Skip to main content

Stepwise Square Integrable Representations: The Concept and Some Consequences

  • Conference paper
  • First Online:
Lie Theory and Its Applications in Physics (LT 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 191))

Included in the following conference series:

Abstract

There are some new developments on Plancherel formula and growth of matrix coefficients for unitary representations of nilpotent Lie groups. These have several consequences for the geometry of weakly symmetric spaces and analysis on parabolic subgroups of real semisimple Lie groups, and to (infinite dimensional) locally nilpotent Lie groups. Many of these consequences are still under development. In this note I’ll survey a few of these new aspects of representation theory for nilpotent Lie groups and parabolic subgroups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Auslander et al, “Flows on Homogeneous Spaces”, Ann. Math. Studies 53, 1963.

    Google Scholar 

  2. I. Beltita & D. Beltita, Coadjoint orbits of stepwise square integrable representations, to appear. arXiv:1408.1857

  3. I. Beltita & D. Beltita, Representations of nilpotent Lie groups via measurable dynamical systems arXiv:1510.05272

  4. I. Beltita & J. Ludwig, Spectral synthesis for coadjoint orbits of nilpotent Lie groups, to appear. arXiv:1412.6323

  5. G. Bredon, Introduction to Compact Transformation Groups, Academic Press, 1972.

    Google Scholar 

  6. W. Casselman, Introduction to the Schwartz space of \(\Gamma \backslash G\), Canadian J. Math. 40 (1989), 285–320.

    Google Scholar 

  7. I. Dimitrov, I. Penkov & J. A. Wolf, A Bott–Borel–Weil theory for direct limits of algebraic groups, Amer. J of Math. 124 (2002), 955–998.

    Google Scholar 

  8. M. Duflo, Sur les extensions des représentations irréductibles des groups de Lie nilpotents, Ann. Sci. de l’ École Norm. Supér., 4ième série 5 (1972), 71–120.

    Google Scholar 

  9. J. Faraut, Infinite dimensional harmonic analysis and probability, in “Probability Measures on Groups: Recent Directions and Trends,” ed. S. G. Dani & P. Graczyk, Narosa, New Delhi, 2006.

    Google Scholar 

  10. V. V. Gorbatsevich, A. L. Onishchik & E. B. Vinberg, Foundations of Lie Theory and Lie Transformation Groups, Springer, 1997.

    Google Scholar 

  11. W.-C. Hsiang & W.-Y. Hsiang, Differentiable actions of compact connected classical groups II, Annals of Math. 92 (1970), 189–223.

    Google Scholar 

  12. A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspekhi Math. Nauk 17 (1962), 57–110 (English: Russian Math. Surveys 17 (1962), 53–104).

    Google Scholar 

  13. M. Krämer, Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen, Compositio Math. 38 (1979), 129–153.

    Google Scholar 

  14. R. L. Lipsman & J. A. Wolf, The Plancherel formula for parabolic subgroups of the classical groups, Journal D’Analyse Mathématique, 34 (1978), 120–161.

    Google Scholar 

  15. C. C. Moore, Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. Math. 82 (1965), 146–182

    Google Scholar 

  16. C. C. Moore, Amenable subgroups of semi-simple Lie groups and proximal flows. Israel J. Math. 34 (1979), 121–138.

    Google Scholar 

  17. C. C. Moore & J. A. Wolf, Square integrable representations of nilpotent groups. Transactions of the American Mathematical Society, 185 (1973), 445–462.

    Google Scholar 

  18. S. de Neymet Urbina (con la colaboración de R. Jiménez Benítez), Introducción a los Grupos Topológicos de Transformaciones, Sociedad Matemática Mexicana, 2005.

    Google Scholar 

  19. G. I. Ol’shanskii, Unitary representations of infinite dimensional pairs \((G,K)\) and the formalism of R. Howe, in “Representations of Lie Groups and Related Topics, ed. A. M. Vershik & D. P. Zhelobenko,” Advanced Studies Contemp. Math. 7, Gordon & Breach, 1990.

    Google Scholar 

  20. L. Pukánszky, On characters and the Plancherel formula of nilpotent groups, J. Functional Analysis 1 (1967), 255–280.

    Google Scholar 

  21. M. S. Raghunathan, “Discrete Subgroups of Lie Groups”, Ergebnisse der Mathematik und ihrer Grenzgebeite 68, 1972.

    Google Scholar 

  22. E. B. Vinberg, Commutative homogeneous spaces and co–isotropic symplectic actions, Russian Math. Surveys 56 (2001), 1–60.

    Google Scholar 

  23. E. B. Vinberg, Commutative homogeneous spaces of Heisenberg type, Trans Moscow Math. Soc. 64 (2003), 45–78.

    Google Scholar 

  24. J. A. Wolf, Classification and Fourier inversion for parabolic subgroups with square integrable nilradical. Memoirs of the American Mathematical Society, Number 225, 1979.

    Google Scholar 

  25. J. A. Wolf, Direct limits of principal series representations, Compositio Mathematica, 141 (2005), 1504–1530.

    Google Scholar 

  26. J. A. Wolf, Harmonic Analysis on Commutative Spaces, Math. Surveys & Monographs vol. 142, Amer. Math. Soc., 2007.

    Google Scholar 

  27. J. A. Wolf, Stepwise square integrable representations of nilpotent Lie groups, Mathematische Annalen vol. 357 (2013), pp. 895–914. arXiv:see1212.1908

    Google Scholar 

  28. J. A. Wolf, The Plancherel Formula for Minimal Parabolic Subgroups, Journal of Lie Theory, vol. 24 (2014), pp. 791–808. arXiv: 1306.6392 (math RT)

  29. J. A. Wolf, Stepwise square integrable representations for locally nilpotent Lie groups, Transformation Groups, vol. 20 (2015), pp. 863–879. arXiv:1402.3828 (math RT, math FA)

  30. J. A. Wolf, Infinite dimensional multiplicity free spaces II: Limits of commutative nilmanifolds, to appear.

    Google Scholar 

  31. J. A. Wolf, On the analytic structure of commutative nilmanifolds, The Journal of Geometric Analysis, to appear. arXiv:1407.0399 (math RT, math DG)

  32. J. A. Wolf, Stepwise square integrability for nilradicals of parabolic subgroups and maximal amenable subgroups, to appear arXiv:1511.09064.

  33. O. S. Yakimova, Weakly symmetric riemannian manifolds with reductive isometry group, Math. USSR Sbornik 195 (2004), 599–614.

    Google Scholar 

  34. O. S. Yakimova, “Gelfand Pairs,” Bonner Math. Schriften (Universität Bonn) 374, 2005.

    Google Scholar 

  35. O. S. Yakimova, Principal Gelfand pairs, Transformation Groups 11 (2006), 305–335.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Wolf, J.A. (2016). Stepwise Square Integrable Representations: The Concept and Some Consequences. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. LT 2015. Springer Proceedings in Mathematics & Statistics, vol 191. Springer, Singapore. https://doi.org/10.1007/978-981-10-2636-2_12

Download citation

Publish with us

Policies and ethics