Skip to main content

Drosophila melanogaster: A Prime Experimental Model System for Aging Studies

  • Chapter
  • First Online:
Topics in Biomedical Gerontology

Abstract

Aging, the process of growing old is largely characterized by gradual deterioration of normal cellular functions, leading to progressive and steady decline in the biological, physical and psychological abilities. The phenomenon of aging is genetically determined and environmentally modulated. This is one of the most common yet mysterious aspects of biological studies, even after being a subject of interest to humans since the beginning of recorded history. Moreover, precise molecular basis of aging remains poorly understood, in part, because we lack a large number of molecular markers which could be used to measure the aging process in specific tissues. Moreover, limitations of human genetics and associated ethical issues further make it difficult to identify or analyze candidate gene(s) and pathways in greater details, and with the fact that the basic biological processes remain conserved throughout phylogeny; model organisms from bacteria to mammals have been utilized to resolve different aspects of aging. Classical model system such as Drosophila melanogaster has emerged as an excellent system to elucidate essential genetic/cellular pathways of human aging, due to its short generation time, availability of powerful genetic tools and functionally conserved physiology. Several key cellular events and signaling cascades have been deciphered by utilizing Drosophila as system of aging research and continues to add novel insights into this complex process. Present article attempts to introduce Drosophila as a model system for aging studies and also provides a brief overview of its decades of contribution in aging research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpatov WW, Pearl R (1929) Experimental studies on the duration of life. XII. Influence of temperature during the larval period and adult life on the duration of the life of the imago of Drosophila melanogaster. Am Nat 63:37–67

    Article  Google Scholar 

  • Amm I, Sommer T, Wolf DH (2013) Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim Biophys Acta 1843:182–196

    Article  PubMed  CAS  Google Scholar 

  • Arking R (1991) Biology of ageing: observations and principles. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Arslan MA, Csermely P, Soti C (2006) Protein homeostasis and molecular chaperones in aging. Biogerontology 7:383–389

    Article  CAS  PubMed  Google Scholar 

  • Bauer JH, Morris SNS, Chang C, Flatt T, Wood JG, Helfand SL (2009) dSir2 and Dmp53 interact to mediate aspects of CR-dependent life span extension in D. melanogaster. Aging 1:38–49

    Article  CAS  PubMed  Google Scholar 

  • Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464:529–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biteau B, Karpac J, Hwangbo D, Jasper H (2011) Regulation of Drosophila lifespan by JNK signaling. Exp Gerontol 46:349–354

    Article  CAS  PubMed  Google Scholar 

  • Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L (2010) Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 11:35–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böhni R, Riesgo-Escovar J, Oldham S, Brogiolo W, Stocker H, Andruss BF, Beckingham K, Hafen E (1999) Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97:865–875

    Article  PubMed  Google Scholar 

  • Bokov A, Chaudhuri A, Richardson A (2004) The role of oxidative damage and stress inaging. Mech Ageing Dev 125:811–826

    Article  CAS  PubMed  Google Scholar 

  • Boutros M, Agaisse H, Perrimon N (2002) Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev Cell 3:711–722

    Article  CAS  PubMed  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    Google Scholar 

  • Branson K, Robie AA, Bender J, Perona P, Dickinson MH (2009) High-throughput ethomics in large groups of Drosophila. Nat Methods 6:451–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J, Driege Y, Martinez P, Hafen E et al (2005) Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Nat Acad Sci USA 102:3105–3110

    Google Scholar 

  • Butler AA, Le Roith D (2001) Control of growth by the somatropic axis: growth hormone and the insulin-like growth factors have related and independent roles. Annu Rev Physiol 63:141–164

    Article  CAS  PubMed  Google Scholar 

  • Campisi J, Vijg J (2009) Does damage to DNA and other macromolecules play a role in aging? If so, how? J Gerontol A Biol Sci Med Sci 64:175–178

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Retzlaff M, Roos T, Frydman J (2011) Cellular strategies of protein quality control. Cold Spring Harb Perspect Biol 3:a004374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen W, White MA, Cobb MH (2002) Stimulus-specific requirements for MAP3 kinases in activating the JNK pathway. J Biol Chem 277:49105–49110

    Article  CAS  PubMed  Google Scholar 

  • Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV (2014) Mitochondrial aging and age-related dysfunction of mitochondria. Biomed. Res. Int. 2014 238463

    Google Scholar 

  • Cho J, Hur JH, Walker DW (2011) The role of mitochondria in Drosophila aging. Exp Gerontol 46:331–334

    Article  CAS  PubMed  Google Scholar 

  • Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292:104–106

    Article  CAS  PubMed  Google Scholar 

  • Cohen E (2012) Ageing, protein aggregation, chaperones, and neurodegenerative disorders: mechanisms of coupling and therapeutic opportunities. Rambam Maimonides Med J 3:e0021

    Google Scholar 

  • Cummings CJ, Sun Y, Opal P, Antalffy B, Mestril R, Orr HT, Dillmann WH, Zoghbi HY (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 10:1511–1518

    Article  CAS  PubMed  Google Scholar 

  • Curtis C, Landis GN, Folk D, Wehr NB, Hoe N, Waskar M, Abdueva D, Skvortsov D et al (2007) Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes. Genome Biol 8:R262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dali-Youcef N, Lagouge M, Froelich S, Koehl C, Schoonjans K, Auwerx J (2007) Sirtuins: the ‘magnificent seven’, function, metabolism and longevity. Ann Med 39:335–345

    Article  CAS  PubMed  Google Scholar 

  • Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156

    Article  CAS  PubMed  Google Scholar 

  • Dudas SP, Arking R (1995) A coordinate upregulation of antioxidant gene activities is associated with the delayed onset of senescence in a long-lived strain of Drosophila. J Gerontol A Biol Sci Med Sci 50:B117–B127

    Article  CAS  PubMed  Google Scholar 

  • Estevez M, Attisano L, Wrana JL, Albert PS, Massagué J, Riddle DL (1993) The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegansdauer larva development. Nature 365:644–649

    Article  CAS  PubMed  Google Scholar 

  • Ferguson M, Mockett RJ, Shen Y, Orr WC, Sohal RS (2005) Age-associated decline in mitochondrial respiration and electron transport in Drosophila melanogaster. Biochem J 390:501–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  • Fleming JE, Walton JK, Dubitsky R, Bensch KG (1988) Aging results in an unusual expression of Drosophila heat shock proteins. Proc Nat Acad Sci USA 85:4099–4103

    Google Scholar 

  • Gardner TS (1948) The use of Drosophila melanogaster as a screening agent for longevity factors; the effects of biotin, pyridoxine, sodium yeast nucleate, and pantothenic acid on the life span of the fruit fly. J Gerontol 3:9–13

    Google Scholar 

  • Geuking P, Narasimamurthy R, Lemaitre B, Basler K, Leulier F (2009) A nonredundant role for Drosophila Mkk4 and hemipterous/Mkk7 in TAK1-mediated activation of JNK. PLoS ONE 4:e7709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giannakou ME, Partridge L (2007) Role of insulin-like signalling in Drosophila lifespan. Trends Biochem Sci 32:180–188

    Article  CAS  PubMed  Google Scholar 

  • Giannakou ME, Goss M, Partridge L (2008) Role of dFOXO in lifespan extension by dietary restriction in Drosophila melanogaster: not required, but its activity modulates the response. Aging Cell 7:187–198

    Article  CAS  PubMed  Google Scholar 

  • Giannakou ME, Goss M, Junger MA, Hafen E, Leevers SJ, Partridge L (2004) Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 305:361

    Article  CAS  PubMed  Google Scholar 

  • Gong WJ, Golic KG (2006) Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermos tolerance, recovery from heat shock and neurodegeneration. Genetics 172:275–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grönke S, Clarke DF, Broughton S, Andrews TD, Partridge L (2010) Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet 6:e1000857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guillozet AL, Weintraub S, Mash DC, Mesulam MM (2003) Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol 60:729–736

    Article  PubMed  Google Scholar 

  • Hands S, Sinadinos C, Wyttenbach A (2008) Polyglutamine gene function and dysfunction in the ageing brain. Biochim Biophys Acta 1779:507–521

