Skip to main content

Exercise

  • Chapter
  • First Online:
Therapeutic Angiogenesis

Abstract

Supervised exercise training has been recommended as first-line therapy for treatment of peripheral artery disease (PAD) patients with intermittent claudication. Capillary growth in skeletal muscle by angiogenesis is thought to be one of the possible mechanisms underlying the improvement of exercise performance and walking ability by exercise training in patients with PAD. Under normal conditions, exercise training has been demonstrated to increase the capillarity of active muscle. Exercise-induced increase in blood flow and tissue stretch has been proposed as important stimuli for angiogenesis in skeletal muscle. It is postulated that an increase in shear stress with increased blood flow and passive stretch primarily induces angiogenesis by longitudinal division of the vessel and sprouting angiogenesis, respectively. Vascular endothelial growth factor (VEGF) is recognized as the central pro-angiogenic factor strongly associated with angiogenesis. Exercise training induces angiogenesis through activation of various factors, including nitric oxide (NO), hypoxia-inducible factor-1α, and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), through VEGF expression. However, PAD has been reported to be associated with reduced NO bioavailability represented by endothelial dysfunction or reduced PGC-1α expression in skeletal muscle. Therefore, it remains unclear whether similar mechanisms or angiogenic factors are involved in exercise-induced angiogenesis under normal and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. 2006;113(11):e463–654. doi:10.1161/CIRCULATIONAHA.106.174526.

    Article  PubMed  Google Scholar 

  2. Fakhry F, van de Luijtgaarden KM, Bax L, den Hoed PT, Hunink MG, Rouwet EV, et al. Supervised walking therapy in patients with intermittent claudication. J Vasc Surg. 2012;56(4):1132–42. doi:10.1016/j.jvs.2012.04.046.

    Article  PubMed  Google Scholar 

  3. McDermott MM, Ades P, Guralnik JM, Dyer A, Ferrucci L, Liu K, et al. Treadmill exercise and resistance training in patients with peripheral arterial disease with and without intermittent claudication: a randomized controlled trial. JAMA. 2009;301(2):165–74. doi:10.1001/jama.2008.962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Watson L, Ellis B, Leng GC. Exercise for intermittent claudication. Cochrane Database Syst Rev. 2008;(4):CD000990. doi:10.1002/14651858.CD000990.pub2.

  5. Spronk S, Bosch JL, den Hoed PT, Veen HF, Pattynama PM, Hunink MG. Intermittent claudication: clinical effectiveness of endovascular revascularization versus supervised hospital-based exercise training--randomized controlled trial. Radiology. 2009;250(2):586–95. doi:10.1148/radiol.2501080607.

    Article  PubMed  Google Scholar 

  6. McAllister RM, Terjung RL. Training-induced muscle adaptations: increased performance and oxygen consumption. J Appl Physiol (1985). 1991;70(4):1569–74.

    CAS  Google Scholar 

  7. Bebout DE, Hogan MC, Hempleman SC, Wagner PD. Effects of training and immobilization on VO2 and DO2 in dog gastrocnemius muscle in situ. J Appl Physiol (1985). 1993;74(4):1697–703.

    CAS  Google Scholar 

  8. Saltin B, Nazar K, Costill DL, Stein E, Jansson E, Essen B, et al. The nature of the training response; peripheral and central adaptations of one-legged exercise. Acta Physiol Scand. 1976;96(3):289–305. doi:10.1111/j.1748-1716.1976.tb10200.x.

    Article  CAS  PubMed  Google Scholar 

  9. Booth FW, Thomason DB. Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiol Rev. 1991;71(2):541–85.

    CAS  PubMed  Google Scholar 

  10. Krogh A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol. 1919;52(6):409–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krogh A. The supply of oxygen to the tissues and the regulation of the capillary circulation. J Physiol. 1919;52(6):457–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hudlicka O, Brown M, Egginton S. Angiogenesis in skeletal and cardiac muscle. Physiol Rev. 1992;72(2):369–417.

    CAS  PubMed  Google Scholar 

  13. Carrow RE, Brown RE, Van Huss WD. Fiber sizes and capillary to fiber ratios in skeletal muscle of exercised rats. Anat Rec. 1967;159(1):33–9. doi:10.1002/ar.1091590106.

    Article  CAS  PubMed  Google Scholar 

  14. Adolfsson J, Ljungqvist A, Tornling G, Unge G. Capillary increase in the skeletal muscle of trained young and adult rats. J Physiol. 1981;310:529–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mai JV, Edgerton VR, Barnard RJ. Capillarity of red, white and intermediate muscle fibers in trained and untrained guinea pigs. Experientia. 1970;26(11):1222–3.

    Article  CAS  PubMed  Google Scholar 

  16. Andersen P. Capillary density in skeletal muscle of man. Acta Physiol Scand. 1975;95(2):203–5. doi:10.1111/j.1748-1716.1975.tb10043.x.

    Article  CAS  PubMed  Google Scholar 

  17. Andersen P, Henriksson J. Capillary supply of the quadriceps femoris muscle of man: adaptive response to exercise. J Physiol. 1977;270(3):677–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ingjer F. Effects of endurance training on muscle fibre ATP-ase activity, capillary supply and mitochondrial content in man. J Physiol. 1979;294:419–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Frandsen U, Hoffner L, Betak A, Saltin B, Bangsbo J, Hellsten Y. Endurance training does not alter the level of neuronal nitric oxide synthase in human skeletal muscle. J Appl Physiol (1985). 2000;89(3):1033–8.

    CAS  Google Scholar 

  20. Hoier B, Nordsborg N, Andersen S, Jensen L, Nybo L, Bangsbo J, et al. Pro- and anti-angiogenic factors in human skeletal muscle in response to acute exercise and training. J Physiol. 2012;590(3):595–606. doi:10.1113/jphysiol.2011.216135.

    Article  CAS  PubMed  Google Scholar 

  21. Richardson RS, Wagner H, Mudaliar SR, Saucedo E, Henry R, Wagner PD. Exercise adaptation attenuates VEGF gene expression in human skeletal muscle. Am J Physiol Heart Circ Physiol. 2000;279(2):H772–8.

    CAS  PubMed  Google Scholar 

  22. Klausen K, Andersen LB, Pelle I. Adaptive changes in work capacity, skeletal muscle capillarization and enzyme levels during training and detraining. Acta Physiol Scand. 1981;113(1):9–16. doi:10.1111/j.1748-1716.1981.tb06854.x.

    Article  CAS  PubMed  Google Scholar 

  23. Salmons S, Henriksson J. The adaptive response of skeletal muscle to increased use. Muscle Nerve. 1981;4(2):94–105. doi:10.1002/mus.880040204.

    Article  CAS  PubMed  Google Scholar 

  24. Tesch PA, Thorsson A, Kaiser P. Muscle capillary supply and fiber type characteristics in weight and power lifters. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(1):35–8.

    CAS  PubMed  Google Scholar 

  25. Luthi JM, Howald H, Claassen H, Rosler K, Vock P, Hoppeler H. Structural changes in skeletal muscle tissue with heavy-resistance exercise. Int J Sports Med. 1986;7(3):123–7. doi:10.1055/s-2008-1025748.

    Article  CAS  PubMed  Google Scholar 

  26. Gavin TP, Drew JL, Kubik CJ, Pofahl WE, Hickner RC. Acute resistance exercise increases skeletal muscle angiogenic growth factor expression. Acta Physiol (Oxf). 2007;191(2):139–46. doi:10.1111/j.1748-1716.2007.01723.x.

    Article  CAS  Google Scholar 

  27. Jensen L, Bangsbo J, Hellsten Y. Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. J Physiol. 2004;557(Pt 2):571–82. doi:10.1113/jphysiol.2003.057711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hansen-Smith FM, Hudlicka O, Egginton S. In vivo angiogenesis in adult rat skeletal muscle: early changes in capillary network architecture and ultrastructure. Cell Tissue Res. 1996;286(1):123–36.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou AL, Egginton S, Brown MD, Hudlicka O. Capillary growth in overloaded, hypertrophic adult rat skeletal muscle: an ultrastructural study. Anat Rec. 1998;252(1):49–63.

    Article  CAS  PubMed  Google Scholar 

  30. Egginton S, Zhou AL, Brown MD, Hudlicka O. Unorthodox angiogenesis in skeletal muscle. Cardiovasc Res. 2001;49(3):634–46.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou A, Egginton S, Hudlicka O, Brown MD. Internal division of capillaries in rat skeletal muscle in response to chronic vasodilator treatment with alpha1-antagonist prazosin. Cell Tissue Res. 1998;293(2):293–303.

    Article  CAS  PubMed  Google Scholar 

  32. Djonov V, Baum O, Burri PH. Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res. 2003;314(1):107–17. doi:10.1007/s00441-003-0784-3.

    Article  PubMed  Google Scholar 

  33. Prior BM, Yang HT, Terjung RL. What makes vessels grow with exercise training? J Appl Physiol (1985). 2004;97(3):1119–28. doi:10.1152/japplphysiol.00035.2004.

    Article  Google Scholar 

  34. Hudlicka O. Is physiological angiogenesis in skeletal muscle regulated by changes in microcirculation? Microcirculation. 1998;5(1):7–23.

    Article  CAS  PubMed  Google Scholar 

  35. Chien S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol. 2007;292(3):H1209–24. doi:10.1152/ajpheart.01047.2006.

    Article  CAS  PubMed  Google Scholar 

  36. Rivilis I, Milkiewicz M, Boyd P, Goldstein J, Brown MD, Egginton S, et al. Differential involvement of MMP-2 and VEGF during muscle stretch- versus shear stress-induced angiogenesis. Am J Physiol Heart Circ Physiol. 2002;283(4):H1430–8. doi:10.1152/ajpheart.00082.2002.

    Article  CAS  PubMed  Google Scholar 

  37. Resnick N, Yahav H, Shay-Salit A, Shushy M, Schubert S, Zilberman LC, et al. Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol. 2003;81(3):177–99.

    Article  PubMed  Google Scholar 

  38. Heil M, Schaper W. Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis). Circ Res. 2004;95(5):449–58. doi:10.1161/01.RES.0000141145.78900.44.

    Article  CAS  PubMed  Google Scholar 

  39. Silver AE, Vita JA. Shear-stress-mediated arterial remodeling in atherosclerosis: too much of a good thing? Circulation. 2006;113(24):2787–9. doi:10.1161/CIRCULATIONAHA.106.634378.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tornling G, Adolfsson J, Unge G, Ljungqvist A. Capillary neoformation in skeletal muscle of dipyridamole-treated rats. Arzneimittelforschung. 1980;30(5):791–2.

    CAS  PubMed  Google Scholar 

  41. Dawson JM, Hudlicka O. The effects of long term administration of prazosin on the microcirculation in skeletal muscles. Cardiovasc Res. 1989;23(11):913–20.

    Article  CAS  PubMed  Google Scholar 

  42. Roca J, Gavin TP, Jordan M, Siafakas N, Wagner H, Benoit H, et al. Angiogenic growth factor mRNA responses to passive and contraction-induced hyperperfusion in skeletal muscle. J Appl Physiol (1985). 1998;85(3):1142–9.

    CAS  Google Scholar 

  43. Williams JL, Cartland D, Hussain A, Egginton S. A differential role for nitric oxide in two forms of physiological angiogenesis in mouse. J Physiol. 2006;570(Pt 3):445–54. doi:10.1113/jphysiol.2005.095596.

    Article  CAS  PubMed  Google Scholar 

  44. Milkiewicz M, Kelland C, Colgan S, Haas TL. Nitric oxide and p38 MAP kinase mediate shear stress-dependent inhibition of MMP-2 production in microvascular endothelial cells. J Cell Physiol. 2006;208(1):229–37. doi:10.1002/jcp.20658.

    Article  CAS  PubMed  Google Scholar 

  45. Yun S, Dardik A, Haga M, Yamashita A, Yamaguchi S, Koh Y, et al. Transcription factor Sp1 phosphorylation induced by shear stress inhibits membrane type 1-matrix metalloproteinase expression in endothelium. J Biol Chem. 2002;277(38):34808–14. doi:10.1074/jbc.M205417200.

    Article  CAS  PubMed  Google Scholar 

  46. Williams JL, Weichert A, Zakrzewicz A, Da Silva-Azevedo L, Pries AR, Baum O, et al. Differential gene and protein expression in abluminal sprouting and intraluminal splitting forms of angiogenesis. Clin Sci (Lond). 2006;110(5):587–95. doi:10.1042/CS20050185.

    Article  CAS  Google Scholar 

  47. Chang H, Wang BW, Kuan P, Shyu KG. Cyclical mechanical stretch enhances angiopoietin-2 and Tie2 receptor expression in cultured human umbilical vein endothelial cells. Clin Sci (Lond). 2003;104(4):421–8. doi:10.1042/.

    Google Scholar 

  48. Yamaguchi S, Yamaguchi M, Yatsuyanagi E, Yun SS, Nakajima N, Madri JA, et al. Cyclic strain stimulates early growth response gene product 1-mediated expression of membrane type 1 matrix metalloproteinase in endothelium. Lab Invest. 2002;82(7):949–56.

    Article  CAS  PubMed  Google Scholar 

  49. Nishimura K, Li W, Hoshino Y, Kadohama T, Asada H, Ohgi S, et al. Role of AKT in cyclic strain-induced endothelial cell proliferation and survival. Am J Physiol Cell Physiol. 2006;290(3):C812–21. doi:10.1152/ajpcell.00347.2005.

    Article  CAS  PubMed  Google Scholar 

  50. Egginton S, Hudlicka O, Brown MD, Walter H, Weiss JB, Bate A. Capillary growth in relation to blood flow and performance in overloaded rat skeletal muscle. J Appl Physiol (1985). 1998;85(6):2025–32.

    CAS  Google Scholar 

  51. Hellsten Y, Rufener N, Nielsen JJ, Hoier B, Krustrup P, Bangsbo J. Passive leg movement enhances interstitial VEGF protein, endothelial cell proliferation, and eNOS mRNA content in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2008;294(3):R975–82. doi:10.1152/ajpregu.00677.2007.

    Article  CAS  PubMed  Google Scholar 

  52. Hoier B, Rufener N, Bojsen-Moller J, Bangsbo J, Hellsten Y. The effect of passive movement training on angiogenic factors and capillary growth in human skeletal muscle. J Physiol. 2010;588(Pt 19):3833–45. doi:10.1113/jphysiol.2010.190439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Adair TH, Gay WJ, Montani JP. Growth regulation of the vascular system: evidence for a metabolic hypothesis. Am J Physiol. 1990;259(3 Pt 2):R393–404.

    CAS  PubMed  Google Scholar 

  54. Yang HT, Ogilvie RW, Terjung RL. Low-intensity training produces muscle adaptations in rats with femoral artery stenosis. J Appl Physiol (1985). 1991;71(5):1822–9.

    CAS  Google Scholar 

  55. Sundberg CJ. Exercise and training during graded leg ischaemia in healthy man with special reference to effects on skeletal muscle. Acta Physiol Scand Suppl. 1994;615:1–50.

    CAS  PubMed  Google Scholar 

  56. Breen EC, Johnson EC, Wagner H, Tseng HM, Sung LA, Wagner PD. Angiogenic growth factor mRNA responses in muscle to a single bout of exercise. J Appl Physiol (1985). 1996;81(1):355–61.

    CAS  Google Scholar 

  57. Gustafsson T, Puntschart A, Kaijser L, Jansson E, Sundberg CJ. Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. Am J Physiol. 1999;276(2 Pt 2):H679–85.

    CAS  PubMed  Google Scholar 

  58. Richardson RS, Wagner H, Mudaliar SR, Henry R, Noyszewski EA, Wagner PD. Human VEGF gene expression in skeletal muscle: effect of acute normoxic and hypoxic exercise. Am J Physiol. 1999;277(6 Pt 2):H2247–52.

    CAS  PubMed  Google Scholar 

  59. Semenza GL. Oxygen sensing, homeostasis, and disease. N Engl J Med. 2011;365(6):537–47. doi:10.1056/NEJMra1011165.

    Article  CAS  PubMed  Google Scholar 

  60. Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS, Wagner PD. Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. J Clin Invest. 1995;96(4):1916–26. doi:10.1172/JCI118237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ameln H, Gustafsson T, Sundberg CJ, Okamoto K, Jansson E, Poellinger L, et al. Physiological activation of hypoxia inducible factor-1 in human skeletal muscle. FASEB J. 2005;19(8):1009–11. doi:10.1096/fj.04-2304fje.

    CAS  PubMed  Google Scholar 

  62. Mason SD, Rundqvist H, Papandreou I, Duh R, McNulty WJ, Howlett RA, et al. HIF-1alpha in endurance training: suppression of oxidative metabolism. Am J Physiol Regul Integr Comp Physiol. 2007;293(5):R2059–69. doi:10.1152/ajpregu.00335.2007.

    Article  CAS  PubMed  Google Scholar 

  63. Green HJ, Sutton JR, Cymerman A, Young PM, Houston CS. Operation Everest II: adaptations in human skeletal muscle. J Appl Physiol (1985). 1989;66(5):2454–61.

    CAS  Google Scholar 

  64. Hoppeler H, Kleinert E, Schlegel C, Claassen H, Howald H, Kayar SR, et al. Morphological adaptations of human skeletal muscle to chronic hypoxia. Int J Sports Med. 1990;11(Suppl 1):S3–9. doi:10.1055/s-2007-1024846.

    Article  PubMed  Google Scholar 

  65. Lundby C, Pilegaard H, Andersen JL, van Hall G, Sander M, Calbet JA. Acclimatization to 4100 m does not change capillary density or mRNA expression of potential angiogenesis regulatory factors in human skeletal muscle. J Exp Biol. 2004;207(Pt 22):3865–71. doi:10.1242/jeb.01225.

    Article  CAS  PubMed  Google Scholar 

  66. Vigano A, Ripamonti M, De Palma S, Capitanio D, Vasso M, Wait R, et al. Proteins modulation in human skeletal muscle in the early phase of adaptation to hypobaric hypoxia. Proteomics. 2008;8(22):4668–79. doi:10.1002/pmic.200800232.

    Article  CAS  PubMed  Google Scholar 

  67. Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev. 2006;27(7):728–35. doi:10.1210/er.2006-0037.

    Article  CAS  PubMed  Google Scholar 

  68. Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature. 2008;451(7181):1008–12. doi:10.1038/nature06613.

    Article  CAS  PubMed  Google Scholar 

  69. Leick L, Hellsten Y, Fentz J, Lyngby SS, Wojtaszewski JF, Hidalgo J, et al. PGC-1alpha mediates exercise-induced skeletal muscle VEGF expression in mice. Am J Physiol Endocrinol Metab. 2009;297(1):E92–103. doi:10.1152/ajpendo.00076.2009.

    Article  CAS  PubMed  Google Scholar 

  70. Chinsomboon J, Ruas J, Gupta RK, Thom R, Shoag J, Rowe GC, et al. The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci U S A. 2009;106(50):21401–6. doi:10.1073/pnas.0909131106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Geng T, Li P, Okutsu M, Yin X, Kwek J, Zhang M, et al. PGC-1alpha plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. Am J Physiol Cell Physiol. 2010;298(3):C572–9. doi:10.1152/ajpcell.00481.2009.

    Article  CAS  PubMed  Google Scholar 

  72. Pogozelski AR, Geng T, Li P, Yin X, Lira VA, Zhang M, et al. p38gamma mitogen-activated protein kinase is a key regulator in skeletal muscle metabolic adaptation in mice. PLoS One. 2009;4(11):e7934. doi:10.1371/journal.pone.0007934.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wright DC, Geiger PC, Han DH, Jones TE, Holloszy JO. Calcium induces increases in peroxisome proliferator-activated receptor gamma coactivator-1alpha and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem. 2007;282(26):18793–9. doi:10.1074/jbc.M611252200.

    Article  CAS  PubMed  Google Scholar 

  74. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251–62. doi:10.1038/nrm3311.

    Article  CAS  PubMed  Google Scholar 

  75. Winder WW, Hardie DG. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol. 1996;270(2 Pt 1):E299–304.

    CAS  PubMed  Google Scholar 

  76. Rasmussen BB, Winder WW. Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase. J Appl Physiol (1985). 1997;83(4):1104–9.

    CAS  Google Scholar 

  77. Fujii N, Hayashi T, Hirshman MF, Smith JT, Habinowski SA, Kaijser L, et al. Exercise induces isoform-specific increase in 5′AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun. 2000;273(3):1150–5. doi:10.1006/bbrc.2000.3073.

    Article  CAS  PubMed  Google Scholar 

  78. Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A. 2007;104(29):12017–22. doi:10.1073/pnas.0705070104.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ouchi N, Shibata R, Walsh K. AMP-activated protein kinase signaling stimulates VEGF expression and angiogenesis in skeletal muscle. Circ Res. 2005;96(8):838–46. doi:10.1161/01.RES.0000163633.10240.3b.

    Article  CAS  PubMed  Google Scholar 

  80. Miura S, Kawanaka K, Kai Y, Tamura M, Goto M, Shiuchi T, et al. An increase in murine skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) mRNA in response to exercise is mediated by beta-adrenergic receptor activation. Endocrinology. 2007;148(7):3441–8. doi:10.1210/en.2006-1646.

    Article  CAS  PubMed  Google Scholar 

  81. Norrbom J, Sallstedt EK, Fischer H, Sundberg CJ, Rundqvist H, Gustafsson T. Alternative splice variant PGC-1alpha-b is strongly induced by exercise in human skeletal muscle. Am J Physiol Endocrinol Metab. 2011;301(6):E1092–8. doi:10.1152/ajpendo.00119.2011.

    Article  CAS  PubMed  Google Scholar 

  82. Gidlund EK, Ydfors M, Appel S, Rundqvist H, Sundberg CJ, Norrbom J. Rapidly elevated levels of PGC-1alpha-b protein in human skeletal muscle after exercise: exploring regulatory factors in a randomized controlled trial. J Appl Physiol (1985). 2015;119(4):374–84. doi:10.1152/japplphysiol.01000.2014.

    Article  CAS  Google Scholar 

  83. Idei N, Nishioka K, Soga J, Hidaka T, Hata T, Fujii Y, et al. Vascular function and circulating progenitor cells in thromboangitis obliterans (Buerger’s disease) and atherosclerosis obliterans. Hypertension. 2011;57(1):70–8. doi:10.1161/HYPERTENSIONAHA.110.163683.

    Article  CAS  PubMed  Google Scholar 

  84. Maruhashi T, Nakashima A, Matsumoto T, Oda N, Iwamoto Y, Iwamoto A, et al. Relationship between nitroglycerine-induced vasodilation and clinical severity of peripheral artery disease. Atherosclerosis. 2014;235(1):65–70. doi:10.1016/j.atherosclerosis.2014.04.012.

    Article  CAS  PubMed  Google Scholar 

  85. Iwamoto A, Kajikawa M, Maruhashi T, Iwamoto Y, Oda N, Kishimoto S, et al. Vascular function and intima-media thickness of a leg artery in peripheral artery disease: a comparison of Buerger disease and atherosclerotic peripheral artery disease. J Atheroscler Thromb. 2016;23(11):1261–9. doi:10.5551/jat.35436.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Brendle DC, Joseph LJ, Corretti MC, Gardner AW, Katzel LI. Effects of exercise rehabilitation on endothelial reactivity in older patients with peripheral arterial disease. Am J Cardiol. 2001;87(3):324–9.

    Article  CAS  PubMed  Google Scholar 

  87. Olfert IM, Howlett RA, Tang K, Dalton ND, Gu Y, Peterson KL, et al. Muscle-specific VEGF deficiency greatly reduces exercise endurance in mice. J Physiol. 2009;587(Pt 8):1755–67. doi:10.1113/jphysiol.2008.164384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246(4935):1306–9.

    Article  CAS  PubMed  Google Scholar 

  89. Wellmann S, Taube T, Paal K, Graf VEH, Geilen W, Seifert G, et al. Specific reverse transcription-PCR quantification of vascular endothelial growth factor (VEGF) splice variants by LightCycler technology. Clin Chem. 2001;47(4):654–60.

    CAS  PubMed  Google Scholar 

  90. Findley CM, Mitchell RG, Duscha BD, Annex BH, Kontos CD. Plasma levels of soluble Tie2 and vascular endothelial growth factor distinguish critical limb ischemia from intermittent claudication in patients with peripheral arterial disease. J Am Coll Cardiol. 2008;52(5):387–93. doi:10.1016/j.jacc.2008.02.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Makin AJ, Chung NA, Silverman SH, Lip GY. Vascular endothelial growth factor and tissue factor in patients with established peripheral artery disease: a link between angiogenesis and thrombogenesis? Clin Sci (Lond). 2003;104(4):397–404. doi:10.1042/CS20020182.

    Article  CAS  Google Scholar 

  92. Bates DO, Cui TG, Doughty JM, Winkler M, Sugiono M, Shields JD, et al. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res. 2002;62(14):4123–31.

    CAS  PubMed  Google Scholar 

  93. Harper SJ, Bates DO. VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat Rev Cancer. 2008;8(11):880–7. doi:10.1038/nrc2505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kikuchi R, Nakamura K, MacLauchlan S, Ngo DTM, Shimizu I, Fuster JJ, et al. An antiangiogenic isoform of VEGF-A contributes to impaired vascularization in peripheral artery disease. Nat Med. 2014;20(12):1464–71. doi:10.1038/nm.3703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg. 2007;45(Suppl):S5–67. doi:10.1016/j.jvs.2006.12.037.

    Article  PubMed  Google Scholar 

  96. Jove M, Salla J, Planavila A, Cabrero A, Michalik L, Wahli W, et al. Impaired expression of NADH dehydrogenase subunit 1 and PPARgamma coactivator-1 in skeletal muscle of ZDF rats: restoration by troglitazone. J Lipid Res. 2004;45(1):113–23. doi:10.1194/jlr.M300208-JLR200.

    Article  CAS  PubMed  Google Scholar 

  97. Crunkhorn S, Dearie F, Mantzoros C, Gami H, da Silva WS, Espinoza D, et al. Peroxisome proliferator activator receptor gamma coactivator-1 expression is reduced in obesity: potential pathogenic role of saturated fatty acids and p38 mitogen-activated protein kinase activation. J Biol Chem. 2007;282(21):15439–50. doi:10.1074/jbc.M611214200.

    Article  CAS  PubMed  Google Scholar 

  98. Mensink M, Hesselink MK, Russell AP, Schaart G, Sels JP, Schrauwen P. Improved skeletal muscle oxidative enzyme activity and restoration of PGC-1 alpha and PPAR beta/delta gene expression upon rosiglitazone treatment in obese patients with type 2 diabetes mellitus. Int J Obes (Lond). 2007;31(8):1302–10. doi:10.1038/sj.ijo.0803567.

    Article  CAS  Google Scholar 

  99. Hernandez-Alvarez MI, Thabit H, Burns N, Shah S, Brema I, Hatunic M, et al. Subjects with early-onset type 2 diabetes show defective activation of the skeletal muscle PGC-1{alpha}/Mitofusin-2 regulatory pathway in response to physical activity. Diabetes Care. 2010;33(3):645–51. doi:10.2337/dc09-1305.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Maruhashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Maruhashi, T., Kihara, Y., Higashi, Y. (2017). Exercise. In: Higashi, Y., Murohara, T. (eds) Therapeutic Angiogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-10-2744-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2744-4_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2743-7

  • Online ISBN: 978-981-10-2744-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics