Skip to main content

The Role of VEGF in the Extremities

  • Chapter
  • First Online:
Therapeutic Angiogenesis

Abstract

Vascular endothelial growth factor (VEGF) is a pro-angiogenic cytokine that has a strong stimulatory effect on endothelial cell proliferation and migration. The use of VEGF in treating vascular conditions affecting the extremities, such as peripheral artery disease (PAD) and critical limb ischemia (CLI), has been studied in both basic research and clinical settings for over 30 years. In this chapter, we will discuss the animal models and applied treatments that have been attempted in this arena, with an emphasis on clinical translation. Novel combined treatments pairing cellular therapy with VEGF gene therapy will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219(4587):983–5.

    Article  CAS  PubMed  Google Scholar 

  2. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol. 1995;146(5):1029–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev. 2004;56(4):549–80. doi:10.1124/pr.56.4.3.

    Article  CAS  PubMed  Google Scholar 

  4. Ogawa S, Oku A, Sawano A, Yamaguchi S, Yazaki Y, Shibuya M. A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J Biol Chem. 1998;273(47):31273–82.

    Article  CAS  PubMed  Google Scholar 

  5. Yamazaki Y, Matsunaga Y, Tokunaga Y, Obayashi S, Saito M, Morita T. Snake venom vascular endothelial growth factors (VEGF-Fs) exclusively vary their structures and functions among species. J Biol Chem. 2009;284(15):9885–91. doi:10.1074/jbc.M809071200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18(1):4–25. doi:10.1210/edrv.18.1.0287.

    Article  CAS  PubMed  Google Scholar 

  7. Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med. 2005;9(4):777–94.

    Article  CAS  PubMed  Google Scholar 

  8. Takeshita S, Pu LQ, Stein LA, Sniderman AD, Bunting S, Ferrara N, et al. Intramuscular administration of vascular endothelial growth factor induces dose-dependent collateral artery augmentation in a rabbit model of chronic limb ischemia. Circulation. 1994;90(5 Pt 2):II228–34.

    CAS  PubMed  Google Scholar 

  9. Asahara T, Bauters C, Zheng LP, Takeshita S, Bunting S, Ferrara N, et al. Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation. 1995;92(9 Suppl):II365–71.

    Article  CAS  PubMed  Google Scholar 

  10. Asahara T, Chen D, Tsurumi Y, Kearney M, Rossow S, Passeri J, et al. Accelerated restitution of endothelial integrity and endothelium-dependent function after phVEGF165 gene transfer. Circulation. 1996;94(12):3291–302.

    Article  CAS  PubMed  Google Scholar 

  11. Asahara T, Bauters C, Pastore C, Kearney M, Rossow S, Bunting S, et al. Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasia in balloon-injured rat carotid artery. Circulation. 1995;91(11):2793–801.

    Article  CAS  PubMed  Google Scholar 

  12. Laitinen M, Zachary I, Breier G, Pakkanen T, Hakkinen T, Luoma J, et al. VEGF gene transfer reduces intimal thickening via increased production of nitric oxide in carotid arteries. Hum Gene Ther. 1997;8(15):1737–44. doi:10.1089/hum.1997.8.15-1737.

    Article  CAS  PubMed  Google Scholar 

  13. Takeshita S, Gal D, Leclerc G, Pickering JG, Riessen R, Weir L, et al. Increased gene expression after liposome-mediated arterial gene transfer associated with intimal smooth muscle cell proliferation. In vitro and in vivo findings in a rabbit model of vascular injury. J Clin Invest. 1994;93(2):652–61. doi:10.1172/JCI117017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsurumi Y, Takeshita S, Chen D, Kearney M, Rossow ST, Passeri J, et al. Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation. 1996;94(12):3281–90.

    Article  CAS  PubMed  Google Scholar 

  15. Mack CA, Magovern CJ, Budenbender KT, Patel SR, Schwarz EA, Zanzonico P, et al. Salvage angiogenesis induced by adenovirus-mediated gene transfer of vascular endothelial growth factor protects against ischemic vascular occlusion. J Vasc Surg. 1998;27(4):699–709.

    Article  CAS  PubMed  Google Scholar 

  16. Shima DT, Deutsch U, D’Amore PA. Hypoxic induction of vascular endothelial growth factor (VEGF) in human epithelial cells is mediated by increases in mRNA stability. FEBS Lett. 1995;370(3):203–8.

    Article  CAS  PubMed  Google Scholar 

  17. Levy AP, Levy NS, Wegner S, Goldberg MA. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem. 1995;270(22):13333–40.