    Article  CAS  PubMed  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  CAS  PubMed  Google Scholar 

  • Harman D (1981) The aging process. Proc Natl Acad Sci USA 78:7124–7128

    Google Scholar 

  • Harman D (1992) Free radical theory of aging. Mutat Res 275:257–266

    Article  CAS  PubMed  Google Scholar 

  • Harshman LG, Haberer BA (2000) Oxidative stress resistance: a robust correlated response to selection in extended longevity lines of Drosophila melanogaster. J Gerontol A Biol Sci Med Sci 55:B415–B417

    Article  CAS  PubMed  Google Scholar 

  • Hart FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    Article  CAS  Google Scholar 

  • Helfand SL, Rogina B (2003a) From genes to aging in Drosophila. Adv Genet 49:67–109

    CAS  PubMed  Google Scholar 

  • Helfand SL, Rogina B (2003b) Genetics of aging in the fruit fly, Drosophila melanogaster. Annu Rev Genet 37:329–348

    Article  CAS  PubMed  Google Scholar 

  • Herman MM, Miquel J, Johnson M (1971) Insect brain as a model for the study of aging. Age-related changes in Drosophila melanogaster. Acta Neuropathol 19:167–183

    Article  CAS  PubMed  Google Scholar 

  • Hirth F (2010) Drosophila melanogaster in the study of human neurodegeneration. CNS Neruol Disord Drug Targets 9:504–523

    Article  CAS  Google Scholar 

  • Holzenberger M, Dupont J, Ducos B, Leneuve P, Géloën A, Even PC, Cervera P, Le Bouc Y (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187

    Article  CAS  PubMed  Google Scholar 

  • Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867

    Article  CAS  PubMed  Google Scholar 

  • Hwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M (2004) Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429:562–566

    Article  CAS  PubMed  Google Scholar 

  • Igaki T (2009) Correcting developmental errors by apoptosis: lessons from Drosophila JNK signaling. Apoptosis 14:1021–1028

    Article  PubMed  Google Scholar 

  • Iliadi KG, Boulianne GL (2010) Age-related behavioral changes in Drosophila. Ann N Y Acad Sci 1197:9–18

    Article  PubMed  Google Scholar 

  • Iliadi KG, Knight D, Boulianne GL (2012) Healthy aging—insights from Drosophila. Front Physiol 3:106

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122–1128

    Article  CAS  PubMed  Google Scholar 

  • Jazwinski SM (2000) Aging and longevity genes. Acta Biochim Pol 47:269–279

    CAS  PubMed  Google Scholar 

  • Johnson GL, Nakamura K (2007) The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochim Biophys Acta 1773:1341–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones MA, Grotewiel M (2011) Drosophila as a model for age-related impairment in locomotor and other behaviors. Exp Gerontol 46:320–325

    Article  PubMed  Google Scholar 

  • Kabil H, Partridge L, Harshman LG (2007) Superoxide dismutase activities in long-lived Drosophila melanogaster females: chico1 genotypes and dietary dilution. Biogerontology 8:201–208

    Article  CAS  PubMed  Google Scholar 

  • Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of Lifespan in Drosophila by Modulation of Genes in the TOR Signaling Pathway. Curr Biol 14:885–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpac J, Jasper H (2009) Insulin and JNK: optimizing metabolic homeostasis andlifespan. Trends Endocrinol Metab 20:100–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460

    Article  CAS  PubMed  Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    Article  CAS  PubMed  Google Scholar 

  • Kirby K, Hu J, Hilliker AJ, Phillips JP (2002) RNA interference-mediated silencing of Sod2 in Drosophila leads to early adult-onset mortality and elevated endogenous oxidative stress. Proc Natl Acad Sci USA 99:16162–16167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurapati R, Passananti HB, Rose MR, Tower J (2000) Increased hsp22 RNA levels in Drosophila lines genetically selected for increased longevity. J Gerontol A Biol Sci Med Sci 55:B552–B559

    Article  CAS  PubMed  Google Scholar 

  • Lapointe J, Hekimi S (2010) When a theory of aging ages badly. Cell Mol Life Sci 67:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Bourg E (2001) Oxidative stress, aging and longevity in Drosophila melanogaster. FEBS Lett 498:183–186

    Article  PubMed  Google Scholar 

  • Leevers SJ, Weinkove D, MacDougall LK, Hafen E, Waterfield MD (1996) The Drosophila phosphoinositide 3-kinase Dp110 promotes cell growth. EMBO J 15:6584–6594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao PC, Lin HY, Yuh CH, Yu LK, Wang HD (2008) The effect of neuronal expression of heat shock proteins 26 and 27 on lifespan, neurodegeneration, and apoptosis in Drosophila. Biochem Biophys Res Commun 376:637–641

    Article  CAS  PubMed  Google Scholar 

  • Lin YJ, Seroude L, Benzer S (1998) Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282:943–946

    Article  CAS  PubMed  Google Scholar 

  • Loeb J, Northrop JH (1916) Is there a temperature coefficient for the duration of life? Proc Natl Acad Sci USA 2:456–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loeb J, Northrop JH (1917) On the influence of food and temperature upon the duration of life. J Biol Chem 32:103–121

    CAS  Google Scholar 

  • Luckinbill L, Clare M (1985) Selection for life span in Drosophila melanogaster. Heredity 55:9–18

    Article  PubMed  Google Scholar 

  • Luckinbill L, Arking R, Clare MJ, Cirocco WC, Buck S (1984) Selection for delayed senescence in Drosophila melanogaster. Evolution 38:996–1003

    Article  Google Scholar 

  • Luckinbill LS, Clare MJ (1987) Successful selection for increased longevity in Drosophila: analysis of the survival data and presentation of a hypothesis on the genetic regulation of longevity. Letter to the editor. Exp Gerontol 22:221–226

    Article  CAS  PubMed  Google Scholar 

  • McCarroll SA, Murphy CT, Zou S, Pletcher SD, Chin CS, Jan YN, Kenyon C, Bargmann CI et al (2004) Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat Genet 36:197–204

    Article  CAS  PubMed  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymatic function for erythrocuperin (hemocuperin). J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  • Min KJ, Yamamoto R, Buch S, Pankratz M, Tatar M (2008) Drosophila lifespan control by dietary restriction independent of insulin-like signaling. Aging Cell 7:199–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minois N (2000) Longevity and aging: beneficial effects of exposure to mild stress. Biogerontology 1:15–29

    Article  CAS  PubMed  Google Scholar 

  • Minois N, Le Bourg E (1999) Resistance to stress as a function of age in Drosophila melanogaster living in hypergravity. Mech Ageing Dev 109:53–64

    Article  CAS  PubMed  Google Scholar 

  • Minois N, Khazaeli AA, Curtsinger JW (2001) Locomotor activity as a function of age and life span in Drosophila melanogaster overexpressing hsp70. Exp Gerontol 36:1137–1153

    Article  CAS  PubMed  Google Scholar 

  • Missirlis F, Phillips JP, Jackle H (2001) Cooperative action of antioxidant defense systems in Drosophila. Curr Biol 11:1272–1277

    Article  CAS  PubMed  Google Scholar 

  • Mockett RJ, Sohal RS, Orr WC (1999) Overexpression of glutathione reductase extends survival in transgenic Drosophila melanogaster under hyperoxia but not normoxia. FASEB J 13:1733–1742

    CAS  PubMed  Google Scholar 

  • Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22:1427–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morimoto RI, Cuervo AM (2009) Protein homeostasis and aging: taking care of proteins from the cradle to the grave. J Gerontol A Biol Sci Med Sci 64:167–170

    Article  PubMed  CAS  Google Scholar 

  • Morley JF, Brignull HR, Weyers JJ, Morimoto RI (2002) The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci USA 99:10417–10422

    Google Scholar 

  • Morrow G, Tanguay RM (2003) Heat shock proteins and aging in Drosophila melanogaster. Semin Cell Dev Biol 14:291–299

