Skip to main content

Pluripotent Stem Cells and Skeletal Muscle Differentiation: Challenges and Immediate Applications

  • Chapter
  • First Online:
The Plasticity of Skeletal Muscle

Abstract

Recent advances in the generation of skeletal muscle derivatives from pluripotent stem cells (PSCs) provide innovative tools for muscle development, disease modeling, and cell replacement therapies. Here, we revise major relevant findings that have contributed to these advances in the field, by the revision of how early findings using mouse embryonic stem cells (ESCs) set the bases for the derivation of skeletal muscle cells from human pluripotent stem cells (hPSCs) and patient-derived human-induced pluripotent stem cells (hiPSCs) to the use of genome editing platforms allowing for disease modeling in the petri dish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daar AS, Greenwood HL (2007) A proposed definition of regenerative medicine. J Tissue Eng Regen Med 1:179–184. doi:10.1002/term.20

    Article  CAS  PubMed  Google Scholar 

  2. Braude P, Bolton V, Moore S (1988) Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332:459–461. doi:10.1038/332459a0

    Article  CAS  PubMed  Google Scholar 

  3. Liebaers I, Van de Velde H, Cauffman G, Tournaye H, Devroey P (2008) The four blastomeres of a 4-cell stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Hum Reprod 23:1742–1747. doi:10.1093/humrep/den190

    Article  PubMed  Google Scholar 

  4. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147. doi:10.1126/science.282.5391.1145

    Article  CAS  PubMed  Google Scholar 

  5. Cowan CA, Klimanskaya I, McMahon J, Atienza J, Witmyer J, Zucker JP et al (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350:1353–1356. doi:10.1056/NEJMsr040330

    Article  CAS  PubMed  Google Scholar 

  6. Park SP, Lee YJ, Lee KS, Shin HA, Cho HY, Chung KS et al (2004) Establishment of human embryonic stem cell lines from frozen-thawed blastocysts using STO cell feeder layers. Hum Reprod 19:676–684. doi:10.1093/humrep/deh102

    Article  PubMed  Google Scholar 

  7. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404. doi:10.1038/74447

    Article  CAS  PubMed  Google Scholar 

  8. Chung Y, Klimanskaya I, Becker S, Li T, Maserati M, Lu SJ et al (2008) Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell 2:113–117. doi:10.1016/j.stem.2007.12.013

    Article  CAS  PubMed  Google Scholar 

  9. Geens M, Mateizel I, Sermon K, De Rycke M, Spits C, Cauffman G et al (2009) Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos. Hum Reprod 24:2709–2717. doi:10.1093/humrep/dep262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klimanskaya I, Chung Y, Becker S, Lu S-J, Lanza R (2006) Human embryonic stem cell lines derived from single blastomeres. Nature 444:481–485. doi:10.1038/nature05142

    Article  CAS  PubMed  Google Scholar 

  11. Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R (2007) Derivation of human embryonic stem cells from single blastomeres. Nat Protoc 2:1963–1972. doi:10.1038/nprot.2007.274 [pii]\r10.1038/nprot.2007.274 [doi]

    Article  CAS  PubMed  Google Scholar 

  12. Strelchenko N, Verlinsky O, Kukharenko V, Verlinsky Y (2004) Morula-derived human embryonic stem cells. Reprod BioMed Online 9:623–629. doi:10.1016/S1472-6483(10)61772-5

    Article  PubMed  Google Scholar 

  13. Strelchenko N, Verlinsky Y (2006) Embryonic stem cells from Morula. Methods Enzymol 418:93–108. doi:10.1016/S0076-6879(06)18006-4

    Article  CAS  PubMed  Google Scholar 

  14. Giritharan G, Ilic D, Gormley M, Krtolica A (2011) Human embryonic stem cells derived from embryos at different stages of development share similar transcription profiles. PLoS One 6:e26570. doi:10.1371/journal.pone.0026570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin G, OuYang Q, Zhou X, Gu Y, Yuan D, Li W et al (2007) A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure. Cell Res 17:999–1007. doi:10.1038/cr.2007.97

    Article  CAS  PubMed  Google Scholar 

  16. Barton SC, Surani MA, Norris ML (1984) Role of paternal and maternal genomes in mouse development. Nature 311:374–376. doi:10.1038/311374a0

    Article  CAS  PubMed  Google Scholar 

  17. Surani MA, Kaufman MH, Barton SC (1977) Normal postimplantation development of mouse parthenogenetic embryos to the forelimb bud stage. Nature 265:53–55

    Article  PubMed  Google Scholar 

  18. Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nat Educ 308:548–550. doi:10.1038/308548a0

  19. Kuno N, Kadomatsu K, Nakamura M, Miwa-Fukuchi T, Hirabayashi N, Ishizuka T (2004) Mature ovarian cystic teratoma with a highly differentiated homunculus: a case report. Birth Defects Res Part A – Clin Mol Teratol 70:40–46. doi:10.1002/bdra.10133

    Article  CAS  PubMed  Google Scholar 

  20. Mutter GL (1997) Role of imprinting in abnormal human development. Mutat Res Fundam Mol Mech Mutagen 396:141–147. doi:10.1016/S0027-5107(97)00180-2

    Article  CAS  Google Scholar 

  21. Garcia Oliveira F, Dozortsev D, Diamond MP, Fracasso A, Abdelmassih S, Abdelmassih V et al (2004) Evidence of parthenogenetic origin of ovarian teratoma: case report. Hum Reprod 19:1867–1870. doi:10.1093/humrep/deh345

  22. Parrington JM, West LF, Povey S (1984) The origin of ovarian teratomas. J Med Genet 21:4–12. doi:10.1136/jmg.21.1.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Epsztejn-Litman S, Cohen-Hadad Y, Aharoni S, Altarescu G, Renbaum P, Levy-Lahad E et al (2015) Establishment of homozygote mutant human embryonic stem cells by parthenogenesis. PLoS One 10:e0138893. doi:10.1371/journal.pone.0138893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Yanuka O, Sagi I, Chia G, Golan-Lev T, Peretz M, Weissbein U, Sui L, Sauer MV, Benvenisty N, Egli D (2016) Derivation and differentiation of haploid human embryonic stem cells. Nature. doi:10.1038/nature17408

    PubMed  Google Scholar 

  25. Munsie MJ, Michalska AE, O’Brien CM, Trounson AO, Pera MF, Mountford PS (2000) Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr Biol 10:989–992. doi:10.1016/S0960-9822(00)00648-5

    Article  CAS  PubMed  Google Scholar 

  26. Byrne JA, Pedersen DA, Clepper LL, Nelson M, Sanger WG, Gokhale S et al (2007) Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450:497–502. doi:10.1038/nature06357

    Article  CAS  PubMed  Google Scholar 

  27. Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H et al (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153:1228–1238. doi:10.1016/j.cell.2013.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chung YG, Eum JH, Lee JE, Shim SH, Sepilian V, Hong SW et al (2014) Human somatic cell nuclear transfer using adult cells. Cell Stem Cell 14:777–780. doi:10.1016/j.stem.2014.03.015

    Article  CAS  PubMed  Google Scholar 

  29. Paull D, Yamada M, Johannesson B, Sagi I, Burnett LC, Kort DH, Prosser RW, Benvenisty N, Nestor MW, Freeby M, Greenberg E, Goland RS, Leibel RL, Solomon SL, Egli D, Sauer MV (2014) Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. Nature 510:533–536. doi:10.1038/nature13287

    Article  PubMed  CAS  Google Scholar 

  30. Gurdon JB, Elsdale TR, Fischberg M (1958) Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182:64–65. doi:10.1038/182064a0

    Article  CAS  PubMed  Google Scholar 

  31. Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci U S A 38:455–463. doi:10.1073/pnas.38.5.455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wilmut I, Beaujean N, de Sousa PA, Dinnyes A, King TJ, Paterson LA et al (2002) Somatic cell nuclear transfer. Nature 419:583–586. doi:10.1038/nature01079

    Article  CAS  PubMed  Google Scholar 

  33. Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C et al (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280:1256–1258. doi:10.1126/science.280.5367.1256

    Article  CAS  PubMed  Google Scholar 

  34. Baguisi A, Behboodi E, Melican DT, Pollock JS, Destrempes MM, Cammuso C et al (1999) Production of goats by somatic cell nuclear transfer. Nat Biotechnol 17:456–461. doi:10.1038/8632

    Article  CAS  PubMed  Google Scholar 

  35. Keefer CL, Baldassarre H, Keyston R, Wang B, Bhatia B, Bilodeau AS et al (2001) Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro-matured oocytes. Biol Reprod 64:849–856. doi:10.1095/biolreprod64.3.849

    Article  CAS  PubMed  Google Scholar 

  36. Wakayama T, Perry ACF, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369–374. doi:10.1038/28615

    Article  CAS  PubMed  Google Scholar 

  37. Betthauser J, Forsberg E, Augenstein M, Childs L, Eilertsen K, Enos J et al (2000) Production of cloned pigs from in vitro systems. Nat Biotechnol 18:1055–1059. doi:10.1038/80242

    Article  CAS  PubMed  Google Scholar 

  38. Polejaeva IA, Chen S-H, Vaught TD, Page RL, Mullins J, Ball S et al (2000) Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407:86–90. doi:10.1038/35024082

    Article  CAS  PubMed  Google Scholar 

  39. De Sousa PA, Dobrinsky JR, Zhu J, Archibald AL, Ainslie A, Bosma W et al (2002) Somatic cell nuclear transfer in the pig: control of pronuclear formation and integration with improved methods for activation and maintenance of pregnancy. Biol Reprod 66:642–650. doi:10.1095/biolreprod66.3.642

    Article  CAS  PubMed  Google Scholar 

  40. Schneuwly S, Klemenz R, Gehring WJ (1987) Redesigning the body plan of Drosophila by ectopic expression of the homoeotic gene Antennapedia. Nature 325:816–818. doi:10.1038/325816a0

    Article  CAS  PubMed  Google Scholar 

  41. Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000. doi:10.1016/0092-8674(87)90585-X

    Article  CAS  PubMed  Google Scholar 

  42. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. doi:10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  43. Welstead GG, Brambrink T, Jaenisch R (2008) Generating iPS cells from MEFS through forced expression of Sox-2, Oct-4, c-Myc, and Klf4. J Vis Exp 14:e734. doi:10.3791/734

    Google Scholar 

  44. Yamanaka S (2008) Pluripotency and nuclear reprogramming. Philos Trans R Soc Lond Ser B Biol Sci 363:2079–2087. doi:10.1098/rstb.2008.2261

    Article  CAS  Google Scholar 

  45. Hamilton B, Feng Q, Ye M, Welstead GG (2009) Generation of induced pluripotent stem cells by reprogramming mouse embryonic fibroblasts with a four transcription factor, doxycycline inducible lentiviral transduction system. J Vis Exp 33:1–5. doi:10.3791/1447

    Google Scholar 

  46. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi:10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  47. Takahashi K, Yamanaka S (2015) A developmental framework for induced pluripotency. Development 142:3274–3285. doi:10.1242/dev.114249

    Article  CAS  PubMed  Google Scholar 

  48. Sur M, Cassady JP, D’Alessio AC, Sarkar S, Dani VS, Fan ZP, Ganz K, Roessler R, Jaenisch R, Young RA (2014) Direct lineage conversion of adult mouse liver cells and B lymphocytes to neural stem cells. Stem Cell Reports 3:948–956. doi:10.1016/j.stemcr.2014.10.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Aasen T, Belmonte JC (2010) Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nat Protoc 5:371–382. doi:10.1038/nprot.2009.241 [pii]\r10.1038/nprot.2009.241

    Article  CAS  PubMed  Google Scholar 

  50. Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F et al (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26:1276–1284. doi:10.1038/nbt.1503

    Article  CAS  PubMed  Google Scholar 

  51. Perna F, Kotini AG, Chang CJ, Boussaad I, Delrow JJ, Dolezal EK, Nagulapally AB, Nimer SD, Fishbein GA, Klimek VM, Hawkins RD, Huangfu D, Murry CE, Graubert T, Papapetrou EP (2015) Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells. Nat Biotechnol 33:646–655. doi:10.1038/nbt.3178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ye Z, Zhan H, Mali P, Dowey S, Williams DM, Jang YY et al (2009) Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114:5473–5480. doi:10.1182/blood-2009-04-217406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yi F, Liu G-H, Belmonte JCI (2012) Human induced pluripotent stem cells derived hepatocytes: rising promise for disease modeling, drug development and cell therapy. Protein Cell 3:246–250. doi:10.1007/s13238-012-2918-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kumano K, Arai S, Hosoi M, Taoka K, Takayama N, Otsu M et al (2012) Generation of induced pluripotent stem cells from primary chronic myelogenous leukemia patient samples. Blood 119:6234–6242. doi:10.1182/blood-2011-07-367441

    Article  CAS  PubMed  Google Scholar 

  55. Miyoshi N, Ishii H, Nagai K, Hoshino H, Mimori K, Tanaka F et al (2010) Defined factors induce reprogramming of gastrointestinal cancer cells. Proc Natl Acad Sci U S A 107:40–45. doi:10.1073/pnas.0912407107

    Article  CAS  PubMed  Google Scholar 

  56. Ghodsizadeh A, Taei A, Totonchi M, Seifinejad A, Gourabi H, Pournasr B et al (2010) Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells. Stem Cell Rev Rep 6:622–632. doi:10.1007/s12015-010-9189-3

    Article  Google Scholar 

  57. Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384. doi:10.1016/j.stem.2009.04.005

    Article  CAS  PubMed  Google Scholar 

  58. Kim D, Kim C-H, Moon J-I, Chung Y-G, Chang M-Y, Han B-S et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476. doi:10.1016/j.stem.2009.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S et al (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8:409–412. doi:10.1038/nmeth.1591

    Article  CAS  PubMed  Google Scholar 

  60. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630. doi:10.1016/j.stem.2010.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y et al (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8:376–388. doi:10.1016/j.stem.2011.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. González F, Boué S, Belmonte JCI (2011) Methods for making induced pluripotent stem cells: reprogramming à la carte. Nat Rev Genet 12:231–242. doi:10.1038/nrg2937

    Article  PubMed  CAS  Google Scholar 

  63. Seifinejad A, Tabebordbar M, Baharvand H, Boyer LA, Salekdeh GH (2010) Progress and promise towards safe induced pluripotent stem cells for therapy. Stem Cell Rev 6:297–306. doi:10.1007/s12015-010-9121-x

    Article  PubMed  Google Scholar 

  64. Wu J, Izpisua Belmonte JC (2015) Dynamic pluripotent stem cell states and their applications. Cell Stem Cell 17:509–525. doi:10.1016/j.stem.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  65. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106. doi:10.1038/nbt1374

    Article  CAS  PubMed  Google Scholar 

  66. Markoulaki S, Hanna J, Beard C, Carey BW, Cheng AW, Lengner CJ et al (2009) Transgenic mice with defined combinations of drug-inducible reprogramming factors. Nat Biotechnol 27:169–171. doi:10.1038/nbt.1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317. doi:10.1038/nature05934

    Article  CAS  PubMed  Google Scholar 

  68. Wernig M, Meissner A, Cassady JP, Jaenisch R (2008) c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2:10–12. doi:10.1016/j.stem.2007.12.001

    Article  CAS  PubMed  Google Scholar 

  69. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949. doi:10.1126/science.1162494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chang CW, Lai YS, Pawlik KM, Liu K, Sun CW, Li C et al (2009) Polycistronic lentiviral vector for “hit and run” reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells 27:1042–1049. doi:10.1002/stem.39

    Article  CAS  PubMed  Google Scholar 

  71. Prevec L, Graham FL (1992) Adenovirus-based expression vectors and recombinant vaccines. Biotechnol J 20:363–390

    Google Scholar 

  72. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95:2509–2514. doi:10.1073/pnas.95.5.2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhou W, Freed CR (2009) Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27:2667–2674. doi:10.1002/stem.201

    Article  CAS  PubMed  Google Scholar 

  74. Kim SS, Lee J, Hong F, Kwon S, Kim SS, Kim DO, Kang HS, Lee SJ, Ha J (2002) Activation of p38 MAPK induces cell cycle arrest via inhibition of Raf/ERK pathway during muscle differentiation. Biochem Biophys Res Commun 298:765–771

    Article  PubMed  CAS  Google Scholar 

  75. Di Segni M, Meraviglia V, Zanon A, Lavdas AA, Schwienbacher C, Silipigni R, Rossini A, Chen HS, Pramstaller PP, Hicks AA (2015) Generation of induced pluripotent stem cells from frozen buffy coats using non-integrating episomal plasmids. J Vis Exp 100:e52885. doi:10.3791/52885

    Google Scholar 

  76. Zhang S, Hu W, He Y, Xiong Y, Lu H, Chen H, Hou L, Qiu Z, Fang Y (2016) Derivation, expansion, and motor neuron differentiation of human-induced pluripotent stem cells with non-integrating episomal vectors and a defined Xenogeneic-free culture system. Mol Neurobiol 53:1589–1600. doi:10.1007/s12035-014-9084-z

    Article  PubMed  CAS  Google Scholar 

  77. Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A et al (2013) An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31:458–466. doi:10.1002/stem.1293

    Article  CAS  PubMed  Google Scholar 

  78. Cheng L, Hansen NF, Zhao L, Du Y, Zou C, Donovan FX et al (2012) Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression. Cell Stem Cell 10:337–344. doi:10.1016/j.stem.2012.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Narsinh KH, Jia F, Robbins RC, Kay MA, Longaker MT, Wu JC (2011) Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat Protoc 6:78–88. doi:10.1038/nprot.2010.173

    Article  CAS  PubMed  Google Scholar 

  80. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362. doi:10.2183/pjab.85.348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Verma PJ, Liu J (2015) Synthetic mRNA reprogramming of human fibroblast cells. Methods Mol Biol 1330:17–28. doi:10.1007/978-1-4939-2848-4_2

    Article  PubMed  Google Scholar 

  82. Belting M, Sandgren S, Wittrup A (2005) Nuclear delivery of macromolecules: barriers and carriers. Adv Drug Deliv Rev 57:505–527. doi:10.1016/j.addr.2004.10.004

    Article  CAS  PubMed  Google Scholar 

  83. El-Sayed A, Futaki S, Harashima H (2009) Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J 11:13–22. doi:10.1208/s12248-008-9071-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ziegler A, Nervi P, Dürrenberger M, Seelig J (2005) The cationic cell-penetrating peptide CPPTAT derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence. Biochemistry 44:138–148. doi:10.1021/bi0491604

    Article  CAS  PubMed  Google Scholar 

  85. Nie B, Wang H, Laurent T, Ding S (2012) Cellular reprogramming: a small molecule perspective. Curr Opin Cell Biol 24:784–792. doi:10.1016/j.ceb.2012.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE et al (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26:795–797. doi:10.1038/nbt1418

    Article  CAS  PubMed  Google Scholar 

  87. Li Y, Zhang Q, Yin X, Yang W, Du Y, Hou P et al (2011) Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res 21:196–204. doi:10.1038/cr.2010.142

    Article  CAS  PubMed  Google Scholar 

  88. Li Z, Rana TM (2012) A kinase inhibitor screen identifies small-molecule enhancers of reprogramming and iPS cell generation. Nat Commun 3:1085. doi:10.1038/ncomms2059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Li X, Zuo X, Jing J, Ma Y, Wang J, Liu D et al (2015) Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell 17:195–203. doi:10.1016/j.stem.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  90. Liu M-L, Zang T, Zou Y, Chang JC, Gibson JR, Huber KM et al (2013) Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nat Commun 4:2183. doi:10.1038/ncomms3183

    PubMed  PubMed Central  Google Scholar 

  91. Cheng L, Hu W, Qiu B, Zhao J, Yu Y, Guan W et al (2014) Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res 24:665–679. doi:10.1038/cr.2014.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ladewig J, Mertens J, Kesavan J, Doerr J, Poppe D, Glaue F et al (2012) Small molecules enable highly efficient neuronal conversion of human fibroblasts. Nat Methods 9:575–578. doi:10.1038/nmeth.1972

    Article  CAS  PubMed  Google Scholar 

  93. Zhu S, Li W, Zhou H, Wei W, Ambasudhan R, Lin T et al (2010) Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7. doi:10.1016/j.stem.2010.11.015

  94. Xia Y, Nivet E, Sancho-Martinez I, Gallegos T, Suzuki K, Okamura D et al (2013) Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol 15:1507–1515. doi:10.1038/ncb2872

    Article  CAS  PubMed  Google Scholar 

  95. Emonard H, Grimaud JA, Nusgens B, Lapière CM, Foidart JM (1987) Reconstituted basement-membrane matrix modulates fibroblast activities in vitro. J Cell Physiol 133:95–102

    Article  CAS  PubMed  Google Scholar 

  96. Bergstrom R, Strom S, Holm F, Feki A, Hovatta O (2011) Xeno-free culture of human pluripotent stem cells. Methods Mol Biol 767:125–136. doi:10.1007/978-1-61779-201-4_9

    Article  PubMed  CAS  Google Scholar 

  97. Ausubel LJ, Lopez PM, Couture LA (2011) GMP scale-up and banking of pluripotent stem cells for cellular therapy applications. Methods Mol Biol 767:147–159. doi:10.1007/978-1-61779-201-4_11

    Article  CAS  PubMed  Google Scholar 

  98. Rodin S, Domogatskaya A, Ström S, Hansson EM, Chien KR, Inzunza J et al (2010) Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol 28:611–615. doi:10.1038/nbt.1620

    Article  CAS  PubMed  Google Scholar 

  99. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD et al (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8:424–429. doi:10.1038/nmeth.1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Miyazaki T, Futaki S, Suemori H, Taniguchi Y, Yamada M, Kawasaki M et al (2012) Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun 3:1236. doi:10.1038/ncomms2231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI et al (2010) Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater 9:768–778. doi:10.1038/nmat2812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lu HF, Narayanan K, Lim SX, Gao S, Leong MF, Wan ACA (2012) A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions. Biomaterials 33:2419–2430. doi:10.1016/j.biomaterials.2011.11.077

    Article  CAS  PubMed  Google Scholar 

  103. Draper JS, Moore HD, Ruban LN, Gokhale PJ, Andrews PW (2004) Culture and characterization of human embryonic stem cells. Stem Cells Dev 13:325–336. doi:10.1089/scd.2004.13.325

    Article  CAS  PubMed  Google Scholar 

  104. Montserrat N, Ramírez-Bajo MJ, Xia Y, Sancho-Martinez I, Moya-Rull D, Miquel-Serra L et al (2012) Generation of induced pluripotent stem cells from human renal proximal tubular cells with only two transcription factors, OCT4 and SOX2. J Biol Chem 287:24131–24138. doi:10.1074/jbc.M112.350413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Montserrat N, de Oñate L, Garreta E, González F, Adamo A, Eguizábal C et al (2012) Generation of feeder-free pig induced pluripotent stem cells without Pou5f1. Cell Transplant 21:815–825. doi:10.3727/096368911X601019

    Article  PubMed  Google Scholar 

  106. Montserrat N, Nivet E, Sancho-Martinez I, Hishida T, Kumar S, Miquel L et al (2013) Reprogramming of human fibroblasts to pluripotency with lineage specifiers. Cell Stem Cell 13:341–350. doi:10.1016/j.stem.2013.06.019

    Article  CAS  PubMed  Google Scholar 

  107. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL et al (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24:185–187. doi:10.1038/nbt1177

    Article  CAS  PubMed  Google Scholar 

  108. Meng G, Liu S, Rancourt DE (2012) Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions. Stem Cells Dev 21:2036–2048. doi:10.1089/scd.2011.0489

    Article  CAS  PubMed  Google Scholar 

  109. Sugii S, Kida Y, Kawamura T, Suzuki J, Vassena R, Yin Y-Q et al (2010) Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proc Natl Acad Sci U S A 107:3558–3563. doi:10.1073/pnas.0910172106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K et al (2014) A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci Rep 4:3594. doi:10.1038/srep03594

    PubMed  PubMed Central  Google Scholar 

  111. Leaky A, Weixiong J, Kuhnert F, Stuhlmann H (1999) Use of developmental marker genes to define temporal and spatial patterns of differentiation during embryoid body formation. J Exp Zool 284:67–81. doi:10.1002/(SICI)1097-010X(19990615)284:1<67::AID-JEZ10>3.0.CO;2-O

    Article  Google Scholar 

  112. Rohwedel J, Maltsev V, Bober E, Arnold HH, Hescheler J, Wobus AM (1994) Muscle-cell differentiation of embryonic stem-cells reflects myogenesis in-vivo-developmentally-regulated expression of myogenic determination genes and functional expression of ionic currents. Dev Biol 164:87–101 <Go to ISI>://WOS:A1994NW44400008

    Article  CAS  PubMed  Google Scholar 

  113. Chang H, Yoshimoto M, Umeda K, Iwasa T, Mizuno Y, Fukada S et al (2009) Generation of transplantable, functional satellite-like cells from mouse embryonic stem cells. FASEB J 23:1907–1919. doi:10.1096/fj.08-123661

    Article  CAS  PubMed  Google Scholar 

  114. Zheng JK, Wang Y, Karandikar A, Wang Q, Gai H, Liu AL et al (2006) Skeletal myogenesis by human embryonic stem cells. Cell Res 16:713–722. doi:10.1038/sj.cr.7310080

    Article  CAS  PubMed  Google Scholar 

  115. Hwang Y, Suk S, Lin S, Tierney M, Du B, Seo T et al (2013) Directed in vitro myogenesis of human embryonic stem cells and their in vivo engraftment. PLoS One 8:e72023. doi:10.1371/journal.pone.0072023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A et al (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309(80):2064–2067. doi:10.1126/science.1114758

    Article  CAS  PubMed  Google Scholar 

  117. Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129:999–1010. doi:10.1016/j.cell.2007.03.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rossi CA, Pozzobon M, De Coppi P (2011) Advances in musculoskeletal tissue engineering: moving towards therapy. Organogenesis 6:167–172. doi:10.4161/org.6.3.12419

    Article  Google Scholar 

  119. Awaya T, Kato T, Mizuno Y, Chang H, Niwa A, Umeda K et al (2012) Selective development of myogenic mesenchymal cells from human embryonic and induced pluripotent stem cells. PLoS One 7. doi:10.1371/journal.pone.0051638

  120. Zhu X, Fu L, Yi F, Liu G-H, Ocampo A, Qu J et al (2014) Regeneration: making muscle from hPSCs. Cell Res 24:1159–1161. doi:10.1038/cr.2014.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tanaka A, Woltjen K, Miyake K, Hotta A, Ikeya M, Yamamoto T et al (2013) Efficient and reproducible myogenic differentiation from human iPS cells: prospects for modeling Miyoshi Myopathy in vitro. PLoS One 8:e61540. doi:10.1371/journal.pone.0061540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yasuno T, Osafune K, Sakurai H, Asaka I, Tanaka A, Yamaguchi S et al (2014) Functional analysis of iPSC-derived myocytes from a patient with carnitine palmitoyltransferase II deficiency. Biochem Biophys Res Commun 448:175–181. doi:10.1016/j.bbrc.2014.04.084

    Article  CAS  PubMed  Google Scholar 

  123. Kurosawa H (2007) Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng 103:389–398. doi:10.1263/jbb.103.389

    Article  CAS  PubMed  Google Scholar 

  124. Bhagavati S, Xu W (2005) Generation of skeletal muscle from transplanted embryonic stem cells in dystrophic mice. Biochem Biophys Res Commun 333:644–649. doi:10.1016/j.bbrc.2005.05.135

    Article  CAS  PubMed  Google Scholar 

  125. Gattazzo F, Urciuolo A, Bonaldo P (2014) Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta, Gen Subj 1840:2506–2519. doi:10.1016/j.bbagen.2014.01.010

    Article  CAS  Google Scholar 

  126. Gilbert PM, Havenstrite KL, Magnusson KEG, Sacco A, Leonardi NA, Kraft P et al (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329:1078–1081. doi:10.1126/science.1191035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ciciliot S, Schiaffino S (2010) Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications. Curr Pharm Des 16:906–914. doi:10.2174/138161210790883453

    Article  CAS  PubMed  Google Scholar 

  128. Mizuno Y, Chang H, Umeda K, Niwa A, Iwasa T, Awaya T et al (2010) Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells. FASEB J 24:2245–2253. doi:10.1096/fj.09-137174

    Article  CAS  PubMed  Google Scholar 

  129. Abujarour R, Bennett M, Valamehr B, Lee TT, Robinson M, Robbins D et al (2014) Myogenic differentiation of muscular dystrophy-specific induced pluripotent stem cells for use in drug discovery. Stem Cells Transl Med 3:149–160. doi:10.5966/sctm.2013-0095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Huang NF, Patel S, Thakar RG, Wu J, Hsiao BS, Chu B et al (2006) Myotube assembly on nanofibrous and micropatterned polymers. Nano Lett 6:537–542. doi:10.1021/nl060060o

    Article  CAS  PubMed  Google Scholar 

  131. Shimizu K, Fujita H, Nagamori E (2009) Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives. Biotechnol Bioeng 103:631–638. doi:10.1002/bit.22268

    Article  CAS  PubMed  Google Scholar 

  132. Altomare L, Riehle M, Gadegaard N, Tanzi M, Farè S (2010) Microcontact printing of fibronectin on a biodegradable polymeric surface for skeletal muscle cell orientation. Int J Artif Organs 33:535–543

    Google Scholar 

  133. Molnar P, Wang W, Natarajan A, Rumsey JW, Hickman JJ (2007) Photolithographic patterning of C2C12 myotubes using vitronectin as growth substrate in serum-free medium. Biotechnol Prog 23:265–268. doi:10.1021/bp060302q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P (2008) Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 26:127–134. doi:10.1634/stemcells.2007-0520

    Article  CAS  PubMed  Google Scholar 

  135. Ker EDF, Nain AS, Weiss LE, Wang J, Suhan J, Amon CH et al (2011) Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials 32:8097–8107. doi:10.1016/j.biomaterials.2011.07.025

    Article  CAS  PubMed  Google Scholar 

  136. Wilmut I, Sullivan G, Chambers I (2011) The evolving biology of cell reprogramming. Philos Trans R Soc Lond Ser B Biol Sci 366:2183–2197. doi:10.1098/rstb.2011.0051

    Article  CAS  Google Scholar 

  137. Lagunas A, Comelles J, Oberhansl S, Hortigüela V, Martínez E, Samitier J (2013) Continuous bone morphogenetic protein-2 gradients for concentration effect studies on C2C12 osteogenic fate, Nanomedicine Nanotechnology. Biomark Med 9:694–701. doi:10.1016/j.nano.2012.12.002

    CAS  Google Scholar 

  138. Almodóvar J, Guillot R, Monge C, Vollaire J, Selimović Š, Coll JL et al (2014) Spatial patterning of BMP-2 and BMP-7 on biopolymeric films and the guidance of muscle cell fate. Biomaterials 35:3975–3985. doi:10.1016/j.biomaterials.2014.01.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Sun Y, Duffy R, Lee A, Feinberg AW (2013) Optimizing the structure and contractility of engineered skeletal muscle thin films. Acta Biomater 9:7885–7894. doi:10.1016/j.actbio.2013.04.036

    Article  CAS  PubMed  Google Scholar 

  140. Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 462:433–441. doi:10.1038/nature08602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Vunjak-Novakovic G, Scadden DT (2011) Biomimetic platforms for human stem cell research. Cell Stem Cell 8:252–261. doi:10.1016/j.stem.2011.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Liao H, Zhou G-Q (2009) Development and progress of engineering of skeletal muscle tissue. Tissue Eng Part B Rev 15:319–331. doi:10.1089/ten.teb.2009.0092

    Article  PubMed  Google Scholar 

  143. Walters BD, Stegemann JP (2014) Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales. Acta Biomater 10:1488–1501. doi:10.1016/j.actbio.2013.08.038

    Article  CAS  PubMed  Google Scholar 

  144. Tamayol A, Akbari M, Annabi N, Paul A, Khademhosseini A, Juncker D (2013) Fiber-based tissue engineering: progress, challenges, and opportunities. Biotechnol Adv 31:669–687. doi:10.1016/j.biotechadv.2012.11.007

    Article  CAS  PubMed  Google Scholar 

  145. Gu Y, Liu GH, Plongthongkum N, Benner C, Yi F, Qu J et al (2014) Global DNA methylation and transcriptional analyses of human ESC-derived cardiomyocytes. Protein Cell 5:59–68. doi:10.1007/s13238-013-0016-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Aviss KJ, Gough JE, Downes S (2010) Aligned electrospun polymer fibres for skeletal muscle regeneration. Eur Cells Mater 19:193–204 doi:vol019a19 [pii]

    Article  CAS  Google Scholar 

  147. Mertens JP, Sugg KB, Lee JD, Larkin LM (2014) Engineering muscle constructs for the creation of functional engineered musculoskeletal tissue. Regen Med 9:89–100. doi:10.2217/rme.13.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ertl P, Sticker D, Charwat V, Kasper C, Lepperdinger G (2014) Lab-on-a-chip technologies for stem cell analysis. Trends Biotechnol 32:245–253. doi:10.1016/j.tibtech.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  149. Jeon KJ, Park SH, Shin JW, Kang YG, Hyun J-S, Oh MJ et al (2014) Combined effects of flow-induced shear stress and micropatterned surface morphology on neuronal differentiation of human mesenchymal stem cells. J Biosci Bioeng 117:242–247. doi:10.1016/j.jbiosc.2013.08.002

    Article  CAS  PubMed  Google Scholar 

  150. Chen G-Y, Pang DW-P, Hwang S-M, Tuan H-Y, Hu Y-C (2012) A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33:418–427. doi:10.1016/j.biomaterials.2011.09.071

    Article  PubMed  CAS  Google Scholar 

  151. Yu H, Tay CY, Pal M, Leong WS, Li H, Li H et al (2013) A bio-inspired platform to modulate myogenic differentiation of human mesenchymal stem cells through focal adhesion regulation. Adv Healthc Mater 2:442–449. doi:10.1002/adhm.201200142

    Article  CAS  PubMed  Google Scholar 

  152. Gossett DR, Weaver WM, MacH AJ, Hur SC, Tse HTK, Lee W et al (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397:3249–3267. doi:10.1007/s00216-010-3721-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kamm RD, Wan CR, Chung S (2011) Differentiation of embryonic stem cells into cardiomyocytes in a compliant microfluidic system. Ann Biomed Eng 39:1840–1847. doi:10.1007/s10439-011-0275-8

    Article  PubMed  Google Scholar 

  154. Truckenmüller R, Gottwald E, Giselbrecht S, Augspurger C, Lahni B, Dambrowsky N, Welle A, Piotter V, Gietzelt T, Wendt O, Pfleging W, Welle A, Rolletschek A, Weibezahn KF (2007) A chip-based platform for the in vitro generation of tissues in three-dimensional organization. Lab Chip 7:777–785

    Article  PubMed  Google Scholar 

  155. Reichen M, Veraitch FS, Szita N (2013) Development of a multiplexed microfluidic platform for the automated cultivation of embryonic stem cells. J Lab Autom 18:519–529. doi:10.1177/2211068213499917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chung BG, Flanagan LA, Rhee SW, Schwartz PH, Lee AP, Monuki ES et al (2005) Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5:401–406. doi:10.1039/b417651k

    Article  CAS  PubMed  Google Scholar 

  157. Xu B-Y, Hu S-W, Qian G-S, Xu J-J, Chen H-Y (2013) A novel microfluidic platform with stable concentration gradient for on chip cell culture and screening assays. Lab Chip 13:3714–3720. doi:10.1039/C3LC50676B

    Article  CAS  PubMed  Google Scholar 

  158. Moreno EL, Hachi S, Hemmer K, Trietsch SJ, Baumuratov AS, Hankemeier T et al (2015) Differentiation of neuroepithelial stem cells into functional dopaminergic neurons in 3D microfluidic cell culture. Lab Chip 15:2419–2428. doi:10.1039/c5lc00180c

    Article  CAS  PubMed  Google Scholar 

  159. Reitinger S, Wissenwasser J, Kapferer W, Heer R, Lepperdinger G (2012) Electric impedance sensing in cell-substrates for rapid and selective multipotential differentiation capacity monitoring of human mesenchymal stem cells. Biosens Bioelectron 34:63–69. doi:10.1016/j.bios.2012.01.013

    Article  CAS  PubMed  Google Scholar 

  160. Shih C-J, Kau N-H, Tsai B-C (2007) Stem cell differentiation base on acoustic wave sensor. In: 2nd IEEE international conference of nano/micro engineered and molecular systems, vol. 2728, pp 626–629. doi:10.1109/NEMS.2007.352096

    Google Scholar 

  161. Uzel SGM, Pavesi A, Kamm RD (2014) Microfabrication and microfluidics for muscle tissue models. Prog Biophys Mol Biol 115:279–293. doi:10.1016/j.pbiomolbio.2014.08.013

    Article  CAS  PubMed  Google Scholar 

  162. Senesi P, Luzi L, Montesano A, Mazzocchi N, Terruzzi I (2013) Betaine supplement enhances skeletal muscle differentiation in murine myoblasts via IGF-1 signaling activation. J Transl Med 11:174. doi:10.1186/1479-5876-11-174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Dugan JM, Gough JE, Eichhorn SJ (2010) Directing the morphology and differentiation of skeletal muscle cells using oriented cellulose nanowhiskers. Biomacromolecules 11:2498–2504. doi:10.1021/bm100684k

    Article  CAS  PubMed  Google Scholar 

  164. Kroehne V, Heschel I, Schügner F, Lasrich D, Bartsch JW, Jockusch H (2008) Use of a novel collagen matrix with oriented pore structure for muscle cell differentiation in cell culture and in grafts. J Cell Mol Med 12:1640–1648. doi:10.1111/j.1582-4934.2008.00238.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Floren M, Bonani W, Dharmarajan A, Motta A, Migliaresi C, Tan W (2015) Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype, Acta Biomater. doi:10.1016/j.actbio.2015.11.051

    Google Scholar 

  166. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668. doi:10.1126/science.1188302

  167. Watt FM, Huck WTS (2013) Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol 14:467–473. doi:10.1038/nrm3620

    Article  CAS  PubMed  Google Scholar 

  168. Hume SL, Hoyt SM, Walker JS, Sridhar BV, Ashley JF, Bowman CN et al (2012) Alignment of multi-layered muscle cells within three-dimensional hydrogel macrochannels. Acta Biomater 8:2193–2202. doi:10.1016/j.actbio.2012.02.001

    Article  CAS  PubMed  Google Scholar 

  169. Yang HS, Ieronimakis N, Tsui JH, Kim HN, Suh KY, Reyes M et al (2014) Nanopatterned muscle cell patches for enhanced myogenesis and dystrophin expression in a mouse model of muscular dystrophy. Biomaterials 35:1478–1486. doi:10.1016/j.biomaterials.2013.10.067

    Article  CAS  PubMed  Google Scholar 

  170. Zatti S, Zoso A, Serena E, Luni C, Cimetta E, Elvassore N (2012) Micropatterning topology on soft substrates affects myoblast proliferation and differentiation. Langmuir 28:2718–2726. doi:10.1021/la204776e

    Article  CAS  PubMed  Google Scholar 

  171. Lam MT, Huang YC, Birla RK, Takayama S (2009) Microfeature guided skeletal muscle tissue engineering for highly organized 3-dimensional free-standing constructs. Biomaterials 30:1150–1155. doi:10.1016/j.biomaterials.2008.11.014

    Article  CAS  PubMed  Google Scholar 

  172. Roman HN, Juncker D, Lauzon AM (2015) A microfluidic chamber to study the dynamics of muscle-contraction-specific molecular interactions. Anal Chem 87:2582–2587. doi:10.1021/ac503963r

    Article  CAS  PubMed  Google Scholar 

  173. Shimizu K, Araki H, Sakata K, Tonomura W, Hashida M, Konishi S (2015) Microfluidic devices for construction of contractile skeletal muscle microtissues. J Biosci Bioeng 119:212–216. doi:10.1016/j.jbiosc.2014.07.003

    Article  CAS  PubMed  Google Scholar 

  174. Hinds S, Bian W, Dennis RG, Bursac N (2011) The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle. Biomaterials 32:3575–3583. doi:10.1016/j.biomaterials.2011.01.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Boudou T, Legant WR, Mu A, Borochin MA, Thavandiran N, Radisic M et al (2012) A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng Part A 18:910–919. doi:10.1089/ten.TEA.2011.0341

    Article  CAS  PubMed  Google Scholar 

  176. Vandenburgh H, Shansky J, Benesch-Lee F, Barbata V, Reid J, Thorrez L et al (2008) Drug-screening platform based on the contractility of tissue-engineered muscle. Muscle Nerve 37:438–447. doi:10.1002/mus.20931

    Article  CAS  PubMed  Google Scholar 

  177. Sakar MS, Neal D, Boudou T, Borochin MA, Li Y, Weiss R et al (2012) Formation and optogenetic control of engineered 3D skeletal muscle bioactuators, Lab Chip 12(23):4976–4985. doi:10.1016/j.biotechadv.2011.08.021.Secreted

  178. Morimoto Y, Kato-Negishi M, Onoe H, Takeuchi S (2013) Three-dimensional neuron-muscle constructs with neuromuscular junctions. Biomaterials 34:9413–9419. doi:10.1016/j.biomaterials.2013.08.062

    Article  CAS  PubMed  Google Scholar 

  179. Chan V, Neal DM, Uzel SGM, Kim H, Bashir R, Asada HH (2015) Fabrication and characterization of optogenetic, multi-strip cardiac muscles. Lab Chip 15:2258–2268. doi:10.1039/C5LC00222B

    Article  CAS  PubMed  Google Scholar 

  180. Neal D, Sakar MS, Ong LL, Harry Asada H (2014) Formation of elongated fascicle-inspired 3D tissues consisting of high-density, aligned cells using sacrificial outer molding. Lab Chip 14:1907–1916. doi:10.1039/c4lc00023d

    Article  CAS  PubMed  Google Scholar 

  181. Atala A, Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34:312–319. doi:10.1038/nbt.3413

    Article  PubMed  CAS  Google Scholar 

  182. Martin NRW, Passey SL, Player DJ, Mudera V, Baar K, Greensmith L et al (2015) Neuromuscular junction formation in tissue engineered skeletal muscle augments contractile function and improves cytoskeletal organisation. Tissue Eng Part A 150713044049008. doi:10.1089/ten.TEA.2015.0146

  183. Takeuchi A, Nakafutami S, Tani H, Mori M, Takayama Y, Moriguchi H et al (2011) Device for co-culture of sympathetic neurons and cardiomyocytes using microfabrication. Lab Chip 11:2268–2275. doi:10.1039/c0lc00327a

    Article  CAS  PubMed  Google Scholar 

  184. Southam KA, King AE, Blizzard CA, McCormack GH, Dickson TC (2013) Microfluidic primary culture model of the lower motor neuron-neuromuscular junction circuit. J Neurosci Methods 218:164–169. doi:10.1016/j.jneumeth.2013.06.002

    Article  PubMed  Google Scholar 

  185. Tong Z, Seira O, Casas C, Reginensi D, Homs-Corbera A, Samitier J et al (2014) Engineering a functional neuro-muscular junction model in a chip. RSC Adv 4:54788–54797. doi:10.1039/C4RA10219C

    Article  CAS  Google Scholar 

  186. Buckingham M, Rigby PWJ (2014) Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell 28:225–238. doi:10.1016/j.devcel.2013.12.020

    Article  CAS  PubMed  Google Scholar 

  187. Gros J, Manceau M, Thomé V, Marcelle C (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435:954–958. doi:10.1038/nature03572

    Article  CAS  PubMed  Google Scholar 

  188. Dekel I, Magal Y, Pearson-White S, Emerson CP, Shani M (1992) Conditional conversion of ES cells to skeletal muscle by an exogenous MyoD1 gene. New Biotechnol 4:217–224

    CAS  Google Scholar 

  189. Ozasa S, Kimura S, Ito K, Ueno H, Ikezawa M, Matsukura M et al (2007) Efficient conversion of ES cells into myogenic lineage using the gene-inducible system. Biochem Biophys Res Commun 357:957–963. doi:10.1016/j.bbrc.2007.04.032

    Article  CAS  PubMed  Google Scholar 

  190. Tedesco FS, Gerli MFM, Perani L, Benedetti S, Ungaro F, Cassano M et al (2012) Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci Transl Med 4:140ra89–140ra89. doi:10.1126/scitranslmed.3003541

    Article  PubMed  CAS  Google Scholar 

  191. Goudenege S, Lebel C, Huot NB, Dufour C, Fujii I, Gekas J et al (2012) Myoblasts derived from normal hESCs and dystrophic hiPSCs efficiently fuse with existing muscle fibers following transplantation. Mol Ther. doi:10.1038/mt.2012.188

    PubMed  PubMed Central  Google Scholar 

  192. Tohyama S, Hattori F, Sano M, Hishiki T, Nagahata Y, Matsuura T et al (2013) Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12:127–137. doi:10.1016/j.stem.2012.09.013

    Article  CAS  PubMed  Google Scholar 

  193. Iacovino M, Bosnakovski D, Fey H, Rux D, Bajwa G, Mahen E et al (2011) Inducible cassette exchange: a rapid and efficient system enabling conditional gene expression in embryonic stem and primary cells. Stem Cells 29:1580–1587. doi:10.1002/stem.715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Darabi R, Santos FNC, Filareto A, Pan W, Koene R, Rudnicki MA et al (2011) Assessment of the myogenic stem cell compartment following transplantation of Pax3/Pax7-induced embryonic stem cell-derived progenitors. Stem Cells 29:777–790. doi:10.1002/stem.625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Darabi R, Pan W, Bosnakovski D, Baik J, Kyba M, Perlingeiro RCR (2011) Functional myogenic engraftment from mouse iPS cells. Stem Cell Rev Rep 7:948–957. doi:10.1007/s12015-011-9258-2

    Article  Google Scholar 

  196. Darabi R, Arpke RW, Irion S, Dimos JT, Grskovic M, Kyba M et al (2012) Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10:610–619. doi:10.1016/j.stem.2012.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Yamamoto H, Mizuno Y, Chang H, Umeda K, Niwa A, Iwasa T, Awaya T, Fukada S, Heike T, Yamanaka S, Nakahata T (2010) Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells. FASEB J 24:2245–2253. doi:10.1096/fj.09-137174

    Article  PubMed  CAS  Google Scholar 

  198. Wobus AM, Rohwedel J, Maltsev V, Bober E, Arnold HH, Hescheler J (1994) In vitro differentiation of embryonic stem cells into cardiomyocytes or skeletal muscle cells is specifically modulated by retinoic acid. Roux’s Arch Dev Biol 204:36–45

    Article  CAS  Google Scholar 

  199. Karpati G, Tian C, Lu Y, Gilbert R (2008) Differentiation of murine embryonic stem cells in skeletal muscles of mice. Cell Transpl 17:325–335

    Article  Google Scholar 

  200. Sakurai H, Okawa Y, Inami Y, Nishio N, Isobe K (2008) Paraxial mesodermal progenitors derived from mouse embryonic stem cells contribute to muscle regeneration via differentiation into muscle satellite cells. Stem Cells 26:1865–1873. doi:10.1634/stemcells.2008-0173

    Article  CAS  PubMed  Google Scholar 

  201. Sakurai H, Sakaguchi Y, Shoji E, Nishino T, Maki I, Sakai H et al (2012) In vitro modeling of paraxial mesodermal progenitors derived from induced pluripotent stem cells. PLoS One 7:e47078. doi:10.1371/journal.pone.0047078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Barberi T, Willis LM, Socci ND, Studer L (2005) Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med 2:e161. doi:10.1371/journal.pmed.0020161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Barberi T, Bradbury M, Dincer Z, Panagiotakos G, Socci ND, Studer L (2007) Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat Med 13:642–648. doi:10.1038/nm1533

    Article  CAS  PubMed  Google Scholar 

  204. M.E. Stavropoulos, I. Mengarelli, T. Barberi (2009) Differentiation of multipotent mesenchymal precursors and skeletal myoblasts from human embryonic stem cells. Curr Protoc Stem Cell Biol. Chapter 1 Unit 1F.8. doi:10.1002/9780470151808.sc01f08s9

    Google Scholar 

  205. Hwang Y, Phadke A, Varghese S (2011) Engineered microenvironments for self-renewal and musculoskeletal differentiation of stem cells. Regen Med 6:505–524. doi:10.2217/rme.11.38

    Article  PubMed  Google Scholar 

  206. Hwang Y, Suk S, Shih Y-RV, Seo T, Du B, Xie Y et al (2014) WNT3A promotes myogenesis of human embryonic stem cells and enhances in vivo engraftment. Sci Rep 4:5916. doi:10.1038/srep05916

    CAS  PubMed  Google Scholar 

  207. Xu C, Tabebordbar M, Iovino S, Ciarlo C, Liu J, Castiglioni A et al (2013) A zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species. Cell 155:909–921. doi:10.1016/j.cell.2013.10.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Borchin B, Chen J, Barberi T (2013) Derivation and FACS-mediated purification of PAX3+/PAX7+ skeletal muscle precursors from human pluripotent stem cells. Stem Cell Reports 1:620–631. doi:10.1016/j.stemcr.2013.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Xu C, Tabebordbar M, Iovino S, Ciarlo C, Liu J, Castiglioni A et al (2013) XA zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species. Cell 155. doi:10.1016/j.cell.2013.10.023

  210. Kahn CR, Iovino S, Burkart AM, Warren L, Patti ME (2016) Myotubes derived from human-induced pluripotent stem cells mirror in vivo insulin resistance. Proc Natl Acad Sci 113:1889–1894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T et al (2014) Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports 4:143–154. doi:10.1016/j.stemcr.2014.10.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Calos MP, Turan S, Farruggio AP, Srifa W, Day JW (2016) Precise correction of disease mutations in induced pluripotent stem cells derived from patients with limb girdle muscular dystrophy. Mol Ther 24:685–696

    Article  PubMed  CAS  Google Scholar 

  213. Lei T, Jacob S, Ajil-Zaraa I, Dubuisson J-B, Irion O, Jaconi M et al (2007) Xeno-free derivation and culture of human embryonic stem cells: current status, problems and challenges. Cell Res 17:682–688. doi:10.1038/cr.2007.61

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

E.G. was partially supported by La Fundació Privada La Marató de TV3, 121430/31/32, and Spanish Ministry of Economy and Competitiveness-MINECO (SAF2014-59778). M.B. and J.S. has been financially supported by the Commission for Universities and Research of the Department of Innovation, Universities, and Enterprise of the Generalitat de Catalunya (2014 SGR 1442) and developed in the context of ADVANCE(CAT) with the support of ACCIÓ (Catalonia Trade & Investment; Generalitat de Catalunya) and the European Community under the Catalonian ERDF operational program (European Regional Development Fund) 2014–2020. This work also was partially supported by the project MINDS (TEC2015-70104-P), awarded by the Spanish Ministry of Economy and Competitiveness. N.M. was partially supported by StG-2014-640525_REGMAMKID, La Fundació Privada La Marató de TV3 (121430/31/32), MINECO SAF2014-59778, and the Spanish Ministry of Science and Innovation (PLE 2009-147), RYC-2014-16242, and 2014 SGR 1442.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuria Montserrat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Garreta, E. et al. (2017). Pluripotent Stem Cells and Skeletal Muscle Differentiation: Challenges and Immediate Applications. In: Sakuma, K. (eds) The Plasticity of Skeletal Muscle. Springer, Singapore. https://doi.org/10.1007/978-981-10-3292-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3292-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3291-2

  • Online ISBN: 978-981-10-3292-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics