Skip to main content

A Comparative Assessment of Autoclave and Microwave-Assisted Peroxometal Complex in Delignification of Wood Biomass for Enhanced Sugar Production

  • Conference paper
  • First Online:
Wood is Good

Abstract

For production of biofuels from woody biomass, an initial pretreatment step is required for removal of lignin prior to enzymatic saccharification. In the present study, ameliorating effects of peroxometal complexes on delignification of beech wood have been studied using external (autoclave) heating and microwave irradiation. The results clearly show that ammonium molybdate, when transformed to peroxometal complex by hydrogen peroxide (H2O2), exhibits potent delignification property. The beech wood gave sugar yield of 69 and 41.8% after microwave irradiation and autoclave heating, respectively, under optimized conditions. The results indicate that maximum sugar yield depends upon delignification of biomass as lignin inhibits conversion of cellulose into sugars. It can be concluded that excellent delignifying capability of the H2O2-activated ammonium molybdate system can be achieved through microwave radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agnemo R (2002) Reinforcement of oxygen-containing chemicals with molybdates. J Pulp Pap Sci 28(1):23–25

    CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    Google Scholar 

  • Araque E, Parra C, Freer J, Conteras D, Rodriguez J, Mendonca R, Baeza J (2008) Evaluation of organosolve pretreatment for the conversion of Pinus radiata D. Don Ethanol Enzyme Microb Technol 43(2):214–219

    Article  CAS  Google Scholar 

  • Ballesteros I, Negro MJ, Oliva JM, Cabanas A, Manzanares P, Ballesteros M (2006) Ethanol Production from steam-explosion pretreated wheat straw. Appl Biochem Biotechnol 129–132:496–508

    Article  PubMed  Google Scholar 

  • Chum HL, Overend RP (2001) Biomass and renewable fuels. Fuel Process Technol 71:187–195

    Article  CAS  Google Scholar 

  • Demirbas A (2005) Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sources 27:327–337

    Article  CAS  Google Scholar 

  • Eckert RC (1982) Delignification and bleaching process and solution for lignocellulosic pulp with peroxide in presence of metal Additives. Canadian patent, CA1129161 A1

    Google Scholar 

  • Eggeman T (2001) Ammonia fiber explosion pretreatment for bioethanol production. Submitted to NREL under Subcontract No. LCO-1-31055-01

    Google Scholar 

  • Guo GL, Chen WH, Chen WH, Men LC, Hwang WS (2008) Characterization of dilute acid pretreatment of silvergrass for ethanol production. 99(14):6046–6053

    Google Scholar 

  • Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T (2003) Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotechnol 103(3):273–280

    Article  CAS  PubMed  Google Scholar 

  • Itziar E, Cristina S, Iñaki M, Jalel L (2012) Effect of alkaline and auto-hydrolysis processes on the purity of obtained hemicelluloses from corn stalks. Bioresour Technol 103(1):239–248

    Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26(4):61–375

    Article  Google Scholar 

  • Kubelka V, Francis RC, Dence CW (1992) Delignification with acidic hydrogen peroxide activated by molybdate. J Pulp Pap Sci 18(3):108–114

    Google Scholar 

  • Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56(1):1–24

    Article  CAS  PubMed  Google Scholar 

  • Mcaloon A, Taylor F, Yee W, Ibsen K, Wooley R (2002) Determining the cost of producing ethanol from corn starch and lignocellulosic feedstock’s, Technical Report NREL/TP-580-28893

    Google Scholar 

  • Mosier N, Wyman C, Dale BE, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  CAS  PubMed  Google Scholar 

  • Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feed stocks. Bioresour Technol 99(13):5270–5295

    Article  CAS  PubMed  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37(1):19–27

    Article  CAS  Google Scholar 

  • Sindhu R, Binod P, Pandey A (2015) Biological pretreatment of lignocellulosic biomass—an overview. Bioresour Technol. In press Doi:10.1016/j.biortech.2015.08.030

  • Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23

    CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Watanabe T, Honda Y, Watanabe T (2011) Microwave assisted pretreatment of woody biomass with ammonium molybdate activated by H2O2. Bioresour Technol 102:3941–3945

    Article  CAS  PubMed  Google Scholar 

  • William EK, Holtzapple MT (2000) Using lime pretreatment to facilitate the enzyme hydrolysis of corn stover. Biomass Bioenergy 18(3):189–199

    Article  Google Scholar 

  • Wyman CE (2003) Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power. Biotechnol Prog 19(2):254–262

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Verma, P., Chaturvedi, V. (2017). A Comparative Assessment of Autoclave and Microwave-Assisted Peroxometal Complex in Delignification of Wood Biomass for Enhanced Sugar Production. In: Pandey, K., Ramakantha, V., Chauhan, S., Arun Kumar, A. (eds) Wood is Good. Springer, Singapore. https://doi.org/10.1007/978-981-10-3115-1_35

Download citation

Publish with us

Policies and ethics