    Article  CAS  PubMed  Google Scholar 

  • Morrow G, Battistini S, Zhang P, Tanguay RM (2004a) Decreased lifespan in the absence of expression of the mitochondrial small heat shock protein Hsp22 in Drosophila. J Biol Chem 279:43382–43385

    Article  CAS  PubMed  Google Scholar 

  • Morrow G, Heikkila JJ, Tanguay RM (2006) Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster. Cell Stress Chaperones 11:51–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrow G, Samson M, Michaud S, Tanguay RM (2004b) Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J 18:598–599

    Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22

    Article  CAS  PubMed  Google Scholar 

  • Muchowski PJ, Schaffar G, Sittler A, Wanker EE, Hayer-Hartl MK, Hartl FU (2000) Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc Natl Acad Sci USA 97:7841–7846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Netchine I, Azzi S, Le Bouc Y, Savage MO (2011) IGF1 molecular anomalies demonstrate its critical role in fetal, postnatal growth and brain development. Best Pract Res Clin Endocrinol Metab 25:181–190

    Article  CAS  PubMed  Google Scholar 

  • Nichols CD, Becnel J, Pandey UB (2012) Methods to assay Drosophila behavior. J Vis Exp 7:pii:3795

    Google Scholar 

  • Niedzwiecki A, Kongpachith AM, Fleming JE (1991) Aging affects expression of 70-kDa heat shock proteins in Drosophila. J Biol Chem 266:9332–9338

    CAS  PubMed  Google Scholar 

  • Nielsen MD, Luo X, Biteau B, Syverson K, Jasper H (2008) 14-3-3 Epsilon antagonizes FoxO to control growth, apoptosis and longevity in Drosophila. Aging Cell 7:688–699

    Google Scholar 

  • Oldham S, Hafen E (2003) Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. Trends Cell Biol 13:79–85

    Article  CAS  PubMed  Google Scholar 

  • Orr WC, Sohal RS (1993) Effects of Cu-Zn superoxide dismutase overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch Biochem Biophys 301:34–40

    Article  CAS  PubMed  Google Scholar 

  • Orr WC, Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130

    Article  CAS  PubMed  Google Scholar 

  • Pandey UB, Nichols CD (2011) Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 63:411–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Phillips JP, Boulianne GL (1998) Extension of Drosophila lifespan by overexpression of human SOD1 in motor neurons. Nat Genet 19:171–174

    Article  CAS  PubMed  Google Scholar 

  • Partridge L, Gems D (2002) Mechanisms of ageing: public or private? Nat Rev Genet 3:165–175

    Article  CAS  PubMed  Google Scholar 

  • Partridge L, Piper MD, Mair W (2005) Dietary restriction in Drosophila. Mech Ageing Dev 126:938–950

    Article  CAS  PubMed  Google Scholar 

  • Pearl R, Parker SL (1921) Experimental studies on the duration of life I. Introductory discussion of the duration of life in Drosophila. Am Nat 60:481–509

    Article  Google Scholar 

  • Pearl R, Parker SL (1922) Experimental studies on the duration of life. II. Hereditary differences in duration of life in line-bread strains of Drosophila. Am Nat 56:174

    Google Scholar 

  • Pérez VI, Bokov A, Van Remmen H, Mele J, Ran Q, Ikeno Y, Richardson A (2009) Is the oxidative stress theory of aging dead? Biochim Biophys Acta 1790:1005–1014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfeiffenberger C, Lear BC, Keegan KP, Allada R (2010) Locomotor activity level monitoring using the Drosophila Activity Monitoring (DAM) System. Cold Spring Harb. Protoc. 2010 pdb.prot5518

    Google Scholar 

  • Phillips JP, Hilliker AJ (1990) Genetic analysis of oxygen defense mechanisms in Drosophila melanogaster. Adv Genet 28:43–71

    CAS  PubMed  Google Scholar 

  • Phillips JP, Campbell SD, Michaud D, Charbonneau M, Hilliker AJ (1989) Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc Natl Acad Sci USA 86:2761–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piper MD, Partridge L (2007) Dietary restriction in Drosophila: delayed aging or experimental artefact? PLoS Genet 3:e57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pletcher SD, Macdonald SJ, Marguerie R, Certa U, Stearns SC, Goldstein DB, Partridge L (2002) Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr Biol 12:712–723

    Article  CAS  PubMed  Google Scholar 

  • Raj K, Chanu SI, Sarkar S (2012) Decoding complexity of ageing. Cell Dev Biol 1:e117

    Article  Google Scholar 

  • Reiter LT, Potocki L, Chien S, Gribskov M, Bier E (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11:1114–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Ritossa F (1996) Discovery of the heat shock response. Cell Stress Chaperones 1:97–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101:15998–16003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogina B, Reenan RA, Nilsen SP, Helfand SL (2000) Extended life-span conferred by cotransporter gene mutations in Drosophila. Science 290:2137–2140

    Article  CAS  PubMed  Google Scholar 

  • Rose M (1984) Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38:1004–1009

    Article  Google Scholar 

  • Rose M, Charlesworth B (1980) A test of evolutionary theories of senescence. Nature 287:141–142

    Article  CAS  PubMed  Google Scholar 

  • Rose MR, Charlesworth B (1981) Genetics of life history in Drosophila melanogaster. II. Exploratory selection experiments. Genetics 97:187–196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryder E, Ashburner M, Bautista-Llacer R, Drummond J, Webster J, Johnson G, Morley T, Chan YS et al (2007) The DrosDel deletion collection: a Drosophila genome wide chromosomal deficiency resource. Genetics 177:615–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmon AB, Marx DB, Harshman LG (2001) A cost of reproduction in Drosophila melanogaster: stress susceptibility. Evolution 55:1600–1608

    Article  CAS  PubMed  Google Scholar 

  • Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 13:799–806

    Article  CAS  Google Scholar 

  • Sarkar S, Singh MD, Yadav R, Arunkumar KP, Pitman GW (2011) Heat shock proteins: Molecules with assorted functions. Front Biol 6:312–327

    CAS  Google Scholar 

  • Seto NO, Hayashi S, Tener GM (1990) Overexpression of Cu-Zn superoxide dismutase in Drosophila does not affect life-span. Proc Natl Acad Sci USA 87:4270–4274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw P, Ocorr K, Bodmer R, Oldham S (2008) Drosophila aging 2006/2007. Exp Gerontol 43:5–10

    Article  CAS  PubMed  Google Scholar 

  • Shaw PJ, Tononi G, Greenspan RJ, Robinson DF (2002) Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 417:287–291

    Article  CAS  PubMed  Google Scholar 

  • Sies H, Cadenas E (1985) Oxidative stress: damage to intact cells and organs. Philosophical. Tran R Soc Lond Ser B, Biol Sci 311:617–631

    Article  CAS  Google Scholar 

  • Smith JM (1958) The effects of temperature and of egg laying on the longevity of Drosophila subobscura. J Exp Biol 35:832–842

    Google Scholar 

  • Smith JM (1962) The causes of ageing. Proc. R. Soc. London Ser. B 157:115–127

    Article  Google Scholar 

  • Sohal RS (2002) Oxidative stress hypothesis of aging. Free Radic Biol Med 33:573–574

    Article  CAS  PubMed  Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soti C, Csermely P (2003) Aging and molecular chaperones. Exp Gerontol 38:1037–1040

    Article  CAS  PubMed  Google Scholar 

  • Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40:1250–1258

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Tower J (1999) FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol 19:216–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Yolitz J, Wang C, Spangler E, Zhan M, Zou S (2013) Aging studies in Drosophila melanogaster. Methods Mol Biol 1048:77–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatar M (2010) Reproductive aging in invertebrate genetic models. Ann N Y Acad Sci 1204:149–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299:1346–1351

    Article  CAS  PubMed  Google Scholar 

  • Tatar M, Khazaeli AA, Curtsinger JW (1997) Chaperoning extended life. Nature 390:30

    Google Scholar 

  • Tatar M, Kopelaman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends life span and impairs neuroendocrine function. Science 292:107–110

    Article  CAS  PubMed  Google Scholar 

  • Tatar M, Post S, Yu K (2014) Nutrient control of Drosophila longevity. Trends Endocrinol Metab 25:509–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira-Castro A, Ailion M, Jalles A, Brignull HR, Vilaça JL, Dias N, Rodrigues P, Oliveira JF et al (2011) Neuron-specific proteotoxicity of mutant ataxin-3 in C. elegans: rescue by the DAF-16 and HSF-1 pathways. Hum Mol Genet 20:2996–3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theodosiou NA, Xu T (1998) Use of FLP/FRT system to study Drosophila development. Methods 14:355–365

    Article  CAS  PubMed  Google Scholar 

  • Tower J (2011) Heat shock proteins and Drosophila aging. Exp Gerontol 46:355–362

    Article  CAS  PubMed  Google Scholar 

  • Um SH, D’Alessio D, Thomas G (2006) Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 3:393–402

    Article  CAS  PubMed  Google Scholar 

  • Vermeulen CJ, Van De Zande L, Bijlsma R (2005) Resistance to oxidative stress induced by paraquat correlates well with both decreased and increased lifespan in Drosophila melanogaster. Biogerontology 6:387–395

    Article  CAS  PubMed  Google Scholar 

  • Vijg J (2008) The role of DNA damage and repair in aging: new approaches to an old problem. Mech Ageing Dev 129:498–502

    Article  CAS  PubMed  Google Scholar 

  • Voellmy R 2004 On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 9:122–133

    Google Scholar 

  • Vowels JJ, Thomas JH (1992) Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. Genetics 130:105–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker DW, Benzer S (2004) Mitochondrial “swirls” induced by oxygen stress and in the Drosophila mutant hyperswirl. Proc Natl Acad Sci USA 101:10290–10295

    Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang MC, Bohmann D, Jasper H (2003) JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev Cell 5:811–816

    Article  CAS  PubMed  Google Scholar 

  • Wang MC, Bohmann D, Jasper H (2005) JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121:115–125

    Article  CAS  PubMed  Google Scholar 

  • Wolf FW, Heberlein U (2003) Invertebrate models of drug abuse. J Neurobiol 54:161–178

    Article  CAS  PubMed  Google Scholar 

  • Yadav R, Chanu SI, Raj K, Sarkar S (2013) Rise and Fall of Reactive Oxygen Species (ROS): implications in Aging and Neurodegenerative Disorders. Cell Dev. Biol. 1:e122

    Google Scholar 

  • Yadav R, Kundu S, Sarkar S (2015) Drosophila glob1 expresses dynamically and is required for development and oxidative stress response. Genesis. doi:10.1002/dvg.22902

    PubMed  Google Scholar 

  • Zeitlinger J, Bohmann D (1999) Thorax closure in Drosophila: involvement of Fos and the JNK pathway. Development 126:3947–3956

    CAS  PubMed  Google Scholar 

  • Zhao Y, Sun H, Lu J, Li X, Chen X, Tao D, Huang W, Huang B (2005) Lifespan extension and elevated hsp gene expression in Drosophila caused by histone deacetylase inhibitors. J Exp Biol 208:697–705

    Article  CAS  PubMed  Google Scholar 

  • Zou S, Meadows S, Sharp L, Jan LY and Jan YN (2000) Genome-wide study of aging and oxidative stress response in Drosophila melanogaster. Proc Natl Acad Sci USA 97:13726–13731

    Google Scholar 

Download references

Acknowledgments

Research programmes in the laboratory have been supported by grants from the Department of Science and Technology (DST), Department of Biotechnology (DBT), Government of India, New Delhi; DU/DST-PURSE scheme and Delhi University R & D fund to SS. RY, SIC, KR and Nisha are supported by DST-INSPIRE, UGC-SRF, UGC-JRF and DBT-JRF fellowships respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Yadav, R., Chanu, S.I., Raj, K., Nisha, Sarkar, S. (2017). Drosophila melanogaster: A Prime Experimental Model System for Aging Studies. In: Rath, P., Sharma, R., Prasad, S. (eds) Topics in Biomedical Gerontology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2155-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2155-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2154-1

  • Online ISBN: 978-981-10-2155-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics