Skip to main content

High-Throughput and In Silico Screening in Drug Discovery

  • Chapter
  • First Online:
Bioresources and Bioprocess in Biotechnology

Abstract

The process of drug discovery involves multiple branches of science. Discovery of novel molecule with biological modulation activity is a time-consuming and expensive process. High-throughput and in silico tools can reduce time and cost in drug discovery. The aim of high-throughput screening is to identify bioactive molecule from large compound collection and further development of active compounds to leads. There are two types of assay in high-throughput drug discovery: biochemical- and cell-based assays. Choice of assay depends on nature of target and assay feasibilities. Assay method should detect active compound from chemical library. Assay optimization and validation steps reduce false-positive and false-negative results. The assay results must be statistically validated to ensure reliability of results. The good assay design and implementation will give optimal results.In silico tools in drug discovery facilitate hit identification, hit to lead development, and optimization of druggability (improvement absorption, distribution, metabolism, excretion, and toxicity properties). High-throughput and in silico screening can be streamlined for hit identification and lead development. Streamlining of these methods reduces cost and time of drug discovery process. The wise use of these high-throughput methods can lead to discovery of drug with good potency and low toxicity profile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham VC, Taylor DL, Haskins JR (2004) High content screening applied to large-scale cell biology. Trends Biotechnol 22:15–22

    Article  CAS  PubMed  Google Scholar 

  • Acker MG, Auld DS (2014) Considerations for the design and reporting of enzyme assays in high-throughput screening applications. Perspect Sci 1:56–73

    Article  Google Scholar 

  • Alpha B, Lehn JM, Mathis G (1987) Angew Chem Int Ed 26:266

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 5:403–410

    Article  Google Scholar 

  • An WF, Tolliday N (2010) Cell-based assays for high-throughput screening. Mol Biotechnol 45:180–186

    Article  CAS  PubMed  Google Scholar 

  • Auld DS, Farmen MW, Kahl SD, Aidas K, Kevin LM, Chahrzad M, Jeffrey RW (2012) Receptor binding assays for HTS and drug discovery. In: Sittampalam GS, Coussens NP, Nelson H, Arkin M, Auld D, Austin C, Bejcek B, Glicksman M, Inglese J, Iversen PW, Li Z, McGee J, McManus O, Minor L, Napper A, Peltier JM, Riss T, Trask Jr OJ, Weidner J (eds) Assay guidance manual [Internet]. EliLilly & Company and the National Center for Advancing Translational Science, National Center for Biotechnology Information, Bethesda

    Google Scholar 

  • Auld DS, Veith H, Cali JJ (2013) Bioluminescent assays for cytochrome P450 enzymes. Methods Mol Biol 987:1–9

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay S, Ni J, Ruggiero A, Walshe K, Rogers MS, Chattopadhyay N, Glicksman MA, Rogers JT (2006) A high-throughput drug screen targeted to the 5’untranslated region of Alzheimer amyloid precursor protein mRNA. J Biomol Screen 11:469–480

    Article  CAS  PubMed  Google Scholar 

  • Barnum D, Greene J, Smellie A, Sprague P (1996) Identification of common functional configurations among molecules. J Chem Inf Comput Sci 36:563–571

    Article  CAS  PubMed  Google Scholar 

  • Böhm HJ (1992) LUDI: rule-based automatic design of new substituents for enzyme inhibitor leads. J Comput Aided Mol Des 6:593–606

    Article  PubMed  Google Scholar 

  • Braun RD, Lanzen JL, Snyder SA, Dewhirst MW (2001) Comparison of tumor and normal tissue oxygen tension measurements using OxyLite or microelectrodes in rodents. Am J Physiol Heart Circ Physiol 280:H2533–H2544

    CAS  PubMed  Google Scholar 

  • Brooijmans N, Kuntz ID (2003) Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 32:335–373

    Article  CAS  PubMed  Google Scholar 

  • Buchan DW, Ward SM, Lobley AE, Nugent TC, Bryson K, Jones DT (2010) Protein annotation and modelling servers at University College London. Nucleic Acids Res 38:W563–568

    Google Scholar 

  • Burt DA (1986) Receptor binding methodology and analysis. In: O’Brien RA (ed) Receptor binding in drug research. Marcel Dekker, New York, pp 3–29

    Google Scholar 

  • Carnero A (2006) High throughput screening in drug discovery. Clin Transl Oncol 8:482–490

    Google Scholar 

  • Carroll SS, Inglese J, Mao SS, Olsen DB (2004) Drug screening: assay development issues. In: Prendergast GC (ed) Molecular cancer therapeutics: strategies for drug discovery and development. Wiley, Hoboken, pp 119–140

    Chapter  Google Scholar 

  • Chambers C, Smith F, Williams C, Marcos S, Liu ZH, Hayter P, Ciaramella G, Keighley W, Gribbon P, Sewing A (2003) Measuring intracellular calcium fluxes in high throughput mode. Comb Chem High Throughput Screen 6:355–362

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Lai L (2006) Pocket v.2: further developments on receptor-based pharmacophore modeling. J Chem Inf Model 46:2684–2691

    Article  CAS  PubMed  Google Scholar 

  • Coma I, Clark L, Diez E, Harper G, Herranz J, Hofmann G, Lennon M, Richmond N, Valmaseda M, Macarron R (2009a) Process validation and screen reproducibility in high-throughput screening. J Biomol Screen 14:66–76

    Article  CAS  PubMed  Google Scholar 

  • Coma I, Herranz J, Martin J (2009b) Statistics and decision making in high-throughput screening. Methods Mol Biol 565:69–106

    Article  CAS  PubMed  Google Scholar 

  • Copeland RA (2003) Mechanistic considerations in high-throughput screening. Anal Biochem 320:1–12

    Google Scholar 

  • Davis RE, Zhang YQ, Southall N, Staudt LM, Austin CP, Inglese J, Auld DS (2007) A cell-based assay for Ikappa Balpha stabilization using a two-color dual luciferase-based sensor. Assay Drug Dev Technol 5:85–103

    Article  CAS  PubMed  Google Scholar 

  • Desmarais W, Bienvenue DL, Bzymek KP, Petsko GA, Ringe D, Holz RC (2006) The high-resolution structures of the neutral and the low pH crystals of aminopeptidase from Aeromonas proteolytica. J Biol Inorg Chem 11:398–408

    Article  CAS  PubMed  Google Scholar 

  • Desmet J, De Maeyer M, Hazes B, Lasters I (1992) The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356:539–542

    Article  CAS  PubMed  Google Scholar 

  • DeWitte RS, Shakhnovich E (1997) SMoG: De novo design method based on simple, fast and accurate free energy estimates. J Am Chem Soc 119:4608–4617

    Article  CAS  Google Scholar 

  • Dias R, de Azevedo WF (2008) Molecular docking algorithms. Curr Drug Targets 9:1040–1047

    Article  CAS  PubMed  Google Scholar 

  • Dinger MC, Beck-Sickinger AG (2004) Reporter gene assay systems for the investigation of G-protein-coupled receptors. In: Dingermann T, Steinhilber D, Folkers G (eds) Molecular biology in medicinal chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 73–94

    Google Scholar 

  • Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20:647–671

    Article  CAS  PubMed  Google Scholar 

  • Ebert AD, Svendsen CN (2010) Human stem cells and drug screening: opportunities and challenges. Nat Rev Drug Discov 9:367–372

    Article  CAS  PubMed  Google Scholar 

  • Eglen RM, Singh R (2003) Beta galactosidase enzyme fragment complementation as a novel technology for high throughput screening. Comb Chem High Throughput Screen 6:381–387

    Article  CAS  PubMed  Google Scholar 

  • Eglen RM, Bosse R, Reisine T (2007) Emerging concepts of guanine nucleotide-binding protein-coupled receptor (GPCR) function and implications for high throughput screening. Assay Drug Dev Technol 5:425–451

    Article  CAS  PubMed  Google Scholar 

  • Ewing TJ, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15:411–428

    Article  CAS  PubMed  Google Scholar 

  • Fan F, Wood KV (2007) Bioluminescent assays for high-throughput screening. Assay Drug Dev Technol 5:127–136

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Kolodin GD, Zuck P, Peltier R, Berry K, Mandala SM, Rosen H, Ota H, Ozaki S, Inglese J, Strulovici B (2003) A fully automated [35S]GTP gamma S scintillation proximity assay for the high-throughput screening of Gi-linked G protein-coupled receptors. Assay Drug Dev Technol 1:261–273

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Maiolo J, Kratz P, Jackowski JL, Murphy DJ, Delagrave S, Inglese J (2005) Directed evolution of PDZ variants to generate high-affinity detection reagents. Protein Eng Des Sel 18:165–173

    Article  CAS  PubMed  Google Scholar 

  • Finkel A, Maiolo J, Kratz P, Jackowski JL, Murphy DJ, Delagrave S, Inglese J (2006) Population patch clamp improves data consistency and success rates in the measurement of ionic currents. J Biomol Screen 11:488–496

    Article  CAS  PubMed  Google Scholar 

  • Friesner RA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759

    Article  PubMed  CAS  Google Scholar 

  • Fung P, Peng K, Kobel P, Dotimas H, Kauffman L, Olson K, Eglen RM (2006) A homogeneous cell-based assay to measure nuclear translocationusing beta-galactosidase enzyme fragment complementation. Assay Drug Dev Technol 4:263–72

    Google Scholar 

  • Funk OF, Kettmann V, Drimal J, Langer T (2004) Chemical function based pharmacophore generation of endothelin-A selective receptor antagonists. J Med Chem 47:2750–2760

    Article  PubMed  CAS  Google Scholar 

  • Gee KR, Brown KA, Chen WN, Bishop-Stewart J, Gray D, Johnson I (2000) Chemical and physiological characterization of fluo-4 Ca(2+)-indicator dyes. Cell Calcium 27:97–106

    Article  CAS  PubMed  Google Scholar 

  • Glickman F, McGee J, Napper A (2004) Assay development for protein kinase enzymes. In: Sittampalam GS, Coussens NP, Nelson H, Arkin M, Auld D, Austin C, Bejcek B, Glicksman M, Inglese J, Iversen PW, Li Z, McGee J, McManus O, Minor L, Napper A, Peltier JM, Riss T, Trask Jr OJ, Weidner J (eds) Assay guidance manual [Internet]. EliLilly & Company and the National Center for Advancing Translational Science, National Center for Biotechnology Information, Bethesda

    Google Scholar 

  • González JE, Maher MP (2002) Cellular fluorescent indicators and voltage/ion probe reader (VIPR TM): tools for ion channel and receptor drug discovery. Recept Channels 8:283–295

    Article  PubMed  Google Scholar 

  • González JE, González J, Oades K, Leychkis Y (1999) Cell-based assays and instrumentation for screening ion-channel targets. Drug Discov Today 4:431–439

    Article  PubMed  Google Scholar 

  • Gowda K, Marks BD, Zielinski TK, Ozers MS (2006) Development of a coactivator displacement assay for the orphan receptor estrogen-related receptor-gamma using time-resolved fluorescence resonance energy transfer. Anal Biochem 357:105–115

    Article  CAS  PubMed  Google Scholar 

  • Halperin I, Ma B, Wolfson H, Nussinov R (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Protein Eng Des Sel 47:409–443

    Article  CAS  Google Scholar 

  • Hamdan FF, Audet M, Garneau P, Pelletier J, Bouvier M (2005) High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based beta-arrestin2 recruitment assay. J Biomol Screen 10:463–475

    Article  CAS  PubMed  Google Scholar 

  • Haney SA, LaPan P, Pan J, Zhang J (2006) High-content screening moves to the front of the line. Drug Discov Today 11:889–894

    Google Scholar 

  • Hemmilä I, Dakubu S, Mukkala VM et al (1984) Europium as a label in time-resolved immunofluorometric assays. Anal Biochem 137:335–343

    Article  PubMed  Google Scholar 

  • Hillisch A, Pineda LF, Hilgenfeld R (2004) Utility of homology models in the drug discovery process. Drug Discov Today 9:659–669

    Article  CAS  PubMed  Google Scholar 

  • Hogg DS, Boden P, Lawton G, Kozlowski RZ (2006) Ion channel drug targets – unlocking the potential. Drug Discov World 7:83–92

    Google Scholar 

  • Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730

    Article  CAS  PubMed  Google Scholar 

  • Hughes JD, Blagg J, Price DA, Bailey S, Decrescenzo GA, Devraj RV, Ellsworth E, Fobian YM, Gibbs ME, Gilles RW, Greene N, Huang E, Krieger-Burke T, Loesel J, Wager T, Whiteley L, Zhang Y (2008) Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett 18:4872–4875

    Article  CAS  PubMed  Google Scholar 

  • Inglese J (2006) Measuring biological responses with automated microscopy. Elsevier Academic, San Diego

    Google Scholar 

  • Inglese J, Johnson RL, Simeonov A, Xia M, Zheng W, Austin CP, Auld DS (2007) High-throughput screening assays for the identification of chemical probes. Nat Chem Biol 3:466–479

    Article  CAS  PubMed  Google Scholar 

  • Iversen PW, Eastwood BJ, Sittampalam GS, Cox KL (2006) A comparison of assay performance measures in screening assays: signal window, Z′ factor, and assay variability ratio. J Biomol Screen 11:247–252

    Article  CAS  PubMed  Google Scholar 

  • Jacoby E, Bouhelal R, Gerspacher M, Seuwen K (2006) The 7 TM G-protein-coupled receptor target family. Chem Med Chem 1:761–782

    Article  PubMed  CAS  Google Scholar 

  • Jain AN (2003) Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 46:499–511

    Article  CAS  PubMed  Google Scholar 

  • Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  • Karvinen J, Elomaa A, Mäkinen ML, Hakala H, Mukkala VM, Peuralahti J, Hurskainen P, Hovinen J, Hemmilä I (2004) Caspase multiplexing: simultaneous homogeneous time-resolved quenching assay (TruPoint) for caspases 1, 3, and 6. Anal Biochem 325:317–325

    Article  CAS  PubMed  Google Scholar 

  • Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    Article  CAS  PubMed  Google Scholar 

  • Kon T, Tanigawa T, Hayamizu K, Shen M, Tsuji T, Naito Y, Yoshikawa T (2004) Singlet oxygen quenching activity of human serum. Redox Rep 9:325–330

    Article  CAS  PubMed  Google Scholar 

  • Koresawa M, Okabe T (2004) High-throughput screening with quantitation of ATP consumption: a universal non-radioisotope, homogeneous assay for protein kinase. Assay Drug Dev Technol 2:153–160

    Article  CAS  PubMed  Google Scholar 

  • Krivov GG, Shapovalov MV, Dunbrack RL (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins: Struct, Funct, Bioinf 77:778–795

    Article  CAS  Google Scholar 

  • Kumar S, Wittmann C, Heinzle E (2004) Minibioreactors. Biotechnol Lett 26:1–10

    Article  CAS  PubMed  Google Scholar 

  • Kunapuli P, Lee S, Zheng W, Alberts M, Kornienko O, Mull R, Kreamer A, Hwang JI, Simon MI, Strulovici B (2006) Identification of small molecule antagonists of the human mas-related gene-X1 receptor. Anal Biochem 351:50–61

    Article  CAS  PubMed  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, Heidelberg

    Book  Google Scholar 

  • Leung D, Abbenante G, Fairlie DP (2000) Protease inhibitors: current status and future prospects. J Med Chem 43:305–341

    Article  CAS  PubMed  Google Scholar 

  • Li H, Sutter J, Hoffman R (2000) HypoGen: an automated system for generating 3D predictive pharmacophore models. In: Guner OF (ed) Pharmacophore perception, development, and use in drug design. International University Line, San Diego, pp 171–189

    Google Scholar 

  • Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249

    Article  CAS  PubMed  Google Scholar 

  • Lowery RG, Kleman-Leyer K (2006) Transcreener: screening enzymes involved in covalent regulation. Expert Opin Ther Targets 10:179–190

    Article  CAS  PubMed  Google Scholar 

  • Macarrón R, Hertzberg RP (2011) Design and implementation of high throughput screening assays. Mol Biotechnol 47:270–285

    Article  PubMed  CAS  Google Scholar 

  • Mahajan NP, Harrison-Shostak DC, Michaux J, Herman B (1999) Novel mutant green fluorescent protein protease substrates reveal the activation of specific caspases during apoptosis. Chem Biol 6:401–409

    Article  CAS  PubMed  Google Scholar 

  • Martin YC (2000) DISCO: what we did right and what we missed. In: Guner OF (ed) Pharmacophore perception, development, and use in drug design. International University Line, San Diego, pp 49–68

    Google Scholar 

  • Martí-Renom M a, Stuart a C, Fiser a et al (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325

    Google Scholar 

  • Mathis G (1993) Rare earth cryptates and homogeneous fluoroimmunoassays with human sera. Clin Chem 39:1953–1959

    CAS  PubMed  Google Scholar 

  • May KML, Wang Y, Bachas LG, Anderson KW (2004) Development of a whole-cell-based biosensor for detecting histamine as a model toxin. Anal Chem 76:4156–4161

    Article  CAS  PubMed  Google Scholar 

  • McDonald OB, Chen WJ, Ellis B, Hoffman C, Overton L, Rink M, Smith A, Marshall CJ, Wood ER (1999) A scintillation proximity assay for the Raf/MEK/ERK kinase cascade: high-throughput screening and identification of selective enzyme inhibitors. Anal Biochem 268:318–329

    Article  CAS  PubMed  Google Scholar 

  • Miller MD, Kearsley SK, Underwood DJ, Sheridan RP (1994) FLOG: a system to select “quasi-flexible” ligands complementary to a receptor of known three-dimensional structure. J Comput Aided Mol Des 8:153–174

    Article  CAS  PubMed  Google Scholar 

  • Misura KMS, Baker D (2005) Progress and challenges in high-resolution refinement of protein structure models. Proteins 59:15–29

    Article  CAS  PubMed  Google Scholar 

  • Mitchell J, Laskowski R, Alex A, Thornton J (1999) BLEEP – potential of mean force describing protein-ligand interactions: I. Generating potential. J Comput Chem 20:1165–1176

    Article  CAS  Google Scholar 

  • Moore KJ (1999) Single molecule detection technologies in miniaturized high throughput screening: fluorescence correlation spectroscopy. J Biomol Screen 4:335–353

    Article  CAS  PubMed  Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  • Nagy L, Schwabe JWR (2004) Mechanism of the nuclear receptor molecular switch. Trends Biochem Sci 29:317–324

    Article  CAS  PubMed  Google Scholar 

  • Nonner W, Eisenberg B (2000) Electrodiffusion in ionic channels of biological membranes. J Mol Liq 87:149–162

    Article  CAS  Google Scholar 

  • O’Boyle DR, Nower PT, Lemm JA, Valera L, Sun JH, Rigat K, Colonno R, Gao M (2005) Development of a cell-based high-throughput specificityscreen using a hepatitis C virus-bovine viral diarrhea virus dual replicon assay. Antimicrob Agents Chemother 49:1346–1353

    Google Scholar 

  • Olefsky JM (1999) Insulin-stimulated glucose transport mini review series. J Biol Chem 274:1863

    Article  CAS  PubMed  Google Scholar 

  • Ortuso F, Langer T, Alcaro S (2006) GBPM: GRID-based pharmacophore model: concept and application studies to protein-protein recognition. Bioinformatics 22:1449–1455

    Article  CAS  PubMed  Google Scholar 

  • Pandit D, So S-S, Sun H (2006) Enhancing specificity and sensitivity of pharmacophore-based virtual screening by incorporating chemical and shape features–a case study of HIV protease inhibitors. J Chem Inf Comput Sci 46:1236–1244

    Article  CAS  Google Scholar 

  • Pfleger KDG, Eidne KA (2006) Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 3:165–174

    Article  CAS  PubMed  Google Scholar 

  • Pope A, Haupts U, Moore K (1999) Homogeneous fluorescence readouts for miniaturized high-throughput screening: theory and practice. Drug Discov Today 4:350–362

    Article  CAS  PubMed  Google Scholar 

  • Poptodorov K, Luu T, Hoffmann RD (2006) Pharmacophore model generation software tools. In: Langer T, Hoffmann WD (eds) Pharmacophores and pharmacophore searches. Wiley-VCH Verlag GmbH & Co. KGaA, pp 15–47

    Google Scholar 

  • Pui TS, Sudibya HG, Luan X, Zhang Q, Ye F, Huang Y, Chen P (2010) Non-invasive detection of cellular bioelectricity based on carbon nanotube devices for high-throughput drug screening. Adv Mater 22:3199–3203

    Article  CAS  PubMed  Google Scholar 

  • Qureshi SA (2007) Lactamase: an ideal reporter system for monitoring gene expression in live eukaryotic cells. BioTechniques 42:91–95

    Article  CAS  PubMed  Google Scholar 

  • Rabinowitz JD, Rigler P, Carswell-Crumpton C, Beeson C, McConnell HM (1997) Screening for novel drug effects with a microphysiometer: a potent effect of clofilium unrelated to potassium channel blockade. Life Sci 61:PL87–PL94

    Article  CAS  PubMed  Google Scholar 

  • Ramm P (1999) Imaging systems in assay screening. Drug Discov Today 4:401–410

    Article  CAS  PubMed  Google Scholar 

  • Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489

    Article  CAS  PubMed  Google Scholar 

  • Raval A, Piana S, Eastwood MP, Dror RO, Shaw DE (2012) Refinement of protein structure homology models via long, all-atom molecular dynamics simulations. Proteins: Struct, Funct, Bioinf 82:2071–2079

    Google Scholar 

  • Rohl CA, Strauss CEM, Misura KM, Baker D (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93

    Article  CAS  PubMed  Google Scholar 

  • Sabisz M, Skladanowski A (2009) Cancer stem cells and escape from drug-induced premature senescence in human lung tumor cells: implications for drug resistance and in vitro drug screening models. Cell Cycle 8:3208–3217

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Ozawa T, Inukai K, Asano T,Umezawa Y (2002) Fluorescent indicators for imaging protein phosphorylation in single living cells. Nature Biotechnol 20:287–94

    Google Scholar 

  • Schroeder KS (1996) FLIPR: a new instrument for accurate, high throughput optical screening. J Biomol Screen 1:75–80

    Article  CAS  Google Scholar 

  • Scott JE, Williams KP (2004) Validating identity, mass purity and enzymatic purity of enzyme preparations

    Google Scholar 

  • Seethala R, Prabhavathi F (2001) Handbook of drug screening. CRC Press, Hoboken, p 106

    Book  Google Scholar 

  • Sever JL (1962) Application of a microtechnique to viral serological investigations. J Immunol 88:320–329

    CAS  PubMed  Google Scholar 

  • Seville M, West AB, Cull MG, McHenry CS (1996) Fluorometric assay for DNA polymerases and reverse transcriptase. BioTechniques 21:664–672

    CAS  PubMed  Google Scholar 

  • Sharma SV, Da H, Settleman J (2010) Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer 10:241–253

    Article  CAS  PubMed  Google Scholar 

  • Shoichet BK (2006) Screening in a spirit haunted world. Drug Discov Today 11:607–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh P, Harden BJ, Lillywhite BJ, Broad PM (2004) Identification of kinase inhibitors by an ATP depletion method. Assay Drug Dev Technol 2:161–169

    Article  CAS  PubMed  Google Scholar 

  • Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational methods in drug discovery. Pharmacol Rev 66:334–395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sportsman JR, Gaudet EA, Boge A (2004) Immobilized metal ion affinity-based fluorescence polarization (IMAP): advances in kinase screening. Assay Drug Dev Technol 22:205–214

    Article  CAS  Google Scholar 

  • Sundberg S (2000) High-throughput and ultra-high-throughput screening: solution- and cell-based approaches. Curr Opin Biotechnol 11:47–53

    Article  CAS  PubMed  Google Scholar 

  • Taylor DL (2006) In: Taylor D, Haskins JR, Giuliano KA (eds) High content screening. Humana, Totowa

    Google Scholar 

  • Terpetschnig E, Szmacinski H, Malak H, Lakowicz JR (1995) Metal-ligand complexes as a new class of long-lived fluorophores for protein hydrodynamics. Biophys J 68:342–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toba S, Srinivasan J, Maynard AJ, Sutter J (2006) Using pharmacophore models to gain insight into structural binding and virtual screening: an application study with CDK2 and human DHFR. J Chem Inf Model 46:728–735

    Article  CAS  PubMed  Google Scholar 

  • Trinquet E, Mathis G (2006) Fluorescence technologies for the investigation of chemical libraries. Mol BioSyst 2:380–387

    Article  CAS  PubMed  Google Scholar 

  • Trinquet E, Fink M, Bazin H, Fink M, Bazin H, Grillet F, Maurin F, Bourrier E, Ansanay H, Leroy C, Michaud A, Durroux T, Maurel D, Malhaire F, Goudet C, Pin JP, Naval M, Hernout O, Chrétien F, Fink M, Bazin H, Grillet F, Maurin F, Bourrier E, Ansanay H, Leroy C, Michaud A, Durroux T, Maurel D, Malhaire F, Goudet C, Pin JP, Naval M, Hernout O, Chrétien F, Chapleur Y, Mathis G (2006) d-myo-Inositol 1-phosphate as a surrogate of d-myo-inositol 1,4,5-tris phosphate to monitor G protein-coupled receptor activation. Anal Biochem 358:126–135

    Article  CAS  PubMed  Google Scholar 

  • Velec HFG, Gohlke H, Klebe G (2005) Drug Score CSD-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. J Med Chem 48:6296–6303

    Article  CAS  PubMed  Google Scholar 

  • Verma R, Peters NR, D’Onofrio M, Tochtrop GP, Sakamoto KM, Varadan R, Zhang M, Coffino P, Fushman D, Deshaies RJ, King RW (2004) Ubistatins inhibit proteasome-dependent degradation by binding the ubiquitin chain. Science 306:117–120

    Article  CAS  PubMed  Google Scholar 

  • Williams C (2004) cAMP detection methods in HTS: selecting the best from the rest. Nat Rev Drug Discov 3:125–135

    Article  CAS  PubMed  Google Scholar 

  • Wolber G, Langer T (2005) Ligand Scout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45:160–169

    Article  CAS  PubMed  Google Scholar 

  • Wolber G, Seidel T, Bendix F, Langer T (2008) Molecule-pharmacophore super positioning and pattern matching in computational drug design. Drug Discov Today 13:23–29

    Article  CAS  PubMed  Google Scholar 

  • Wölcke J, Ullmann D (2001) Miniaturized HTS technologies – uHTS. Drug Discov Today 6:637–646

    Article  PubMed  Google Scholar 

  • Xiang Z (2006) Advances in homology protein structure modeling. Curr Protein Pept Sci 7:217–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Gerard AL, Huang BC, Anderson DC, Payan DG, Luo Y (1998) Detection of programmed cell death using fluorescence energy transfer. Nucleic Acids Res 26:2034–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S-Y (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15:444–450

    Article  CAS  PubMed  Google Scholar 

  • Yang S-T, Zhang X, Wen Y (2008) Microbioreactors for high-throughput cytotoxicity assays. Curr Opin Drug Discov Dev 11:111–127

    CAS  Google Scholar 

  • Yang J, Copeland RA, Lai Z (2009) Defining balanced conditions for inhibitor screening assays that target bisubstrate enzymes. J Biomol Screen 14:111–120

    Article  CAS  PubMed  Google Scholar 

  • Zang R, Li D, Tang I-C, Wang J, Yang S-T (2012) Cell-based assays in high-throughput screening for drug discovery. Int J Biotechnol Wellness Ind 1:31–51

    CAS  Google Scholar 

  • Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Spencer RH, Kiss L (2004) High throughput assay technologies for ion channel drug discovery. Assay Drug Dev Technol 2:543–552

    Article  CAS  PubMed  Google Scholar 

  • Zheng CJ, Han LY, Yap CW, Ji ZL, Cao ZW, Chen YZ (2006) Therapeutic targets: progress of their exploration and investigation of their characteristics. Pharmacol Rev 58:259–279

    Article  CAS  PubMed  Google Scholar 

  • Zlokarnik G, Negulescu PA, Knapp TE, Mere L, Burres N, Feng L, Whitney M, Roemer K, Tsien RY (1998) Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science 279:84–88

    Article  CAS  PubMed  Google Scholar 

Web Articles

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiburaj Sugathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Thrithamarassery Gangadharan, N., Venkatachalam, A.B., Sugathan, S. (2017). High-Throughput and In Silico Screening in Drug Discovery. In: Abdulhameed, S., Pradeep, N., Sugathan, S. (eds) Bioresources and Bioprocess in Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3573-9_11

Download citation

Publish with us

Policies and ethics