    Article  CAS  PubMed  Google Scholar 

  18. Levy NS, Chung S, Furneaux H, Levy AP. Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem. 1998;273(11):6417–23.

    Article  CAS  PubMed  Google Scholar 

  19. Stein I, Neeman M, Shweiki D, Itin A, Keshet E. Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol Cell Biol. 1995;15(10):5363–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246(4935):1306–9.

    Article  CAS  PubMed  Google Scholar 

  21. Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, et al. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest. 1998;101(11):2567–78. doi:10.1172/JCI1560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qian HS, Liu P, Huw LY, Orme A, Halks-Miller M, Hill SM, et al. Effective treatment of vascular endothelial growth factor refractory hindlimb ischemia by a mutant endothelial nitric oxide synthase gene. Gene Ther. 2006;13(18):1342–50. doi:10.1038/sj.gt.3302781.

    Article  CAS  PubMed  Google Scholar 

  23. Fukino K, Sata M, Seko Y, Hirata Y, Nagai R. Genetic background influences therapeutic effectiveness of VEGF. Biochem Biophys Res Commun. 2003;310(1):143–7.

    Article  CAS  PubMed  Google Scholar 

  24. Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci. 2001;114(Pt 5):853–65.

    CAS  PubMed  Google Scholar 

  25. Gowdak LH, Poliakova L, Wang X, Kovesdi I, Fishbein KW, Zacheo A, et al. Adenovirus-mediated VEGF(121) gene transfer stimulates angiogenesis in normoperfused skeletal muscle and preserves tissue perfusion after induction of ischemia. Circulation. 2000;102(5):565–71.

    Article  CAS  PubMed  Google Scholar 

  26. Ozawa CR, Banfi A, Glazer NL, Thurston G, Springer ML, Kraft PE, et al. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest. 2004;113(4):516–27. doi:10.1172/JCI18420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tafuro S, Ayuso E, Zacchigna S, Zentilin L, Moimas S, Dore F, et al. Inducible adeno-associated virus vectors promote functional angiogenesis in adult organisms via regulated vascular endothelial growth factor expression. Cardiovasc Res. 2009;83(4):663–71. doi:10.1093/cvr/cvp152.

    Article  CAS  PubMed  Google Scholar 

  28. Alfranca A. VEGF therapy: a timely retreat. Cardiovasc Res. 2009;83(4):611–2. doi:10.1093/cvr/cvp228.

    Article  CAS  PubMed  Google Scholar 

  29. Boden J, Lassance-Soares RM, Wang H, Wei Y, Spiga MG, Adi J, et al. Vascular regeneration in ischemic hindlimb by adeno-associated virus expressing conditionally silenced vascular endothelial growth factor. J Am Heart Assoc. 2016;5(6):e001815. doi:10.1161/JAHA.115.001815.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.

    Article  CAS  PubMed  Google Scholar 

  31. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A. 2000;97(7):3422–7. doi:10.1073/pnas.070046397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation. 2002;105(6):732–8.

    Article  CAS  PubMed  Google Scholar 

  33. Adams WJ, Zhang Y, Cloutier J, Kuchimanchi P, Newton G, Sehrawat S, et al. Functional vascular endothelium derived from human induced pluripotent stem cells. Stem Cell Rep. 2013;1(2):105–13. doi:10.1016/j.stemcr.2013.06.007.

    Article  CAS  Google Scholar 

  34. Fujiwara M, Yan P, Otsuji TG, Narazaki G, Uosaki H, Fukushima H, et al. Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with cyclosporin-A. PLoS One. 2011;6(2):e16734. doi:10.1371/journal.pone.0016734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yoder MC. Differentiation of pluripotent stem cells into endothelial cells. Curr Opin Hematol. 2015;22(3):252–7. doi:10.1097/MOH.0000000000000140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Isner JM, Walsh K, Symes J, Pieczek A, Takeshita S, Lowry J, et al. Arterial gene transfer for therapeutic angiogenesis in patients with peripheral artery disease. Hum Gene Ther. 1996;7(8):959–88. doi:10.1089/hum.1996.7.8-959.

    Article  CAS  PubMed  Google Scholar 

  37. Isner JM, Pieczek A, Schainfeld R, Blair R, Haley L, Asahara T, et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet. 1996;348(9024):370–4.

    Article  CAS  PubMed  Google Scholar 

  38. Eskelinen E, Lepantalo M, Hietala EM, Sell H, Kauppila L, Maenpaa I, et al. Lower limb amputations in Southern Finland in 2000 and trends up to 2001. Eur J Vasc Endovasc Surg. 2004;27(2):193–200. doi:10.1016/j.ejvs.2003.10.011.

    Article  CAS  PubMed  Google Scholar 

  39. Brandao D, Costa C, Canedo A, Vaz G, Pignatelli D. Endogenous vascular endothelial growth factor and angiopoietin-2 expression in critical limb ischemia. Int Angiol. 2011;30(1):25–34.

    CAS  PubMed  Google Scholar 

  40. Bleda S, de Haro J, Acin F, Varela C, Esparza L. Enhanced vascular endothelial growth factor gene expression in ischaemic skin of critical limb ischaemia patients. Int J Vasc Med. 2012;2012:691528. doi:10.1155/2012/691528.

    PubMed  PubMed Central  Google Scholar 

  41. Baumgartner I, Pieczek A, Manor O, Blair R, Kearney M, Walsh K, et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation. 1998;97(12):1114–23.

    Article  CAS  PubMed  Google Scholar 

  42. Isner JM, Baumgartner I, Rauh G, Schainfeld R, Blair R, Manor O, et al. Treatment of thromboangiitis obliterans (Buerger’s disease) by intramuscular gene transfer of vascular endothelial growth factor: preliminary clinical results. J Vasc Surg. 1998;28(6):964–73; discussion 73–5.

    Google Scholar 

  43. Kim HJ, Jang SY, Park JI, Byun J, Kim DI, Do YS, et al. Vascular endothelial growth factor-induced angiogenic gene therapy in patients with peripheral artery disease. Exp Mol Med. 2004;36(4):336–44. doi:10.1038/emm.2004.44.

    Article  CAS  PubMed  Google Scholar 

  44. Lee Y, Park EJ, Yu SS, Kim DK, Kim S. Improved expression of vascular endothelial growth factor by naked DNA in mouse skeletal muscles: implication for gene therapy of ischemic diseases. Biochem Biophys Res Commun. 2000;272(1):230–5. doi:10.1006/bbrc.2000.2758.

    Article  CAS  PubMed  Google Scholar 

  45. Shyu KG, Chang H, Wang BW, Kuan P. Intramuscular vascular endothelial growth factor gene therapy in patients with chronic critical leg ischemia. Am J Med. 2003;114(2):85–92.

    Article  CAS  PubMed  Google Scholar 

  46. Baumgartner I, Rauh G, Pieczek A, Wuensch D, Magner M, Kearney M, et al. Lower-extremity edema associated with gene transfer of naked DNA encoding vascular endothelial growth factor. Ann Intern Med. 2000;132(11):880–4.

    Article  CAS  PubMed  Google Scholar 

  47. Kusumanto YH, van Weel V, Mulder NH, Smit AJ, van den Dungen JJ, Hooymans JM, et al. Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial. Hum Gene Ther. 2006;17(6):683–91. doi:10.1089/hum.2006.17.683.

    Article  CAS  PubMed  Google Scholar 

  48. Deev RV, Bozo IY, Mzhavanadze ND, Voronov DA, Gavrilenko AV, Chervyakov YV, et al. pCMV-vegf165 intramuscular gene transfer is an effective method of treatment for patients with chronic lower limb ischemia. J Cardiovasc Pharmacol Ther. 2015;20(5):473–82. doi:10.1177/1074248415574336.

    Article  CAS  PubMed  Google Scholar 

  49. Skora J, Pupka A, Janczak D, Barc P, Dawiskiba T, Korta K, et al. Combined autologous bone marrow mononuclear cell and gene therapy as the last resort for patients with critical limb ischemia. Arch Med Sci. 2015;11(2):325–31. doi:10.5114/aoms.2013.39935.

    Article  PubMed  Google Scholar 

  50. Rajagopalan S, Trachtenberg J, Mohler E, Olin J, McBride S, Pak R, et al. Phase I study of direct administration of a replication deficient adenovirus vector containing the vascular endothelial growth factor cDNA (CI-1023) to patients with claudication. Am J Cardiol. 2002;90(5):512–6.

    Article  CAS  PubMed  Google Scholar 

  51. Mohler 3rd ER, Rajagopalan S, Olin JW, Trachtenberg JD, Rasmussen H, Pak R, et al. Adenoviral-mediated gene transfer of vascular endothelial growth factor in critical limb ischemia: safety results from a phase I trial. Vasc Med. 2003;8(1):9–13.

