed  Google Scholar 

  • Nieskens TTG, Peters JGP, Schreurs MJ, Smits N, Woestenenk R, Jansen K, van der Made TK, Röring M, Hilgendorf C, Wilmer MJ, Masereeuw R (2016) A human renal proximal tubule cell line with stable organic anion transporter 1 and 3 expression predictive for antiviral-induced toxicity. AAPS J 18:465–475. doi:10.1208/s12248-016-9871-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nykjaer A, Dragun D, Walther D, Vorum H, Jacobsen C, Herz J, Melsen F, Christensen EI, Willnow TE (1999) An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 96:507–515

    Article  CAS  PubMed  Google Scholar 

  • O’Brien LL, Guo Q, Lee Y, Tran T, Benazet J-D, Whitney PH, Valouev A, McMahon AP (2016) Differential regulation of mouse and human nephron progenitors by the Six family of transcriptional regulators. Development 143:595–608. doi:10.1242/dev.127175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Obara-Ishihara T, Kuhlman J, Niswander L, Herzlinger D (1999) The surface ectoderm is essential for nephric duct formation in intermediate mesoderm. Development 126:1103–1108

    CAS  PubMed  Google Scholar 

  • Olbrich H, Fliegauf M, Hoefele J, Kispert A, Otto E, Volz A, Wolf MT, Sasmaz G, Trauer U, Reinhardt R, Sudbrak R, Antignac C, Gretz N, Walz G, Schermer B, Benzing T, Hildebrandt F, Omran H (2003) Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nat Genet 34:455–459. doi:10.1038/ng1216

    Article  CAS  PubMed  Google Scholar 

  • Osathanondh V, Potter EL (1963) Development of human kidney as shown by microdissection. III. Formation and interrelationship of collecting tubules and nephrons. Arch Pathol 76:290–302

    CAS  PubMed  Google Scholar 

  • Ouyang H, Goldberg JL, Chen S, Li W, Xu G-T, Li W, Zhang K, Nussenblatt RB, Liu Y, Xie T, Chan C-C, Zack DJ (2016) Ocular stem cell research from basic science to clinical application: a report from Zhongshan Ophthalmic Center Ocular Stem Cell Symposium. Int J Mol Sci doi:10.3390/ijms17030415

  • Perea-Gomez A, Vella FDJ, Shawlot W, Oulad-Abdelghani M, Chazaud C, Meno C, Pfister V, Chen L, Robertson E, Hamada H, Behringer RR, Ang S-L (2002) Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev Cell 3:745–756

    Article  CAS  PubMed  Google Scholar 

  • Pereira LA, Wong MS, Mei Lim S, Stanley EG, Elefanty AG (2012) The mix family of homeobox genes–key regulators of mesendoderm formation during vertebrate development. Dev Biol 367:163–177. doi:10.1016/j.ydbio.2012.04.033

    Article  CAS  PubMed  Google Scholar 

  • Poulsom R, Forbes SJ, Hodivala-Dilke K, Ryan E, Wyles S, Navaratnarasah S, Jeffery R, Hunt T, Alison M, Cook T, Pusey C, Wright NA (2001) Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 195:229–235. doi:10.1002/path.976

    Article  CAS  PubMed  Google Scholar 

  • Qi W, Johnson DW, Vesey DA, Pollock CA, Chen X (2007) Isolation, propagation and characterization of primary tubule cell culture from human kidney (Methods in Renal Research). Nephrology 12:155–159. doi:10.1111/j.1440-1797.2007.00779.x

    Article  PubMed  Google Scholar 

  • Rached E, Hoffmann D, Blumbach K, Weber K, Dekant W, Mally A (2008) Evaluation of putative biomarkers of nephrotoxicity after exposure to ochratoxin A in vivo and in vitro. Toxicol Sci 103:371–381. doi:10.1093/toxsci/kfn040

    Article  CAS  PubMed  Google Scholar 

  • Reinders MEJ, Rabelink TJ, de Fijter JW (2013) The role of mesenchymal stromal cells in chronic transplant rejection after solid organ transplantation. Curr Opin Organ Transplant 18:44–50. doi:10.1097/MOT.0b013e32835c2939

    Article  CAS  PubMed  Google Scholar 

  • Rinkevich Y, Montoro DT, Contreras-Trujillo H, Harari-Steinberg O, Newman AM, Tsai JM, Lim X, Van-Amerongen R, Bowman A, Januszyk M, Pleniceanu O, Nusse R, Longaker MT, Weissman IL, Dekel B (2014) In vivo clonal analysis reveals lineage-restricted progenitor characteristics in mammalian kidney development, maintenance, and regeneration. Cell Rep 7:1270–1283. doi:10.1016/j.celrep.2014.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers SA, Lowell JA, Hammerman NA, Hammerman MR (1998) Transplantation of developing metanephroi into adult rats. Kidney Int 54:27–37. doi:10.1046/j.1523-1755.1998.00971.x

    Article  CAS  PubMed  Google Scholar 

  • Roost MS, van Iperen L, Ariyurek Y, Buermans HP, Arindrarto W, Devalla HD, Passier R, Mummery CL, Carlotti F, de Koning EJP, van Zwet EW, Goeman JJ, de Chuva S, Lopes SM (2015) KeyGenes, a tool to probe tissue differentiation using a human fetal transcriptional atlas. Stem Cell Rep 4:1112–1124. doi:10.1016/j.stemcr.2015.05.002

    Article  CAS  Google Scholar 

  • Rumballe BA, Georgas KM, Combes AN, Ju AL, Gilbert T, Little MH (2011) Nephron formation adopts a novel spatial topology at cessation of nephrogenesis. Dev Biol 360:110–122. doi:10.1016/j.ydbio.2011.09.011

    Article  CAS  PubMed  Google Scholar 

  • Saxén L, Lehtonen E (1987) Embryonic kidney in organ culture. Differentiation 36:2–11

    Article  PubMed  Google Scholar 

  • Schuster D, Laggner C, Langer T (2005) Why drugs fail-a study on side effects in new chemical entities. Curr Pharm Des 11:3545–3559

    Article  CAS  PubMed  Google Scholar 

  • Sharmin S, Taguchi A, Kaku Y, Yoshimura Y, Ohmori T, Sakuma T, Mukoyama M, Yamamoto T, Kurihara H, Nishinakamura R (2016) Human induced pluripotent stem cell–derived podocytes mature into vascularized glomeruli upon experimental transplantation. J Am Soc Nephrol 27:1778–1791. doi:10.1681/ASN.2015010096

    Article  PubMed  Google Scholar 

  • Short KM, Combes AN, Lefevre J, Ju AL, Georgas KM, Lamberton T, Cairncross O, Rumballe BA, McMahon AP, Hamilton NA, Smyth IM, Little MH (2014) Global quantification of tissue dynamics in the developing mouse kidney. Dev Cell 29:188–202. doi:10.1016/j.devcel.2014.02.017

    Article  CAS  PubMed  Google Scholar 

  • Smeets B, Boor P, Dijkman H, Sharma SV, Jirak P, Mooren F, Berger K, Bornemann J, Gelman IH, Floege J, van der Vlag J, Wetzels JFM, Moeller MJ (2013) Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration. J Pathol 229:645–659. doi:10.1002/path.4125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohn S-J, Kim SY, Kim HS, Chun Y-J, Han SY, Kim SH, Moon A (2013) In vitro evaluation of biomarkers for cisplatin-induced nephrotoxicity using HK-2 human kidney epithelial cells. Toxicol Lett 217:235–242. doi:10.1016/j.toxlet.2012.12.015

    Article  CAS  PubMed  Google Scholar 

  • Song B, Smink AM, Jones CV, Callaghan JM, Firth SD, Bernard CA, Laslett AL, Kerr PG, Ricardo SD (2012) The directed differentiation of human iPS cells into kidney podocytes. PLoS One 7:e46453. doi:10.1371/journal.pone.0046453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 19:646–651. doi:10.1038/nm.3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumi T, Tsuneyoshi N, Nakatsuji N, Suemori H (2008) Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. Development 135:2969–2979. doi:10.1242/dev.021121

    Article  CAS  PubMed  Google Scholar 

  • Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, Nishinakamura R (2014) Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14:53–67. doi:10.1016/j.stem.2013.11.010

    Article  CAS  PubMed  Google Scholar 

  • Takasato M, Little MH (2015) The origin of the mammalian kidney: implications for recreating the kidney in vitro. Development 142:1937–1947. doi:10.1242/dev.104802

    Article  CAS  PubMed  Google Scholar 

  • Takasato M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG, Elefanty AG, Little MH (2014) Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol 16:118–126. doi:10.1038/ncb2894

    Article  CAS  PubMed  Google Scholar 

  • Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, de Sousa C, Lopes SM, Little MH (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526:564–568. doi:10.1038/nature15695

    Article  CAS  PubMed  Google Scholar 

  • Tanigawa S, Wang H, Yang Y, Sharma N, Tarasova N, Ajima R, Yamaguchi TP, Rodriguez LG, Perantoni AO (2011) Wnt4 induces nephronic tubules in metanephric mesenchyme by a non-canonical mechanism. Dev Biol 352:58–69. doi:10.1016/j.ydbio.2011.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanigawa S, Taguchi A, Sharma N, Perantoni AO, Nishinakamura R (2016) Selective in vitro propagation of nephron progenitors derived from embryos and pluripotent stem cells. Cell Rep 15:801–813. doi:10.1016/j.celrep.2016.03.076

    Article  CAS  Google Scholar 

  • Thatava T, Armstrong AS, De Lamo JG, Edukulla R, Khan YK, Sakuma T, Ohmine S, Sundsbak JL, Harris PC, Kudva YC, Ikeda Y (2011) Successful disease-specific induced pluripotent stem cell generation from patients with kidney transplantation. Stem Cell Res Ther 2:48. doi:10.1186/scrt89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyohara T, Mae S-I, Sueta S-I, Inoue T, Yamagishi Y, Kawamoto T, Kasahara T, Hoshina A, Toyoda T, Tanaka H, Araoka T, Sato-Otsubo A, Takahashi K, Sato Y, Yamaji N, Ogawa S, Yamanaka S, Osafune K (2015) Cell therapy using human induced pluripotent stem cell-derived renal progenitors ameliorates acute kidney injury in mice. Stem Cells Transl Med 4:980–992. doi:10.5966/sctm.2014-0219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tropel P, Tournois J, Côme J, Varela C, Moutou C, Fragner P, Cailleret M, Laâbi Y, Peschanski M, Viville S (2010) High-efficiency derivation of human embryonic stem cell lines following pre-implantation genetic diagnosis. In Vitro Cell Dev Biol Anim 46:376–385. doi:10.1007/s11626-010-9300-8

    Article  PubMed  Google Scholar 

  • Unbekandt M, Davies JA (2010) Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues. Kidney Int 77:407–416. doi:10.1038/ki.2009.482

    Article  PubMed  Google Scholar 

  • Wang B, Ren C, Zhang W, Ma X, Xia B, Sheng Z (2013) Intensified therapy followed by autologous stem-cell transplantation (ASCT) versus conventional therapy as first-line treatment of follicular lymphoma: a meta-analysis. Hematol Oncol 31:29–33. doi:10.1002/hon.2015

    Article  CAS  PubMed  Google Scholar 

  • Watson CL, Mahe MM, Múnera J, Howell JC, Sundaram N, Poling HM, Schweitzer JI, Vallance JE, Mayhew CN, Sun Y, Grabowski G, Finkbeiner SR, Spence JR, Shroyer NF, Wells JM, Helmrath MA (2014) An in vivo model of human small intestine using pluripotent stem cells. Nat Med 20:1310–1314. doi:10.1038/nm.3737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss P, Taylor AC (1960) Reconstitution of complete organs from single-cell suspensions of chick embryos in advanced stages of differentiation. Proc Natl Acad Sci U S A 46:1177–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wijgerde M, Karp S, McMahon J, McMahon AP (2005) Noggin antagonism of BMP4 signaling controls development of the axial skeleton in the mouse. Dev Biol 286:149–157. doi:10.1016/j.ydbio.2005.07.016

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Nivet E, Sancho-Martinez I, Gallegos T, Suzuki K, Okamura D, Wu M-Z, Dubova I, Esteban CR, Montserrat N, Campistol JM, Belmonte JCI (2013) Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol 15:1507–1515. doi:10.1038/ncb2872

    Article  CAS  PubMed  Google Scholar 

  • Xinaris C, Benedetti V, Rizzo P, Abbate M, Corna D, Azzollini N, Conti S, Unbekandt M, Davies JA, Morigi M, Benigni A, Remuzzi G (2012) In vivo maturation of functional renal organoids formed from embryonic cell suspensions. J Am Soc Nephrol 23:1857–1868. doi:10.1681/ASN.2012050505

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Wong EYM, Cheng C, Li J, Sharkar MTK, Xu CY, Chen B, Sun J, Jing D, Xu P-X (2014) Eya1 interacts with Six2 and Myc to regulate expansion of the nephron progenitor pool during nephrogenesis. Dev Cell 31:434–447. doi:10.1016/j.devcel.2014.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379. doi:10.1016/j.cell.2013.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokote S, Matsunari H, Iwai S, Yamanaka S, Uchikura A, Fujimoto E, Matsumoto K, Nagashima H, Kobayashi E, Yokoo T (2015) Urine excretion strategy for stem cell-generated embryonic kidneys. Proc Natl Acad Sci U S A 112:12980–12985. doi:10.1073/pnas.1507803112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

ML is a National Health and Medical Research Council Senior Principal Research Fellow. Her work is supported by the NHMRC, Australian Research Council, Royal Children’s Hospital Foundation, Kidney Health Australia and the National Institutes of Health, USA. TF is an NHMRC Postgraduate Scholar and holds an RACP/NHMRC Award for Excellence. JY-CS holds a University of Melbourne Research Scholarship. MCRI is supported by the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa H. Little .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Little, M.H., Takasato, M., Soo, J.YC., Forbes, T.A. (2017). Recapitulating Development to Generate Kidney Organoid Cultures. In: Tsuji, T. (eds) Organ Regeneration Based on Developmental Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3768-9_11

Download citation

Publish with us

Policies and ethics