Skip to main content

Cysteine Cathepsins: In Health and Rheumatoid Arthritis

  • Chapter
  • First Online:
Proteases in Human Diseases

Abstract

Proteases are enzymes which catalyze the irreversible hydrolysis of peptide bonds in proteins. Cysteine cathepsins belonging to proteases have also been termed as papain-like proteases because they resemble the overall fold of papain. The present chapter aims to focus on the historical aspects, structure, cellular distribution, biosynthesis, mechanism of catalysis, its regulation, physiological functions, and its association with rheumatoid arthritis. As these enzymes are also new therapeutic drug targets, information on available assays of cysteine cathepsins and their inhibitors are also highlighted which will help in the development of therapies in various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. López-Otín C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283:30433–30437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Brömme D, Wilson S (2100) Role of cysteine cathepsins in extracellular proteolysis. In: Extracellular matrix degradation. Springer, Berlin, Heidelberg, pp 22–51

    Google Scholar 

  3. McGrath ME (1999) The lysosomal cysteine proteases. Annu Rev Biophys Biomol Struct 28:181–204

    Article  CAS  PubMed  Google Scholar 

  4. Barrett AJ, Rawlings ND (2007) ‘Species’ of peptidases. Biol Chem 388:1151–1157

    Article  CAS  PubMed  Google Scholar 

  5. Willstätter R, Bamann E (1929) Über die proteasen der magenschleimhaut. Erste abhandlung über die enzyme der leukocyten, Hoppe-Seyler’s Z. Physiol Chem 180:127–143

    Article  Google Scholar 

  6. Holt OJ, Gallo F, Griffiths GM (2006) Regulating secretory lysosomes. J Biochem 140:7–12

    Article  CAS  PubMed  Google Scholar 

  7. Blott EJ, Griffiths GM (2002) Secretory lysosomes. Nat Rev Mol Cell Biol 3:122–131

    Article  CAS  PubMed  Google Scholar 

  8. Turk V, Turk B, Turk D (2001) Lysosomal cysteine proteases: facts and opportunities. EMBO J 20:4629–4633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rossi A, Deveraux Q, Turk B, Sali A (2004) Comprehensive search for cysteine cathepsins in the human genome. Biol Chem 385:363–372

    Article  CAS  PubMed  Google Scholar 

  10. Gutman HR, Fruton JS (1948) On the proteolytic enzymes of animal tissues VIII. An intracellular enzyme related to chymotrypsin. J Biol Chem 174:851–858

    Google Scholar 

  11. Barrett AJ, Rawlings ND, Woessner JF Jr (eds) (1998) Handbook of proteolytic enzymes. Academic Press, London

    Google Scholar 

  12. Takio K, Towatari T, Katunuma N, Teller DC, Titani K (1983) Homology of amino acid sequences of liver cathepsins B and H with that of papain. Proc Natl Acad Sci USA 80:3660–3670

    Article  Google Scholar 

  13. Musil D, Zucic D, Turk D, Engh RA, Mayr I, Huber R, Popovic T, Turk V, Towatari T, Katunuma N (1991) The refined 2.15A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J 10:2321–2330

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Turk V, Stoka V, Vasiljeva O, Renkoa M, Sun T, Turk B, Turk D (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochem Biophys Acta 1824:68–88

    CAS  PubMed  Google Scholar 

  15. Salminen-Mankonen HJ, Morko J, Vuorio E (2007) Role of cathepsin K in normal joints and in the development of arthritis. Curr Drug Targets 8:315–323

    Article  CAS  PubMed  Google Scholar 

  16. Wex T, Wex H, Hartig R, Wilhelmsen S, Malfertheiner P (2003) Functional involvement of cathepsin W in the cytotoxic activity of NK-92 cells. FEBS Lett 552:115–119

    Article  CAS  PubMed  Google Scholar 

  17. Hsing LC, Rudensky AY (2005) The lysosomal cysteine proteases in MHC class II antigen presentation. Immunol Rev 207:229–241

    Article  CAS  PubMed  Google Scholar 

  18. Bromme D, Li Z, Barnes M, Mehler E (1999) Human cathepsin V functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. Biochemistry 38:2377–2385

    Article  CAS  PubMed  Google Scholar 

  19. Goulet B, Baruch A, Moon NS, Poirier M, Sansregret LL, Erickson A, Bogyo M, Nepveu A (2004) A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol Cell 14:207–219

    Article  CAS  PubMed  Google Scholar 

  20. Ceru S, Konjar S, Maher K, Repnik U, Krizaj I, Bencina M, Renko M, Nepveu A, Zerovnik E, Turk B, Kopitar-Jerala N (2010) Stefin B interacts with histones and cathepsin L in the nucleus. J Biol Chem 285:10078–10086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adams-Cioaba MA, Krupa JC, Xu C, Mort JS, Min J (2011) Structural basis for the recognition and cleavage of histone H3 by cathepsin L. Nat Commun 2:197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kamphuis IG, Kalk KH, Swarte MB, Drenth J (1984) Structure of papain refined at 1.65 A resolution. J Mol Biol 179:233–256

    Article  CAS  PubMed  Google Scholar 

  23. Baker EN, Dodson EJ (1980) Crystallographic refinement of the structure of actinidin at 1.7 Å resolution by fast fourier least-squares methods. Acta Crystallogr Sect A 36:559–572

    Article  Google Scholar 

  24. Guncar G, Pungercic G, Klemencic I, Turk V, Turk D (1999) Crystal structure of MHC class II-associated p41 Ii fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S. EMBO J 18:793–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pinitglang S, Watts AB, Patel M, Reid JD, Noble MA, Gul S et al (1997) A classical enzyme active center motif lacks catalytic competence until modulated electrostatically. Biochemistry 36:9968–9982

    Article  CAS  PubMed  Google Scholar 

  26. Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27:157–162

    Article  CAS  PubMed  Google Scholar 

  27. Turk D, Turk B, Turk V (2003) Papain-like lysosomal cysteine proteases and their inhibitors: drug discovery targets? Biochem Soc Symp 70:15–30

    Article  CAS  Google Scholar 

  28. Turk D, Guncar G, Podobnik M, Turk B (1998) Revised definition of substrate sites of papain-like cysteine proteases. Biol Chem 379:137–147

    Article  CAS  PubMed  Google Scholar 

  29. Vasiljeva O, Reinheckel T, Peters C, Turk D, Turk V, Turk B (2007) Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr Pharm Des 13:387–403

    Article  CAS  PubMed  Google Scholar 

  30. Hasnain S, Hirama T, Huber CP, Mason P, Mort JS (1993) Characterization of cathepsin B specificity by site-directed mutagenesis—importance of Glu (245) in the S2-P2 specificity for arginine and its role in transition-state stabilization. J Biol Chem 268:235–240

    CAS  PubMed  Google Scholar 

  31. Fox T, Mason P, Storer AC, Mort JS (1995) Modification of S1 subsite specificity in the cysteine protease cathepsin-B. Protein Eng 8:53–57

    Article  CAS  PubMed  Google Scholar 

  32. Illy C, Quraishi O, Wang J, Purisima E, Vernet T, Mort JS (1997) Role of the occluding loop in cathepsin B activity. J Biol Chem 272:1197–1202

    Article  CAS  PubMed  Google Scholar 

  33. Lecaille F, Chowdhury S, Purisima E, Bromme D, Lalmanach G (2007) The S2 subsites of cathepsins K and L and their contribution to collagen degradation. Protein Sci 16:662–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Choe Y, Leonetti F, Greenbaum DC, Lecaille F, Bogyo M, Bromme D, Ellman JA, Craik CS (2006) Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem 281:12824–12832

    Article  CAS  PubMed  Google Scholar 

  35. Alves MFM, Puzer L, Cotrin SS, Juliano MA, Juliano L, Bromme D, Carmona AK (2003) S3 to S3′ subsite specificity of recombinant human cathepsin K and development of selective internally quenched fluorescent substrates. Biochem J 373:981–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ruckrich T, Brandenburg J, Cansier A, Muller M, Stevanovic S, Schilling K, Wiederanders B, Beck A, Melms A, Reich M, Driessen C, Kalbacher H (2006) Specificity of human cathepsin S determined by processing of peptide substrates and MHC class II-associated invariant chain. Biol Chem 387:1503–1511

    Article  PubMed  CAS  Google Scholar 

  37. Puzer L, Cotrin SS, Alves MF, Egborge T, Araújo MS, Juliano MA, Juliano L, Brömme D, Carmona AK (2004) Comparative substrate specificity analysis of recombinant human cathepsin V and cathepsin L. Arch Biochem Biophys 430:274–283

    Article  CAS  PubMed  Google Scholar 

  38. Reiser J, Adair B, Reinheckel T (2010) Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 120:3421–3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Baranski TJ, Faust PL, Kornfeld S (1990) Generation of a lysosomal enzyme targeting signal in the secretory protein pepsinogen. Cell 63:281–291

    Article  CAS  PubMed  Google Scholar 

  40. Mach L, Mort JS, Glossi J (1994) Non covalent complexes between the lysosomal proteinase cathepsin B and its propeptide account for stable, extracellular, high molecular mass form of the enzyme. J Biol Chem 269:13036–13040

    CAS  PubMed  Google Scholar 

  41. Ménard R, Carmona E, Takebe S, Dufour E, Plouffe C, Mason P, Mort JS (1998) Autocatalytic processing of recombinant human procathepsin L. Contribution of both intermolecular and unimolecular events in the processing of procathepsin L in vitro. J BiolChem 273:4478–4484

    Google Scholar 

  42. Stoka V, Turk B, Turk V (2005) Lysosomal cysteine proteases: structural features and their role in apoptosis. IUBMB Life 57:347–353

    Article  CAS  PubMed  Google Scholar 

  43. Jordans S, Jenko-Kokalj S, Kühl NM, Tedelind S, Sendt W, Brömme D, Turk D, Brix K (2009) Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at physiological pH and redox conditions. BMC Biochem 10:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Duncan EM, Muratore-Schroeder TL, Cook RG, Garcia BA, Shabanowitz J, Hunt DF, Allis CD (2008) Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 135:284–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Obermajer N, Repnik U, Jevnikar Z, Turk B, Kreft M, Kos J (2008) Cysteine protease cathepsin X modulates immune response via activation of beta (2) integrins. Immunology 124:76–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Roth W, Deussing J, Botchkarev VA, Pauly-Evers M, Saftig P, Hafner A, Schmidt P, Schmahl W, Scherer J, Anton-Lamprecht I, Von Figura K, Paus R, Peters C (2000) Cathepsin L deficiency as molecular defect of hyperproliferation of keratinocytes and perturbation of hair follicle cycling. FASEB J 14:2075–2086

    Article  CAS  PubMed  Google Scholar 

  47. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195–4200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Werb Z (1997) ECM and cell surface proteolysis: regulating cellular ecology. Cell 91:439–442

    Article  CAS  PubMed  Google Scholar 

  49. Yasuda Y, Li Z, Greenbaum D, Bogyo M, Weber E, Brömme D (2004) Cathepsin V, a novel and potent elastolytic activity expressed in activated macrophages. J Biol Chem 279:36761–36770

    Article  CAS  PubMed  Google Scholar 

  50. Sage J, Mallevre F, Barbarin-Costes F, Samsonov SA, Gehrcke JP, Pisabarro MT, Perrier E, Schnebert S, Roget A, Livache T, Nizard C, Lalmanach G, Lecaille F (2013) Binding of chondroitin 4-sulfate to cathepsin S regulates its enzymatic activity. Biochemistry 52:6487–6498

    Article  CAS  PubMed  Google Scholar 

  51. Li Z, Yasuda Y, Li W, Bogyo M, Katz N, Gordon RE, Fields GB, Brömme D (2004) Regulation of collagenase activities of human cathepsins by glycosaminoglycans. J Biol Chem 279:5470–5479

    Article  CAS  PubMed  Google Scholar 

  52. Mort JS, Magny MC, Lee ER (1998) Cathepsin B: an alternative protease for the generation of an aggrecan ‘metalloproteinase’ cleavage neoepitope. Biochem J 335:491–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hou WS, Li Z, Buttner FH, Bartnik E, Brömme D (2003) Cleavage site specificity of cathepsin K toward cartilage proteoglycans and protease complex formation. Biol Chem 384:891–897

    Article  CAS  PubMed  Google Scholar 

  54. Fonović M, Turk B (2014) Cysteine cathepsins and extracellular matrix degradation. Biochim Biophys Acta 1840:2560–2570

    Article  PubMed  CAS  Google Scholar 

  55. Panwar P, Du X, Sharma V, Lamour G, Castro M, Li H, Brömme D (2013) Effects of cysteine proteases on the structural and mechanical properties of collagen fibers. J Biol Chem 288:5940–5950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li Z, Hou WS, Brömme D (2000) Collagenolytic activity of cathepsin K is specifically modulated by cartilage-resident chondroitin sulfates. Biochemistry 39:529–536

    Article  CAS  PubMed  Google Scholar 

  57. Kafienah W, Brömme D, Buttle DJ, Croucher LJ, Hollander AP (1998) Human cathepsin K cleaves native type I and II collagens at the N-terminal end of the triple helix. Biochem J 331:727–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lecaille F, Weidauer E, Juliano MA, Brömme D, Lalmanach G (2003) Probing cathepsin K activity with a selective substrate spanning its active site. Biochem J 375:307–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li ZQ, Hou WS, Escalante-Torres CR, Gelb BD, Bromme D (2002) Collagenase activity of cathepsin K depends on complex formation with chondroitin sulphate. J Biol Chem 277:28669–28676

    Article  CAS  PubMed  Google Scholar 

  60. Veillard F, Saidi A, Burden RE, Scott CJ, Gillet L, Lecaille F, Lalmanach G (2011) Cysteine cathepsins S and L modulate anti-angiogenic activities of human endostatin. J Biol Chem 286:37158–37167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sukhova GK, Shi GP, Simon DI, Chapman HA, Libby P (1998) Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest 102:576–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Du X, Chen NL, Wong A, Craik CS, Brömme D (2013) Elastin degradation by cathepsin V requires two exosites. J Biol Chem 288:34871–34881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Taleb S, Cancello R, Clement K, Lacasa D (2006) Cathepsin S promotes human preadipocyte differentiation: possible involvement of fibronectin degradation. Endocrinology 147:4950–4959

    Article  CAS  PubMed  Google Scholar 

  64. Blum JS, Cresswell P (1988) Role for intracellular proteases in the processing and transport of class II HLA antigens. Proc Natl Acad Sci USA 85:3975–3979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rudensky A, Beers C (2006) Lysosomal cysteine proteases and antigen presentation. Ernst Schering Res Found Workshop 56:81–95

    Article  Google Scholar 

  66. Cresswell P (1996) Invariant chain structure and MHC class II function. Cell 84:505–507

    Article  CAS  PubMed  Google Scholar 

  67. Riese RJ, Wolf PR, Bromme D, Natkin LR, Villadangos JA, Ploegh HL, Chapman HA (1996) Essential role for cathepsin S in MHC class II-associated invariant chain processing and peptide loading. Immunity 4:357–366

    Article  CAS  PubMed  Google Scholar 

  68. Martin WD, Hicks GG, Mendiratta SK, Leva HI, Ruley HE, Van Kaer L (1996) H-2M mutant mice are defective in the peptide loading of class II molecules, antigen presentation, and T cell repertoire selection. Cell 84:543–550

    Article  CAS  PubMed  Google Scholar 

  69. Jacques N, Marlieke LMJ, Petra P, Oddmund B (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11:823–836

    Google Scholar 

  70. Nakagawa TY, Rudensky AY (1999) The role of lysosomal proteinases in MHC class II-mediated antigen processing and presentation. Immunol Rev 172:121–129

    Article  CAS  PubMed  Google Scholar 

  71. Nakagawa T, Roth W, Wong P, Nelson A, Farr A, Deussing J, Villadangos JA, Ploegh H, Peters C, Rudensky AY (1998) Cathepsin L: critical role in li degradation and CD4 Tcell selection in the thymus. Science 280:450–453

    Article  CAS  PubMed  Google Scholar 

  72. Tolosa E, Li W, Yasuda Y, Wienhold W, Denzin LK, Lautwein A, Driessen C, Schnorrer P, Weber E, Stevanovic S, Kurek R, Melms A, Bromme D (2003) Cathepsin V is involved in the degradation of invariant chain in human thymus and is overexpressed in myasthenia gravis. J Clin Invest 112:517–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zou J, Henderson L, Thomas V, Swan P, Turner AN, Phelps RG (2007) Presentation of the good pasture autoantigen requires proteolytic unlocking steps that destroy prominent T cell epitopes. J Am Soc Nephrol 18:771–779

    Article  CAS  PubMed  Google Scholar 

  74. Hsieh CS, deRoos P, Honey K, Beers C, Rudensky AY (2002) A role for cathepsin L and cathepsin S in peptide generation for MHC class II presentation. J Immunol 168:2618–2625

    Article  CAS  PubMed  Google Scholar 

  75. Beers C, Burich A, Kleijmeer MJ, Griffith JM, Wong P, Rudensky A (2005) cathepsin S controls MHC class II-mediated antigen presentation by epithelial cells in vivo. J Immunol 174:1205–1212

    Article  CAS  PubMed  Google Scholar 

  76. Foghsgaard L, Wissing D, Mauch D, Lademann U, Bastholm L, Boes M, Elling F, Leist M, Jäättelä M (2001) Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol 153:999–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Boya P, Andreau K, Poncet D, Zamzami N, Perfettini JL, Metivier D, Ojcius DM, Jäättelä M, Kroemer G (2003) Lysosomal membrane permeabilization induces cell death in amitochondrion-dependent fashion. J Exp Med 197:1323–1334

    Google Scholar 

  78. Cirman T, Oresić K, Mazovec GD, Turk V, Reed JC, Myers RM, Salvesen GS, Turk B (2004) Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 279:3578–3587

    Google Scholar 

  79. Yin L, Stearns R, Gonzalez-Flecha B (2005) Lysosomal and mitochondrial pathways in H2O2-induced apoptosis of alveolar type II cells. J Cell Biochem 94:433–445

    Article  CAS  PubMed  Google Scholar 

  80. Vancompernolle K, Van Herreweghe F, Pynaert G, Van de Craen M, De Vos K, Totty N, Sterling A, Fiers W, Vandenabeele P, Grooten J (1998) Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Lett 438:150–158

    Article  CAS  PubMed  Google Scholar 

  81. Yamashima T, Kohda Y, Tsuchiya K, Ueno T, Yamashita J, Yoshioka T, Kominami E (1998) Inhibition of ischaemic hippocampal neuronal death in primates with cathepsin B inhibitor CA-074: a novel strategy for neuroprotection based on ‘calpain-cathepsin hypothesis’. Eur J Neurosci 10:1723–1733

    Article  CAS  PubMed  Google Scholar 

  82. Guicciardi ME, Leist M, Gores GJ (2004) Lysosomes in cell death. Oncogene 23:2881–2890

    Article  CAS  PubMed  Google Scholar 

  83. Tardy C, Autefage H, Garcia V, Levade T, Andrieu-Abadie N (2004) Mannose 6-phosphorylated proteins pre pequired for tumor necrosis factor-induced apoptosis: defective response in I-cell disease fibroblasts. J Biol Chem 279:52914–52923

    Article  CAS  PubMed  Google Scholar 

  84. Reiners JJ Jr, Caruso JA, Mathieu P, Chelladurai B, Yin XM, Kessel D (2002) Release of cytochrome C and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage. Cell Death Differ 9:9344–9944

    Article  CAS  Google Scholar 

  85. Roberts LR, Adjei PN, Gores GJ (1999) Cathepsins as effector proteases in hepatocyte apoptosis. Cell Biochem Biophys 30:71–88

    Article  CAS  PubMed  Google Scholar 

  86. Turk B, Turk V, Turk D (1997) Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors. Biol Chem 378:141–150

    CAS  PubMed  Google Scholar 

  87. Guicciardi ME, Deussing J, Miyoshi H, Bronk SF, Svingen PA, Peters C, Kaufmann SH, Gores GJ (2000) Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome C. J Clin Invest 106:1127–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stoka V, Turk B, Schendel SL, Kim TH, Cirman T, Snipas SJ, Ellerby LM, Bredesen D, Freeze H, Abrahamson M, Bromme D, Krajewski S, Reed JC, Yin XM, Turk V, Salvesen GS (2001) Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem 276:3149–3157

    Article  CAS  PubMed  Google Scholar 

  89. Teitelbaum SL (2006) Osteoclasts; culprits in inflammatory osteolysis. Arthritis Res Ther 8:201

    Article  PubMed  CAS  Google Scholar 

  90. Delaisse JM, Boyde A, Maconnachie E, Ali NN, Sear CH, Eeckhout Y, Vaes G, Jones SJ (1987) The effects of inhibitors of cysteine-proteinases and collagenase on the resorptive activity of isolated osteoclasts. Bone 8:305–313

    Article  CAS  PubMed  Google Scholar 

  91. Everts V, Beertsen W, Tigchelaar-Gutter W (1985) The digestion of phagocytosed collagen is inhibited by the proteinase inhibitors leupeptin and E-64. Coll Relat Res 5:315–336

    Article  CAS  PubMed  Google Scholar 

  92. Littlewood-Evans A, Kokubo T, Ishibashi O, Inaoka T, Wlodarski B, Gallagher JA, Bilbe G (1997) Localization of cathepsin K in human osteoclasts by in situ hybridization and immunohistochemistry. Bone 20:81–86

    Article  CAS  PubMed  Google Scholar 

  93. Garnero P, Borel O, Byrjalsen I, Ferreras M, Drake FH, McQueney MS, Foged NT, Delmas PD, Delaissé JM (1998) The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J Biol Chem 273:32347–32352

    Article  CAS  PubMed  Google Scholar 

  94. Votta BJ, Levy MA, Badger A, Bradbeer J, Dodds RA, James IE, Thompson S, Bossard MJ, Carr T, Connor JR, Tomaszek TA, Szewczuk L, Drake FH, Veber DF, Gowen M (1997) Peptide aldehyde inhibitors of cathepsin K inhibit bone resorption both in vitro and in vivo. J Bone Miner Res 12:1396–1406

    Article  CAS  PubMed  Google Scholar 

  95. Sun Y, Ishibashi M, Seimon T, Lee M, Sharma SM, Fitzgerald KA, Samokhin AO, Wang Y, Sayers S, Aikawa M, Jerome WG, Ostrowski MC, Bromme D, Libby P, Tabas IA, Welch CL, Tall AR (2009) Free cholesterol accumulation in macrophage membranes activates Toll-like receptors and p38 mitogen-activated protein kinase and induces cathepsin K. Circ Res 104:455–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li W, Yuan XM (2004) Increased expression and translocation of lysosomal cathepsins contribute to macrophage apoptosis in atherogenesis. Ann N Y Acad Sci 1030:427–433

    Article  CAS  PubMed  Google Scholar 

  97. Li W, Yuan XM, Olsson AG, Brunk UT (1998) Uptake of oxidized LDL by macrophages results in partial lysosomal enzyme inactivation and relocation. Arterioscler Thromb Vasc Biol 18:177–184

    Article  CAS  PubMed  Google Scholar 

  98. Lutgens E, Lutgens SP, Faber BC, Heeneman S, Gijbels MM, de Winther MP, Frederik P, van der Made I, Daugherty A, Sijbers AM, Fisher A, Long CJ, Saftig P, Black D, Daemen MJ, Cleutjens KB (2006) Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Circulation 11:98–107

    Google Scholar 

  99. Lutgens S, Kisters N, Lutgens E, van Haaften R, Evelo C, de Winther M, Saftig P, Daemen M, Heeneman S, Cleutjens K (2006) Gene profiling of cathepsin K deficiency in atherogenesis: profibrotic but lipogenic. J Pathol 210:334–343

    Article  CAS  PubMed  Google Scholar 

  100. Oorni K, Sneck M, Bromme D, Pentikainen MO, Lindstedt KA, Mayranpaa M, Aitio H, Kovanen PT (2004) Cysteine protease cathepsin F is expressed in human atherosclerotic lesions, is secreted by cultured macrophages, and modifies low density lipoprotein particles in vitro. J Biol Chem 279:34776–34784

    Article  PubMed  CAS  Google Scholar 

  101. Lindstedt L, Lee M, Oorni K, Bromme D, Kovanen PT (2003) Cathepsins F and S block HDL3-induced cholesterol efflux from macrophage foam cells. Biochem Biophys Res Commun 312:1019–1024

    Article  CAS  PubMed  Google Scholar 

  102. Tertov VV, Orekhov AN (1997) Metabolism of native and naturally occurring multiple modified low density lipoprotein in smooth muscle cells of human aortic intima. Exp Mol Pathol 64:127–145

    Article  CAS  PubMed  Google Scholar 

  103. Twining SS (1994) Regulation of proteolytic activity in tissues. Crit Rev Biochem Mol Biol 29:315–383

    Article  CAS  PubMed  Google Scholar 

  104. Cygler M, Sivaraman J, Grochulski P, Coulombe R, Storer AC, Mort JS (1996) Structure of rat procathepsin B: model for inhibition of cysteine protease activity by the proregion. Structure 4:405–416

    Article  CAS  PubMed  Google Scholar 

  105. Coulombe R, Grochulski P, Sivaraman J, Menard R, Mort JS, Cygler M (1996) Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. EMBO J 15:5492–5503

    Google Scholar 

  106. LaLonde JM, Zhao BG, Janson CA, D’Alessio KJ, McQueney MS, Orsini MJ, Debouck CM, Smith WW (1999) The crystal structure of human procathepsin K. Biochemistry 38:862–869

    Google Scholar 

  107. Sivaraman J, Nagler DK, Zhang RL, Menard R, Cygler M (2000) Crystal structure of human procathepsin X: a cysteine protease with the proregion covalently linked to the active site cysteine. J Mol Biol 295:939–951

    Article  CAS  PubMed  Google Scholar 

  108. Nissler K, Kreusch S, Rommerskirch W, Strubel W, Weber E, Wiederanders B (1998) Sorting of non-glycosylated human procathepsin S in mammalian cells. Biol Chem 379:219–224

    Article  CAS  PubMed  Google Scholar 

  109. Nishimura Y, Kawabata T, Furuno K, Kato K (1989) Evidence that aspartic proteinase is involved in the proteolytic processing event of procathepsin L in lysosomes. Arch Biochem Biophys 271:400–406

    Article  CAS  PubMed  Google Scholar 

  110. Mach L, Mort JS, Glossl J (1994) Maturation of human procathepsin B. Proenzyme activation and proteolytic processing of the precursor to the mature proteinase, in vitro, are primarily unimolecular processes. J Biol Chem 269:13030–13035

    CAS  PubMed  Google Scholar 

  111. Rozman J, Stojan J, Kuhelj R, Turk V, Turk B (1999) Autocatalytic processing of recombinant human procathepsin B is a bimolecular process. FEBS Lett 459:358–362

    Article  CAS  PubMed  Google Scholar 

  112. Dahl SW, Halkier T, Lauritzen C, Dolenc I, Pedersen J, Turk V, Turk B (2001) Human recombinant pro-dipeptidyl peptidase I (cathepsin C) can be activated by cathepsins L and S but not by autocatalytic processing. Biochemistry 40:1671–1678

    Article  CAS  PubMed  Google Scholar 

  113. Caglic D, Pungercar JR, Pejler G, Turk V, Turk B (2007) Glycosaminoglycans facilitate procathepsin B activation through disruption of propeptide-mature enzyme interactions. J Biol Chem 282:33076–33085

    Article  CAS  PubMed  Google Scholar 

  114. Fox T, de Miguel E, Mort JS, Storer AC (1992) Potent slow-binding inhibition of cathepsin B by its propeptide. Biochemistry 31:12571–12576

    Article  CAS  PubMed  Google Scholar 

  115. Carmona E, Dufour E, Plouffe C, Takebe S, Mason P, Mort JS, Menard R (1996) Potency sand selectivity of the cathepsin L propeptide as an inhibitor of cysteine proteases. Biochemistry 35:8149–8157

    Article  CAS  PubMed  Google Scholar 

  116. Turk B, Turk D, Turk V (2000) Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta 1477:98–111

    Article  CAS  PubMed  Google Scholar 

  117. Turk V, Turk B, Guncar G, Turk D, Kos J (2002) Lysosomal cathepsins: structure, role in antigen processing and presentation and cancer. Adv Enzyme Regul 4:285–303

    Article  Google Scholar 

  118. Grzonka Z, Jankowska E, Kasprzykowski F, Kasprzykowska R, Lankiewicz L, Wiczk W, Wieczerzak E, Ciarkowski J, Drabik P, Janowski R, Kozak M, Jaskólski M, Grubb A (2001) Structural studies of cysteine proteases and their inhibitor. Acta Biochimica Polonica 48:1–20

    CAS  PubMed  Google Scholar 

  119. Turk B, Turk D, Salvesen GS (2002) Regulating cysteine protease activity: essential role of protease inhibitors as guardians and regulators. Curr Pharm Des 8:1623–1637

    Article  CAS  PubMed  Google Scholar 

  120. Ogrinc T, Dolenc I, Ritonja A, Turk V (1993) Purification of the complex of cathepsin L and the MHC class II-associated invariant chain fragment from human kidney. FEBS Lett 336:555–559

    Article  CAS  PubMed  Google Scholar 

  121. Rawlings ND, Barrett AJ (1990) Evolution of proteins of the cystatin superfamily. J Mol Evol 30:60–71

    Article  CAS  PubMed  Google Scholar 

  122. Abrahamson M, Alvarez-Fernandez M, Nathanson CM (2003) Cystatins. Biochem Soc Symp 70:179–199

    Article  CAS  Google Scholar 

  123. Reynolds JL, Skepper JN, McNair R, Kasama T, Gupta K, Weissberg PL, Jahnen-Dechent W, Shanahan CM (2005) Multifunctional roles for serum protein fetuin-A in inhibition of human vascular smooth muscle cell calcification. J Am Soc Nephrol 16:2920–2930

    Article  CAS  PubMed  Google Scholar 

  124. Jones AL, Hulett MD, Parish CR (2005) Histidine-rich glycoprotein: a novel adaptor protein in plasma that modulates the immune, vascular and coagulation systems. Immunol Cell Biol 83:106–118

    Article  CAS  PubMed  Google Scholar 

  125. Brown WM, Dziegielewska KM (2009) Friends and relations of the cystatin superfamily—new members and their evolution. Protein Sci 6:5–12

    Article  Google Scholar 

  126. Kordis D, Turk V (2009) Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes. BMC Evol Biol 9:266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Turk V, Bode W (1991) The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett 285:213–219

    Article  CAS  PubMed  Google Scholar 

  128. Abrahamson M, Barrett AJ, Salvessen G, Grubb A (1986) Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids. J Biol Chem 261:11282–11289

    CAS  PubMed  Google Scholar 

  129. Lenarcic B, Bevec T (1998) Thyropins—new structurally related proteinase inhibitors. Biol Chem 379:105–111

    CAS  PubMed  Google Scholar 

  130. Bevec T, Stoka V, Pungercic G, Dolenc I, Turk V (1996) Major histocompatibility complex class II-associated p41 invariant chain fragment is a strong inhibitor of lysosomal cathepsin L. J Exp Med 183:1331–1338

    Article  CAS  PubMed  Google Scholar 

  131. Bode W, Engh R, Musil D, Laber B, Stubbs M, Huber R, Turk V (1990) Mechanism of interaction of cysteine proteinases and their proteininhibitors as compared to the serine proteinase–inhibitor interaction. Biol Chem Hoppe-Seyler 371:111–118

    Article  CAS  PubMed  Google Scholar 

  132. Stubbs MT, Laber B, Bode W, Huber R, Jerala R, Lenarcic B, Turk V (1990) The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J 9:1939–1947

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Abrahamson M, Ritonja A, Brown MA, Grubb A, Machleidt W, Barrett AJ (1987) Identification of the probable inhibitory reactive sites of the cysteine proteinase-inhibitors human cystatin C and chicken cystatin. J Biol Chem 262:9688–9694

    CAS  PubMed  Google Scholar 

  134. Cox JM, Troutt JS, Knierman MD, Siegel RW, Qian Y-W, Ackermann BL, Konrad RJ (2012) Determination of cathepsin S abundance and activity in human plasma and implications for clinical investigation. Anal Biochem 430:130–137

    Article  CAS  PubMed  Google Scholar 

  135. Mahmood U, Tung CH, Bogdanov A, Weissleder R (1999) Near-infrared optical imaging of protease activity for tumor detection. Radiology 213:866–870

    Article  CAS  PubMed  Google Scholar 

  136. Grimm J, Kirsch DG, Windsor SD, Kim CFB, Santiago PM, Ntziachristos V, Jacks T, Weissleder R (2005) Use of gene expression profiling to direct in vivo molecular imaging of lung cancer. Proc Natl Acad Sci USA 102:14404–14409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cortez-Retamozo V, Swirski FK, Waterman P, Yuan H, Figueiredo JL, Newton AP, Upadhyay R, Vinegoni C, Kohler R, Blois J et al (2008) Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation. J Clin Invest 118:4058–4066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gounaris E, Tung CH, Restaino C, Maehr R, Kohler R, Joyce JA, Plough HL, Barrett TA, Weissleder R, Khazaie K (2008) Live imaging of cysteine-cathepsin activity reveals dynamics of focal inflammation, angiogenesis, and polyp growth. PLoS One 3:e2916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Watzke A, Kosec G, Kindermann M, Jeske V, Nestler HP, Turk V, Turk B, Wendt KU (2008) Selective activity-based probes for cysteine cathepsins. Angew Chem Int Ed 47:406–409

    Article  CAS  Google Scholar 

  140. Caglič D, Globisch A, Kindermann M, Lim N-H, Jeske V, Juretschke H-P, Bartnik E, Weithmann KU, Nagase H, Turk B et al (2011) Functional in vivo imaging of cysteine cathepsin activity in murine model of inflammation. Bioorg Med Chem 19:1055–1061

    Article  PubMed  CAS  Google Scholar 

  141. Wilkinson RD, Williams R, Scott CJ, Burden RE (2015) Cathepsin S: therapeutic, diagnostic, and prognostic potential. Biol Chem 396:867–882

    Article  CAS  PubMed  Google Scholar 

  142. Cravatt BF, Wright AT, Kozarich JW (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 77:383–414

    Article  CAS  PubMed  Google Scholar 

  143. Blum G, von Degenfeld G, Merchant MJ, Blau HM, Bogyo M (2007) Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity based probes. Nat Chem Biol 3:668–677

    Article  CAS  PubMed  Google Scholar 

  144. Paulick MG, Bogyo M (2011) Development of activity-based probes for cathepsin X. ACS Chem Biol 6:563–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Blum G, Weimer RM, Edgington LE, Adams W, Bogyo M (2009) Comparative assessment of substrates and activity based probes as tools for non-invasive optical imaging of cysteine protease activity. PLoS One 4:e6374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Edgington LE, Verdoes M, Bogyo M (2011) Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes. Curr Opin Chem Biol 15:798–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mikhaylov G, Klimpel D, Schaschke N, Mikac U, Vizovisek M, Fonovic M, Turk V, Turk B, Vasiljeva O (2014) Selective targeting of tumor and stromal cells by a nanocarrier system displaying lipidated cathepsin B inhibitor. Angew Chem Int Ed Engl 53:10077–10081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kirschke H, Barrett AJ, Rawlings ND (1995) Proteinase 1: lysosomal cysteine proteases. Protein profile 2:1582–1643

    Google Scholar 

  149. Chapman HA, Riese RJ, Shi GP (1997) Emerging roles for cysteine protease in human biology. Annu Rev Physiol 59:63–68

    Article  CAS  PubMed  Google Scholar 

  150. Yasuda Y, Kaleta J, Brömme D (2005) The role of cathepsins in osteoporosis and arthritis: rationale for the design of new therapeutics. Adv Drug Deliv Rev 57:973–993

    Article  CAS  PubMed  Google Scholar 

  151. Grabowska U, Chambers TJ, Shiroo M (2005) Recent developments in cathepsin K inhibitor design. Curr Opin Drug Discov Devel 8:619–630

    CAS  Google Scholar 

  152. Premzl A, Zavasnik-Bergant V, Turk V, Kos J (2003) Intracellular and extracellular cathepsin B facilitate invasion of MCF-10A neo T cells through reconstituted extracellular matrix in vitro. Exp Cell Res 283:206–214

    Article  CAS  PubMed  Google Scholar 

  153. Deaton DN, Kumar S (2004) Cathepsin K inhibitors: their potential as anti-osteoporosis agents. Prog Med Chem 42:245–375

    Article  CAS  PubMed  Google Scholar 

  154. Schurigt U (2013) Role of cysteine cathepsins in joint inflammation and destruction in human rheumatoid arthritis and associated animal models. Inflamm Res 61:1021–1029

    Article  CAS  Google Scholar 

  155. Chitra S, Nalini G, Lokeswari TS, Rajasekhar G (2016) The effect of proteasome inhibitor (AM114) on apoptosis in IL-1b-treated peripheral blood macrophage cultured cells from rheumatoid arthritis patients. Ind J Rheum 11:7–13

    Google Scholar 

  156. Murphy G, Nagasse H (2008) Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: destruction or repair? Nat Clin Pract Rheumatol 4:128–135

    Article  CAS  PubMed  Google Scholar 

  157. Lenarcic B, Gabrijelcic D, Rozman B, Drobnic -Kossorok M, Turk V (1988) Human cathepsin B and cysteine proteinase inhibitors (CPIs) in inflammatory and metabolic joint diseases. Biol Chem Hoppe Seyler 369:257–261

    Google Scholar 

  158. Esser RE, Angelo RA, Murphey MD, Watts LM, Thornburg LP, Palmer JT et al (1994) Cysteine proteinase inhibitors decrease articular cartilage and bone destruction in chronic inflammatory arthritis. Arthritis Rheum 37:236–247

    Article  CAS  PubMed  Google Scholar 

  159. Hansen T, Petrow PK, Gaumann A, Keyszer GM, Eysel P, Eckardt A et al (2000) Cathepsin B and its endogenous inhibitor cystatin C in rheumatoid arthritis synovium. J Rheumatol 27:859–865

    CAS  PubMed  Google Scholar 

  160. Keyszer G, Redlich A, Haupl T, Zacher J, Sparmann M, Engethum U et al (1998) Differential expression of cathepsins B and L compared with matrix metalloproteinases and their respective inhibitors in rheumatoid arthritis and osteoarthritis: a parallel investigation by semiquantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry. Arthritis Rheum 41:1378–1387

    Article  CAS  PubMed  Google Scholar 

  161. Lemaire R, Huet G, Zerimech F, Grard G, Fontaine C, Duquesnoy B et al (1997) Selective induction of the secretion of cathepsins B and L by cytokines in synovial fibroblast-like cells. Br J Rheumatol 36:735–743

    Article  CAS  PubMed  Google Scholar 

  162. Etherington DJ, Taylor MA, Henderson B (1988) Elevation of cathepsin L levels in the synovial lining of rabbits with antigen-induced arthritis. Br J Exp Pathol 69:281–289

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Hill PA, Buttle DJ, Jones SJ, Boyde A, Murata M, Reynolds JJ et al (1994) Inhibition of bone resorption by selective inactivators of cysteine proteinases. J Cell Biochem 56:118–130

    Article  CAS  PubMed  Google Scholar 

  164. Schedel J, Seemayer CA, Pap T, Neidhart M, Kuchen S, Michel BA et al (2004) Targeting cathepsin L (CL) by specific ribozymes decreases CL protein synthesis and cartilage destruction in rheumatoid arthritis. Gene Ther 11:1040–1047

    Article  CAS  PubMed  Google Scholar 

  165. Hou WS, Li ZQ, Gordon RE, Chan K, Klein MJ, Levy R, Keysser M, Keyszer G, Bromme D (2001) Cathepsin K is a critical protease in synovial fibroblast-mediated collagen degradation. Am J Pathol 159:2167–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hou WS, Li Z, Keyszer G, Weber E, Levy R, Klein MJ, Gravallese EM, Goldring SR, Bromme D (2002) Comparison of cathepsin K and S expression within the rheumatoid and osteoarthritic synovium. Arthritis Rheum 46:663–674

    Article  CAS  PubMed  Google Scholar 

  167. Skoumal M, Haberhauer G, Kolarz G, Hawa G, Woloszczuk W, Klingler A (2004) Serum cathepsin K levels of patients with longstanding rheumatoid arthritis: correlation with radiological destruction. Arthritis Res Ther 7:R65–R70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Reddy VY, Zhang QY, Weiss SJ (1995) Pericellular mobilization of the tissue-destructive cysteine proteinases, cathepsins B, L, and S, by human monocyte-derived macrophages. Proc Natl Acad Sci USA 92:3849–3853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Nakagawa TY, Brissette WH, Lira PD, Griffiths RJ, Petrushova N, Stock J et al (1999) Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 10:207–217

    Article  CAS  PubMed  Google Scholar 

  170. Biroc SL, Gay S, Hummel K, Magill C, Palmer JT, Spencer DR et al (2001) Cysteine protease activity is up-regulated in inflamed ankle joints of rats with adjuvant-induced arthritis and decreases with in vivo administration of a vinyl sulfone cysteine protease inhibitor. Arthritis Rheum 44:703–711

    Article  CAS  PubMed  Google Scholar 

  171. Brömme D, Okamoto K, Wang BB, Biroc S (1996) Human cathepsin O2, a matrix protein-degrading cysteine protease expressed in osteoclasts. Functional expression of human cathepsin O2 in Spodoptera frugiperda and characterization of the enzyme. J Biol Chem 271:2126–2132

    Article  PubMed  Google Scholar 

  172. Pozgan U, Caglic D, Rozman B, Nagase H, Turk V, Turk B (2010) Expression and activity profiling of selected cysteine cathepsins and matrix metalloproteinases in synovial fluids from patients with rheumatoid arthritis and osteoarthritis. Biol Chem 391:571–579

    Article  CAS  PubMed  Google Scholar 

  173. Weitoft T, Larsson A, Manivel VA, Jorgen L, Knight A, Ronnelid J (2015) Cathepsin S and cathepsin L in serum and synovial fluid in rheumatoid arthritis with and without autoantibodies. Rheumatology 53:1–6

    Google Scholar 

  174. Adkison AM, Raptis SZ, Kelley DG, Pham CT (2002) Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J Clin Invest 109:363–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author acknowledges K.M. Vasanth, Ph.D. research scholar, Department of Biochemistry, SRMC & RI, Sri Ramachandra University, Chennai, India for the technical support rendered for preparing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini Ganesan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ganesan, N. (2017). Cysteine Cathepsins: In Health and Rheumatoid Arthritis. In: Chakraborti, S., Chakraborti, T., Dhalla, N. (eds) Proteases in Human Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-10-3162-5_6

Download citation

Publish with us

Policies and ethics