    Article  PubMed  Google Scholar 

  52. Rajagopalan S, Mohler 3rd E, Lederman RJ, Saucedo J, Mendelsohn FO, Olin J, et al. Regional angiogenesis with vascular endothelial growth factor (VEGF) in peripheral arterial disease: design of the RAVE trial. Am Heart J. 2003;145(6):1114–8. doi:10.1016/S0002-8703(03)00102-9.

    Article  CAS  PubMed  Google Scholar 

  53. Xu D, Fuster MM, Lawrence R, Esko JD. Heparan sulfate regulates VEGF165- and VEGF121-mediated vascular hyperpermeability. J Biol Chem. 2011;286(1):737–45. doi:10.1074/jbc.M110.177006.

    Article  CAS  PubMed  Google Scholar 

  54. Berger JS, Hiatt WR. Medical therapy in peripheral artery disease. Circulation. 2012;126(4):491–500. doi:10.1161/CIRCULATIONAHA.111.033886.

    Article  PubMed  Google Scholar 

  55. Makinen K, Manninen H, Hedman M, Matsi P, Mussalo H, Alhava E, et al. Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: a randomized, placebo-controlled, double-blinded phase II study. Mol Ther. 2002;6(1):127–33. doi:10.1006/mthe.2002.0638.

    Article  CAS  PubMed  Google Scholar 

  56. Waters RE, Terjung RL, Peters KG, Annex BH. Preclinical models of human peripheral arterial occlusive disease: implications for investigation of therapeutic agents. J Appl Physiol (1985). 2004;97(2):773–80. doi:10.1152/japplphysiol.00107.2004.

    Article  CAS  Google Scholar 

  57. Simovic D, Isner JM, Ropper AH, Pieczek A, Weinberg DH. Improvement in chronic ischemic neuropathy after intramuscular phVEGF165 gene transfer in patients with critical limb ischemia. Arch Neurol. 2001;58(5):761–8.

    Article  CAS  PubMed  Google Scholar 

  58. Schratzberger P, Walter DH, Rittig K, Bahlmann FH, Pola R, Curry C, et al. Reversal of experimental diabetic neuropathy by VEGF gene transfer. J Clin Invest. 2001;107(9):1083–92. doi:10.1172/JCI12188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Veves A, King GL. Can VEGF reverse diabetic neuropathy in human subjects? J Clin Invest. 2001;107(10):1215–8. doi:10.1172/JCI13038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sakurai F, Nishioka T, Saito H, Baba T, Okuda A, Matsumoto O, et al. Interaction between DNA-cationic liposome complexes and erythrocytes is an important factor in systemic gene transfer via the intravenous route in mice: the role of the neutral helper lipid. Gene Ther. 2001;8(9):677–86. doi:10.1038/sj.gt.3301460.

    Article  CAS  PubMed  Google Scholar 

  61. Trivedi RA, Dickson G. Liposome-mediated gene transfer into normal and dystrophin-deficient mouse myoblasts. J Neurochem. 1995;64(5):2230–8.

    Article  CAS  PubMed  Google Scholar 

  62. Phelps EA, Landazuri N, Thule PM, Taylor WR, Garcia AJ. Bioartificial matrices for therapeutic vascularization. Proc Natl Acad Sci U S A. 2010;107(8):3323–8. doi:10.1073/pnas.0905447107.

    Article  CAS  PubMed  Google Scholar 

  63. Sacchi V, Mittermayr R, Hartinger J, Martino MM, Lorentz KM, Wolbank S, et al. Long-lasting fibrin matrices ensure stable and functional angiogenesis by highly tunable, sustained delivery of recombinant VEGF164. Proc Natl Acad Sci U S A. 2014;111(19):6952–7. doi:10.1073/pnas.1404605111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thomas AM, Gomez AJ, Palma JL, Yap WT, Shea LD. Heparin-chitosan nanoparticle functionalization of porous poly(ethylene glycol) hydrogels for localized lentivirus delivery of angiogenic factors. Biomaterials. 2014;35(30):8687–93. doi:10.1016/j.biomaterials.2014.06.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Baumgartner I. Intramuscular vascular endothelial growth factor gene therapy: fact or fiction? Am J Med. 2003;114(2):156–7.

    Article  PubMed  Google Scholar 

  66. Brinkhuizen T, Weijzen CA, Eben J, Thissen MR, van Marion AM, Lohman BG, et al. Immunohistochemical analysis of the mechanistic target of rapamycin and hypoxia signalling pathways in basal cell carcinoma and trichoepithelioma. PLoS One. 2014;9(9):e106427. doi:10.1371/journal.pone.0106427.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Shyu KG, Chang H, Isner JM. Synergistic effect of angiopoietin-1 and vascular endothelial growth factor on neoangiogenesis in hypercholesterolemic rabbit model with acute hindlimb ischemia. Life Sci. 2003;73(5):563–79.

    Article  CAS  PubMed  Google Scholar 

  68. Chen F, Tan Z, Dong CY, Chen X, Guo SF. Adeno-associated virus vectors simultaneously encoding VEGF and angiopoietin-1 enhances neovascularization in ischemic rabbit hind-limbs. Acta Pharmacol Sin. 2007;28(4):493–502. doi:10.1111/j.1745-7254.2007.00527.x.

    Article  PubMed  Google Scholar 

  69. Grossman PM, Mohler 3rd ER, Roessler BJ, Wilensky RL, Levine BL, Woo EY, et al. Phase I study of multi-gene cell therapy in patients with peripheral artery disease. Vasc Med. 2016;21(1):21–32. doi:10.1177/1358863X15612148.

    Article  CAS  PubMed  Google Scholar 

  70. Flugelman MY, Halak M, Yoffe B, Schneiderman J, Rubinstein C, Bloom AI, et al. Phase Ib safety, two-dose study of multigeneangio in patients with chronic critical limb ischemia. Mol Ther. 2017;25(3):816–25. doi:10.1016/j.ymthe.2016.12.019.

    Article  CAS  PubMed  Google Scholar 

  71. Anisimov A, Tvorogov D, Alitalo A, Leppanen VM, An Y, Han EC, et al. Vascular endothelial growth factor-angiopoietin chimera with improved properties for therapeutic angiogenesis. Circulation. 2013;127(4):424–34. doi:10.1161/CIRCULATIONAHA.112.127472.

    Article  CAS  PubMed  Google Scholar 

  72. D’Andrea LD, Iaccarino G, Fattorusso R, Sorriento D, Carannante C, Capasso D, et al. Targeting angiogenesis: structural characterization and biological properties of a de novo engineered VEGF mimicking peptide. Proc Natl Acad Sci U S A. 2005;102(40):14215–20. doi:10.1073/pnas.0505047102.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Santulli G, Ciccarelli M, Palumbo G, Campanile A, Galasso G, Ziaco B, et al. In vivo properties of the proangiogenic peptide QK. J Transl Med. 2009;7:41. doi:10.1186/1479-5876-7-41.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Finetti F, Basile A, Capasso D, Di Gaetano S, Di Stasi R, Pascale M, et al. Functional and pharmacological characterization of a VEGF mimetic peptide on reparative angiogenesis. Biochem Pharmacol. 2012;84(3):303–11. doi:10.1016/j.bcp.2012.04.011.

    Article  CAS  PubMed  Google Scholar 

  75. Webber MJ, Tongers J, Newcomb CJ, Marquardt KT, Bauersachs J, Losordo DW, et al. Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. Proc Natl Acad Sci U S A. 2011;108(33):13438–43. doi:10.1073/pnas.1016546108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun. 2015;6:6244. doi:10.1038/ncomms7244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kabadi AM, Ousterout DG, Hilton IB, Gersbach CA. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res. 2014;42(19):e147. doi:10.1093/nar/gku749.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. CRISPR RNA-guided activation of endogenous human genes. Nat Methods. 2013;10(10):977–9. doi:10.1038/nmeth.2598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Maeder ML, Linder SJ, Reyon D, Angstman JF, Fu Y, Sander JD, et al. Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods. 2013;10(3):243–5. doi:10.1038/nmeth.2366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang Y, Zhang X, Yi L, Hou Z, Chen J, Kou X, et al. Naive induced pluripotent stem cells generated from beta-thalassemia fibroblasts allow efficient gene correction with CRISPR/Cas9. Stem Cells Transl Med. 2016;5(1):8–19. doi:10.5966/sctm.2015-0157.

    Article  CAS  PubMed  Google Scholar 

  81. Firth AL, Menon T, Parker GS, Qualls SJ, Lewis BM, Ke E, et al. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep. 2015;12(9):1385–90. doi:10.1016/j.celrep.2015.07.062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cantas Alev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

McIntyre, B.A.S., Asahara, T., Alev, C. (2017). The Role of VEGF in the Extremities. In: Higashi, Y., Murohara, T. (eds) Therapeutic Angiogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-10-2744-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2744-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2743-7

  • Online ISBN: 978-981-10-2744-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics