Skip to main content

PET Radiotracers for Tumor Imaging

  • Chapter
  • First Online:
Personalized Pathway-Activated Systems Imaging in Oncology
  • 523 Accesses

Abstract

Positron emission tomography (PET) is a nuclear medicine imaging technique that produces a three-dimensional functional image of the living body. This system detects pairs of gamma rays emitted indirectly by a positron-emitting radiotracer, which is introduced into the body as a biologically active tracer. Three-dimensional images of radiotracer concentration within the body are then constructed by computer graphic analysis. PET is both a medical and study tool used in clinical oncology (medical imaging and diagnosis of tumors and the search for metastases) and in preclinical animal studies, where it allows repeated scans of the same subject. PET is particularly valuable in cancer research because it increases the statistical quality of the data (research subjects can act as their own controls) and substantially reduces the number of animals needed for individual studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ido T, Wan C-N, Fowler JS, et al. Labeled 2-deoxy-D-glucose analogs, 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-glucose. J Label Compd Radiopharm. 1978;14:171–83.

    Article  Google Scholar 

  2. Reivich M, Kuhl D, Wolf A, et al. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res. 1979;44:127–37.

    Article  CAS  PubMed  Google Scholar 

  3. Yonekura Y, Benua RS, Brill AB, et al. Increased accumulation of 2-deoxy-2-[18F]Fluoro-D-glucose in liver metastases from colon carcinoma. J Nucl Med. 1982;23(12):1133–7.

    CAS  PubMed  Google Scholar 

  4. Buck AK, Schirrmeister H, Mattfeldt T, et al. Biological characterisation of breast cancer by means of PET. Eur J Nucl Med Mol Imaging Suppl. 2004;1:S80–7.

    Article  Google Scholar 

  5. Delbeke D. Oncological applications of FDG PET imaging. J Nucl Med. 1999;40(10):1706–15.

    CAS  PubMed  Google Scholar 

  6. Buck AK, Schirrmeister H, Mattfeldt T, et al. Biological characterisation of breast cancer by means of PET. Eur J Nucl Med Mol Imaging. 2004;31(Suppl 1):S80–7.

    Article  PubMed  Google Scholar 

  7. Gambhir SS, Czernin J, Schwimmer J, et al. A tabulated summary of the FDG PET literature. J Nucl Med. 2001;42(5 Suppl):1S–93S.

    CAS  PubMed  Google Scholar 

  8. Higashi T, Tamaki N, Torizuka T, et al. FDG uptake, GLUT-1 glucose transporter and cellularity in human pancreatic tumors. J Nucl Med. 1998;39(10):1727–35.

    CAS  PubMed  Google Scholar 

  9. Higashi T, Saga T, Nakamoto Y, et al. Relationship between retention index in dual-phase (18)F-FDG PET, and hexokinase-II and glucose transporter-1 expression in pancreatic cancer. J Nucl Med. 2002;43(2):173–80.

    CAS  PubMed  Google Scholar 

  10. De Gaetano AM, Rufini V, Castaldi P, et al. Clinical applications of (18)F-FDG PET in the management of hepatobiliary and pancreatic tumors. Abdom Imaging. 2012;37(6):983–1003.

    Article  PubMed  Google Scholar 

  11. Weber WA. Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med. 2005;46(6):983–95.

    CAS  PubMed  Google Scholar 

  12. Bleeker-Rovers CP, Vos FJ, Corstens FH, et al. Imaging of infectious diseases using [18F] fluorodeoxyglucose PET. Q J Nucl Med Mol Imaging. 2008;52(1):17–29.

    CAS  PubMed  Google Scholar 

  13. Tarkin JM, Joshi FR, Rudd JH. PET imaging of inflammation in atherosclerosis. Nat Rev Cardiol. 2014;11(8):443–57.

    Article  CAS  PubMed  Google Scholar 

  14. Glaudemans AW, Enting RH, Heesters MA, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40(4):615–35.

    Article  CAS  PubMed  Google Scholar 

  15. Jager PL, Vaalburg W, Pruim J, et al. Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med. 2001;42(3):432–45.

    CAS  PubMed  Google Scholar 

  16. Crippa F, Alessi A, Serafini GL. PET with radiolabeled amino acid. Q J Nucl Med Mol Imaging. 2012;56(2):151–62.

    CAS  PubMed  Google Scholar 

  17. Gulyás B, Halldin C. New PET radiopharmaceuticals beyond FDG for brain tumor imaging. Q J Nucl Med Mol Imaging. 2012;56(2):173–90.

    PubMed  Google Scholar 

  18. Inoue T, Shibasaki T, Oriuchi N, et al. 18F alpha-methyl tyrosine PET studies in patients with brain tumors. J Nucl Med. 1999;40(3):399–405.

    CAS  PubMed  Google Scholar 

  19. Wester HJ, Herz M, Weber W, et al. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med. 1999;40(1):205–12.

    CAS  PubMed  Google Scholar 

  20. Shoup TM, Olson J, Hoffman JM, et al. Synthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med. 1999;40(2):331–8.

    CAS  PubMed  Google Scholar 

  21. Schuster DM, Nanni C, Fanti S, et al. Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid: physiologic uptake patterns, incidental findings, and variants that may simulate disease. J Nucl Med. 2014;55(12):1986–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Martiat P, Ferrant A, Labar D, et al. In vivo measurement of carbon-11 thymidine uptake in non-Hodgkin’s lymphoma using positron emission tomography. J Nucl Med. 1988;29(10):1633–7.

    CAS  PubMed  Google Scholar 

  23. Tehrani OS, Shields AF. PET imaging of proliferation with pyrimidines. J Nucl Med. 2013;54(6):903–12.

    Article  CAS  PubMed  Google Scholar 

  24. Wagner M, Seitz U, Buck A, et al. 3'-[18F]fluoro-3'-deoxythymidine ([18F]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-Cell lymphoma model and in the human disease. Cancer Res. 2003;63(10):2681–7.

    CAS  PubMed  Google Scholar 

  25. Chalkidou A, Landau DB, Odell EW, et al. Correlation between Ki-67 immunohistochemistry and 18F-fluorothymidine uptake in patients with cancer: a systematic review and meta-analysis. Eur J Cancer. 2012;48(18):3499–513.

    Article  CAS  PubMed  Google Scholar 

  26. Brogsitter C, Zöphel K, Kotzerke J. 18F-Choline, 11C-choline and 11C-acetate PET/CT: comparative analysis for imaging prostate cancer patients. Eur J Nucl Med Mol Imaging. 2013;40(Suppl 1):S18–27.

    Article  PubMed  Google Scholar 

  27. Yoshimoto M, Waki A, Yonekura Y, et al. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol. 2001;28(2):117–22.

    Article  CAS  PubMed  Google Scholar 

  28. Deford-Watts LM, Mintz A, Kridel SJ. The potential of 11C-acetate PET for monitoring the Fatty acid synthesis pathway in Tumors. Curr Pharm Biotechnol. 2013;14(3):300–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu D, Khong PL, Gao Y. Radiation dosimetry of whole-body dual tracer 18F-FDG and 11C-acetate PET/CT for hepatocellular carcinoma. J Nucl Med. 2016;57(6):907. pii: jnumed.115.165944.

    Google Scholar 

  30. Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med. 1998;39(6):990–5.

    CAS  PubMed  Google Scholar 

  31. Hara T. 18F-fluorocholine: a new oncologic PET tracer. J Nucl Med. 2001;42(12):1815–7.

    CAS  PubMed  Google Scholar 

  32. Hara T, Kosaka N, Kishi H. Development of (18)F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med. 2002;43(2):187–99.

    CAS  PubMed  Google Scholar 

  33. Valk PE, Mathis CA, Prados MD, et al. Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole. J Nucl Med. 1992;33(12):2133–7.

    CAS  PubMed  Google Scholar 

  34. Lewis JS, Welch MJ. PET imaging of hypoxia. Q J Nucl Med. 2001;45(2):183–8.

    CAS  PubMed  Google Scholar 

  35. Fleming IN, Manavaki R, Blower PJ, et al. Imaging tumour hypoxia with positron emission tomography. Br J Cancer. 2015;112(2):238–50.

    Article  CAS  PubMed  Google Scholar 

  36. Peeters SG, Zegers CM, Yaromina A, et al. Current preclinical and clinical applications of hypoxia PET imaging using 2-nitroimidazoles. Q J Nucl Med Mol Imaging. 2015;59(1):39–57.

    CAS  PubMed  Google Scholar 

  37. Postema EJ, McEwan AJ, Riauka TA, et al. Initial results of hypoxia imaging using 1-alpha-D: -(5-deoxy-5-[18F]-fluoroarabinofuranosyl)-2-nitroimidazole (18F-FAZA). Eur J Nucl Med Mol Imaging. 2009;36(10):1565–73.

    Article  CAS  PubMed  Google Scholar 

  38. Saga T, Inubushi M, Koizumi M, et al. Prognostic value of PET/CT with 18F-fluoroazomycin arabinoside for patients with head and neck squamous cell carcinomas receiving chemoradiotherapy. Ann Nucl Med. 2016;30(3):217–24.

    Article  CAS  PubMed  Google Scholar 

  39. Fujibayashi Y, Taniuchi H, Yonekura Y, et al. Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med. 1997;38(7):1155–60.

    CAS  PubMed  Google Scholar 

  40. Lewis J, Laforest R, Buettner T, et al. Copper-64-diacetyl-bis(N4-methylthiosemicarbazone): an agent for radiotherapy. Proc Natl Acad Sci U S A. 2001;98(3):1206–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Furukawa T, Yuan Q, Jin ZH, et al. Comparison of intratumoral FDG and Cu-ATSM distributions in cancer tissue originated spheroid (CTOS) xenografts, a tumor model retaining the original tumor properties. Nucl Med Biol. 2014;41(8):653–9.

    Article  CAS  PubMed  Google Scholar 

  42. Ambrosini V, Fani M, Fanti S, et al. Radiopeptide imaging and therapy in Europe. J Nucl Med. 2011;52(Suppl 2):42S–55S.

    Article  CAS  PubMed  Google Scholar 

  43. Ambrosini V, Campana D, Polverari G, et al. Prognostic value of 68Ga-DOTANOC PET/CT SUVmax in patients with neuroendocrine tumors of the pancreas. J Nucl Med. 2015;56(12):1843–8.

    Article  CAS  PubMed  Google Scholar 

  44. Lu X, Wang RF. A concise review of current radiopharmaceuticals in tumor angiogenesis imaging. Curr Pharm Des. 2012;18(8):1032–40.

    Article  CAS  PubMed  Google Scholar 

  45. Johnbeck CB, Knigge U, Kjær A. PET tracers for somatostatin receptor imaging of neuroendocrine tumors: current status and review of the literature. Future Oncol. 2014;10(14):2259–77.

    Article  CAS  PubMed  Google Scholar 

  46. Chen H, Niu G, Wu H, et al. Clinical application of radiolabeled RGD peptides for PET imaging of integrin αvβ3. Theranostics. 2016;6(1):78–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jubb AM, Harris AL. Biomarkers to predict the clinical efficacy of bevacizumab in cancer. Lancet Oncol. 2010;11(12):1172–83.

    Article  CAS  PubMed  Google Scholar 

  48. van der Bilt AR, Terwisscha van Scheltinga AG, Timmer-Bosscha H, et al. Measurement of tumor VEGF-A levels with 89Zr-bevacizumab PET as an early biomarker for the antiangiogenic effect of everolimus treatment in an ovarian cancer xenograft model. Clin Cancer Res. 2012;18(22):6306–14.

    Article  PubMed  Google Scholar 

  49. Nagengast WB, Lub-de Hooge MN, Oosting SF, et al. VEGF-PET imaging is a noninvasive biomarker showing differential changes in the tumor during sunitinib treatment. Cancer Res. 2011;71(1):143–53.

    Article  CAS  PubMed  Google Scholar 

  50. Xie L, Yui J, Fujinaga M, et al. Molecular imaging of ectopic metabotropic glutamate 1 receptor in melanoma with a positron emission tomography radioprobe (18)F-FITM. Int J Cancer. 2014;135(8):1852–9.

    Article  CAS  PubMed  Google Scholar 

  51. Fujinaga M, Xie L, Yamasaki T, et al. Synthesis and evaluation of 4-halogeno-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-[11C]methylbenzamide for imaging of metabotropic glutamate 1 receptor in melanoma. J Med Chem. 2015;58(3):1513–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author thanks Dr. Masayuki Fujinaga (National Institute of Radiological Sciences) for assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Rong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhang, MR. (2017). PET Radiotracers for Tumor Imaging. In: Inoue, T., Yang, D., Huang, G. (eds) Personalized Pathway-Activated Systems Imaging in Oncology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3349-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3349-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3348-3

  • Online ISBN: 978-981-10-3349-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics