Skip to main content

Additives in Wood Products—Today and Future Development

  • Chapter
  • First Online:
Environmental Impacts of Traditional and Innovative Forest-based Bioproducts

Abstract

Most wood products include additives. They may be preservatives to protect the wood against biological degradation or against fire, coatings for protection or to give the wood a more favourable aesthetic appearance, non-wood materials to improve the performance of the product and overcome weaknesses in the wood material, or plastics in combinations with wood residues to create new types of wood–plastic combinations. The global wood industry is, for example the largest user of adhesives; about 80 % of all wood and wood-based products involve some form of bonding and 70 % of the total volume of adhesives produced is consumed in the woodworking industry. Wood can thus be regarded as a composite consisting of wood-based materials combined with other materials to form an aggregate material. An example is plywood, in which veneers are joined with adhesive to form a flat panel. Other types of wood composites include various board products, structural composite timber and, furniture and joinery components, all including some form of bonding with adhesive. This situation obviously influences the way in which we should relate to wood products and their environmental impacts. This chapter gives a state-of-the-art presentation of different additives currently being used in wood products. This information is necessary for further studies on the influence that these additives have on the service life and on environmental aspects, and the limitations which they may impose on the reuse, recycling and upgrading of wood products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The word bionic is based on the Greek βίον, bion, which means life. Bionics is the application of systems found in nature to modern technology.

References

  • Andersson C, Tullin C (1999) Förbränning av returflis – kvalitetssäkring och drifteserfarenheter (The combustion of recycled wood—quality assurance and operational experiences), Report No 668. Thermal Engineering Research Association (Värmeforsk), Stockholm

    Google Scholar 

  • Anon (2011) Life cycle assessment of volatile organic compounds (LCA-VOC) in paints & coatings: final report. National Center for Manufacturing Sciences Inc, Ann Arbor

    Google Scholar 

  • Barthlott W, Ehler N (1977) Raster-Elektronenmikroskopie der Epidermis-Oberflächen von Spermatophyten (Scanning electron microscopy of the epidermal surfaces of spermatophytes). Tropische und subtropische Pflanzenwelt 19:110 (Akad Wiss Lit Mainz). Franz Steiner Verlag, Mainz

    Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8

    Article  CAS  Google Scholar 

  • Berg M, Andersson A, Andersson C et al (2003) Förbränning av returträflis – Etapp 2 av ramprojekt returträflis (Combustion of recovered wood—stage 2 of the framework project recovered wood), Report No 820. Thermal Engineering Research Association (Värmeforsk), Stockholm

    Google Scholar 

  • Berger J (2006) Bauplatte oder der gleichen, deren herstellung und werwendung (Building panel or the like, and production and use thereof). PCT Patent PCT/AT2006/000141, 6 Apr 2006

    Google Scholar 

  • Bobacz D (2002) In CNC-Technik gefertigte zimmermannsmäßige Verbindungsmittel: Untersuchung des Schwalbenschwanzzapfens. Diplomarbeit, Universität für Bodenkultur, Vienna

    Google Scholar 

  • Boonstra MJ, Pizzi A, Zomers F et al (2006) The effects of a two stage heat treatment process on the properties of particleboard. Holz Roh Werkst 64(2):157–164

    Article  CAS  Google Scholar 

  • Bourgois J, Guyonnet R (1988) Characterisation and analysis of torrefied wood. Wood Sci Technol 22:143–155

    Article  CAS  Google Scholar 

  • Carrasco F, Roy C (1992) Kinetic study of dilute-acid prehydrolysis of xylan-containing biomass. Wood Sci Technol 26:189–208

    CAS  Google Scholar 

  • Carus M, Gahle C (2008) Injection moulding with natural fibres. Reinf Plast 52(4):18–25

    Article  Google Scholar 

  • CEN (1992) EN-120, Wood-based panels. Determination of formaldehyde content: extraction method (called the perforator method). European Community for Standardization (CEN), Brussels

    Google Scholar 

  • CEN (2007) CEN/TS 15679, Thermal modified timber—definitions and characteristics. European Community for Standardization (CEN), Brussels

    Google Scholar 

  • CEN (2013) EN-301, Adhesives, phenolic and aminoplastic, for load-bearing timber structures—classification and performance requirements. European Community for Standardization (CEN), Brussels

    Google Scholar 

  • Clemons CM (2002) Wood–plastic composites in the United States—the interfacing of two industries. Forest Prod J 52(6):10–18

    Google Scholar 

  • Dagher HJ, Bragdon MM, Lindyberg RF (2002) Advanced fiber-reinforced polymer-wood composites in transportation applications. Transp Res Rec 1814:237–242

    Article  Google Scholar 

  • Detlefsen WD (2002) Phenolic resins: some chemistry, technology and history. In: Chaudhury MK, Pocius AV (eds) Adhesive science and engineering: surfaces, chemistry and applications. Elsevier, Amsterdam (chap. 20)

    Google Scholar 

  • DIBt (2012) Allgemeine bauaufsichtliche Zulassung DIBT Z-9.1-649 für Schwalbenschwanz-Verbindung in Bauteilen (General building inspection approval DIBt Z-9.1-649 for dovetail joint in components). Deutsche Institut für Bautechnik, Berlin

    Google Scholar 

  • Dietrichs HH, Sinner H, Puls J (1978) Potential of steaming hardwoods and straw for feed and food production. Holzforschung 32:193–199

    Article  CAS  Google Scholar 

  • Dietsch P (2005) Development of a finite-element model for parameter studies of a dovetail connection. Diplomarbeit, Fachgebiet Holzbau, Technische Universität, München

    Google Scholar 

  • DIN (1979) DIN Standard 7707: types of resin impregnated and compressed laminated wood and insulating wood. Deutsches Institut für Normung

    Google Scholar 

  • Dunky M (2003) Adhesives in the wood industry. In: Pizzi A, Mittal KL (eds) Handbook of adhesive technology. Marcel Dekker, New York (chap. 47)

    Google Scholar 

  • Ek M, Gellerstedt G, Henriksson G (eds) (2000) Pulp and paper chemistry and technology, vol 1–5. Walter de Gruyter GmbH & Co, Berlin

    Google Scholar 

  • Ellis S, Paszner L (1994) Activated self-bonding of wood and agricultural residues. Holzforschung 48:82–90

    Article  CAS  Google Scholar 

  • Feifel S, Poganietz WR, Schebek L (2013) The utilization of light weight boards for reducing air emissions by the German wood industry—a perspective? Environ Sci Eur 25(5). doi:10.1186/2190-4715-25-5

  • Frihart CR (2011) Wood adhesives. Vital for producing most wood products. For Prod J 61(1):4–12

    CAS  Google Scholar 

  • Frihart CR, Birkeland MJ (2014) Soy properties and soy wood adhesives. In: Brentin RP (ed) Soy-based chemicals and materials. ACS Sym Ser 1178, American Chemical Society, Washington, DC, pp 167–192

    Google Scholar 

  • Frybort S, Mauritz R, Teschinger A, Müller U (2008) Cement bonded composites—a mechanical review. BioResources 3(29):602–626

    Google Scholar 

  • Fuch W (1928) Genuine lignin. I. Acetylation of pine wood. Ber Dtsch Chem Ges 61B:948–951

    Article  Google Scholar 

  • Geimer RL, Leao A, Armbruster D, Pablo A (1994) Property enhancement of wood composites using gas injection. In: Maloney TM (ed) Proceedings of the 28th Washington State University International particleboard/composite materials symposium, April 12–14. Pullman, pp 243–259

    Google Scholar 

  • Goldstein IS (1955) The impregnation of wood to impart resistance to alkali and acid. For Prod J 5:265–267

    CAS  Google Scholar 

  • González-García S, Feijoo G, Heathcote C, Kandelbauer A, Moreira M (2011) Environmental assessment of green hardboard production coupled with a laccase activating system. J Cleaner Prod 19(5):445–453

    Article  Google Scholar 

  • Graubner W (1992) Encyclopedia of wood joints. Taunton Press, Newtown

    Google Scholar 

  • Gustavsson L, Madlener R, Hoen HF et al (2006) The role of timber material for greenhouse gas mitigation. Mitig Adapt Strat Glob Change 11(5/6):1097–1127

    Article  Google Scholar 

  • Gustavsson L, Sathre R (2011) Energy and CO2 analysis of wood substitution in construction. Clim Change 105(1/2):129–153

    Article  CAS  Google Scholar 

  • Haller P (2007) Concepts for textile reinforcements for timber structures. Mater Struct 40:107–118

    Article  CAS  Google Scholar 

  • Haller P, Wehsener J, Werner TE, Hartig J (2013a) Recent advancements for the application of moulded wooden tubes as structural elements. In: Aicher S, Reinhard HW, Garrecht H (eds) Material and joints in timber structures. Springer, Heidelberg, pp 99–108

    Google Scholar 

  • Haller P, Putzger R, Wehsener J et al (2013b) Formholzrohre – Stand der Forschung und Anwendungen (Molded wood pipes—state of research and applications). Bautechnik 90:34–41

    Article  Google Scholar 

  • Hallström S (1995) Glass fibre reinforcement around holes in laminated timber beams. Department of lightweight Structures, Report No 95-14. Royal Institute of Technology, KTH, Stockholm

    Google Scholar 

  • Hein PRG, Aparecida de Sá V, Bufalino L et al (2009) Calibrations based on near infrared spectroscopic data to estimate wood-cement panel properties. BioResources 4(4):1620–1634

    CAS  Google Scholar 

  • Hillis WE (1975) The role of wood characteristics in high temperature drying. J Inst Wood Sci 7:60–67

    CAS  Google Scholar 

  • Hochstrate M (2000) Untersuchungen zum Tragverhalten von CNC gefertigten Schwalbenschwanzverbindungen (Investigations on the structural behavior of CNC crafted dovetail joints). FH Hildesheim/Holzminden/Göttingen, Hildesheim

    Google Scholar 

  • Holzner H (1999) Entwicklung eines Nachweisverfahrens zur Bemessung von speziellen (maschinell gefertigten) Zapfenverbindungen (Development of a detection method for the design of special (machine-made) mortise and tenon joints). Institut für Tragwerksbau-Fachgebiet Holzbau, Technische Universität Münich, Germany

    Google Scholar 

  • Hood EE, Nelson P, Powell R (eds) (2011) Plant biomass conversion. Wiley-Blackwell, West Sussex

    Google Scholar 

  • Horn O (1928) Acetylation of beech wood. B Dtsch Chem Ges 61B:2542–2545

    Article  CAS  Google Scholar 

  • Höglmeier K, Weber-Blaschke G, Richter K (2013) Potentials for cascading of recovered wood from building deconstruction: a case study for south-east Germany. Resour Con Recy 78:81–91

    Article  Google Scholar 

  • IEC (2006) IEC Standard No 61061-1, Non-impregnated densified laminated wood for electrical purposes—part 1: definitions, designation and general requirements. International Electrotechnical Commission, Geneva

    Google Scholar 

  • Insulander R (1997) The Fenno-Urgian two-wood bow—a missing link. Bull Primitive Technol 14(2):35–39

    Google Scholar 

  • Jermer J, Ekvall A, Tullin C (2001) Inventering av föroreningar i returträ (Inventory of pollutants in recycled wood). Report No 732, Thermal Engineering Research Association (Värmeforsk), Stockholm

    Google Scholar 

  • Kamdem DP, Pizzi A, Triboulot MC (2000) Heat-treated timber: potentially toxic by-products presence and extent of wood cell degradation. Holz Roh Werkst 58(4):253–257

    Article  CAS  Google Scholar 

  • Kamke FA (2013) THM—a technology platform or novelty product? In: Medved S, Kutnar A (eds) Characterization of modified wood in relation to wood bonding and coating performance. Proceedings of the COST FP0904 and FP1003 International Workshop, Rogla, 16–18 Oct 2013

    Google Scholar 

  • Killen G (2000) Wood—procurement and primary processing. In: Nicholson PT, Shaw I (eds) Ancient Egyptian materials and technology. Cambridge University Press, Cambridge, pp 353–368

    Google Scholar 

  • Kitek Kuzman M, Kutnar A (2014) Contemporary Slovenian timber architecture for sustainability. Green energy and technology. Springer, Berlin, p 163

    Google Scholar 

  • Klauditz W, Stegmann G (1955) Beiträge zur Kenntnis des Ablaufes und der Wirkung thermischer Reaktionen bei der Bildung von Holzwerkstoffen (Contributions to the knowledge of the sequence and the effect of thermal reactions in the formation of wood materials). Holz Roh Werkst 13:434–440

    Article  CAS  Google Scholar 

  • Klyosov AA (2007) Wood-plastic composites. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  • Knight EV, Wulpi M (eds) (1927) Veneers and plywood. Their craftmanship and artistry, modern production methods and present-day utility. The Ronald Press Company, New York

    Google Scholar 

  • Koehler A, Pillow MY (1925) Effect of high temperatures on the mode of fracture of a softwood. Southern Lumberman 121:219–221

    Google Scholar 

  • Kollmann FFP, Kuenzi EW, Stamm AJ (1975) Principles of wood science and technology II. Wood based materials. Springer, New York

    Book  Google Scholar 

  • Kreuzinger H, Spengler R (1999) Zum Tragverhalten von maschinell abgebundenen Zapfenverbindungen aus Konstruktionsvollholz zwischen Haupt-und Nebenträger (For structural behavior of machined hardened tenon joints from construction timber between the main and secondary beams). Untersuchungsbericht LKI, 7313, Technische Universität Münich, Germany

    Google Scholar 

  • Kuroki Y, Nagatomi W, Yamada J (1993) Manufacture of light-weight cement-bonded particleboard. In: Moslemi AA (ed) 3rd International inorganic-bonded wood and fiber composite materials conference, Spokane 28–30 Sept 1992

    Google Scholar 

  • Kutnar A, Burnard MD (2014) The past, present, and future of EU wood adhesive research and market. In: International conference on wood adhesives. Toronto, 9–11 Oct 2014

    Google Scholar 

  • Kutnar A, Hill C (2014) Assessment of carbon footprinting in the wood industry. In: Muthu SS (ed) Assessment of carbon footprint in different industrial sectors, vol 2., EcoProductionSpringer, Berlin, pp 135–172

    Chapter  Google Scholar 

  • Kutnar A, Sandberg D, Haller P (2015) Compressed and moulded wood from processing to products. Holzforschung 69(7):885–897

    Article  CAS  Google Scholar 

  • Lande S, Westin M, Schneider M (2004) Properties of furfurylated wood. Scand J For Res 19(5):22–30

    Article  Google Scholar 

  • Lauer JP (1933) Fouilles du service des antiquités à saqqarah (secteur nord, Novembre 1932-mai 1933). (Excavations of the Department of Antiquities at Saqqara (north sector, November 1932–May 1933)). Annales du service des antiquités de L’Égypte 33:155–166

    Google Scholar 

  • Li K, Peshkova S, Gen X (2004) Investigation of soy protein-kymene® adhesive systems for wood composites. J Am Oil Chem Soc 81:487–491

    Article  CAS  Google Scholar 

  • Linné Cv (1737) Flora Lapponica (The flora of Lapland). Schouten, Amsterdam

    Google Scholar 

  • Lopez-Anido R, Xu H (2002) Structural characterization of hybrid FRP-glulam panels for bridge decks. J Compos Constr ASCE 6(3):194–203

    Article  CAS  Google Scholar 

  • Lopez-Anido R, Michael AP, Sandford TC (2003) Experimental characterization of FRP composite-wood pile structural response by bending tests. Mar Struct 16(4):257–274

    Article  Google Scholar 

  • Lopez-Anido R, Muszynski L, Gardner DJ, Goodell B, Herzog B (2005) Performance-based material evaluation of fiber-reinforced polymer-wood interfaces in reinforced glulam members. J Test Eval 33(6):385–394

    CAS  Google Scholar 

  • Lucas A (1936) The wood of the third dynasty, ply-wood coffin from Saqqara. Annales du service des antiquités de L’Égypte 36:1–4

    Google Scholar 

  • Mahapatra K, Gustavsson L (2008) Multi-storey timber buildings: breaking industry path dependency. Build Res Inf 36(6):638–648

    Article  Google Scholar 

  • Maloney TM (1977) Modern particleboard and dry-process fibreboard manufacturing. Miller-Freeman Publications, San Francisco

    Google Scholar 

  • Navi P, Sandberg D (2012) Thermo-hydro-mechanical processing of wood. EPFL Press, Lausanne

    Google Scholar 

  • Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79(6):667–677

    Article  Google Scholar 

  • Näsström J (2005) Stjärnsågning igen – Nystart i mindre skala och med ny teknik (Star-Sawing again—a restart on a smaller scale and with new technology). Nordisk träteknik Såg & Trä 9:12–13

    Google Scholar 

  • Phleps H (1982) The craft of log building. Lee Valley Tools Limited, Ottawa

    Google Scholar 

  • Pizzi A (2006) Recent developments in eco-efficient bio-based adhesives for wood bonding: opportunities and issues. J Adhes Sci Techn 20(8):829–846

    Article  CAS  Google Scholar 

  • Pizzi A, Mittal KL (2003) Handbook of adhesive technology. Marcel Dekker, New York, p 672

    Google Scholar 

  • Pokharel N (2003) Behaviour and design of sandwich panels subject to load buckling and flexural wrinkling effects. PhD thesis, School of Civil Engineering, Queensland University of Technology

    Google Scholar 

  • Rebstock F, Bomark P, Sandberg D (2015) Makerjoint, a new concept for joining members in timber engineering—strength test and failure analyses. Pro Ligno 11(4):397–404

    Google Scholar 

  • Richter K (2001) LCA—reuse/recycle. In: Johansson CJ, Pizzi T, van Leemput M (eds) Wood adhesion and glued products, Report on the state of the art of COST Action E13, pp 161–180

    Google Scholar 

  • Robeller C, Mayencourt P, Weinand Y (2014a) Snap-fit joints-CNC fabricated, integrated mechanical attachment for structural wood panels. In: ACADIA 2014 design agency: Proceedings of the 34th annual conference of the association for computer aided design in architecture. Los Angeles, 23–25 Oct 2014, Riverside Architectural Press, pp 189–198

    Google Scholar 

  • Robeller C, Hahn B, Mayencourt P, Weinand Y (2014b) CNC-gefräste Schwalbenschanzzinken für die Verbindung von vorgefertigten Bauteilen aus Brettsperrholz (CNC machined dovetail joints for the connection of prefabricated components made of laminated timber). Bauingenieur 89:487–490

    Google Scholar 

  • Rowell RM (2005) Handbook of wood chemistry and wood composites. Taylor & Francis, Boca Raton

    Google Scholar 

  • Rowell RM, Simonson R, Tillman AM (1986) A simplified procedure for acetylation of chips for dimensionally stabilized particleboard products. Pap Puu 68(10):740–744

    CAS  Google Scholar 

  • Sandberg D, Haller P, Navi P (2013) Thermo-hydro and thermo-hydro-mechanical wood processing: an opportunity for future environmentally friendly wood products. Wood Mat Sci Eng 8(1):64–88

    Article  CAS  Google Scholar 

  • Savastano Júnior H, Warden PG, Coutts RSP (2000) Brazilian waste fibers as reinforcement of cement-based composites. Cement Concr Compos 22(25):379–384

    Article  Google Scholar 

  • Schefferus J (1673) Lapponia. ex officina Christiani Wolffii, Frankfurt am Main, Germany (See also translation by John Scheffer (1674). The history of Lapland, Oxford)

    Google Scholar 

  • Schindler C (2009) Ein architektonisches Periodisierungsmodell anhand fertigungstechnischer Kriterien, dargestellt am Beispiel des Holzbaus (An architectural periodization based production engineering criteria, using the example of timber construction). Eidgenössische Technische Hochschule Zürich, ETH, Zürich

    Google Scholar 

  • Shade N (1998) The strip-built sea kayak. Ragged Mountain Press, Camden

    Google Scholar 

  • Sirkin T, ten Houten M (1994) The cascade chain: a theory and tool for achieving resource sustainability with application for product design. Resour Con Recy 10:213–277

    Article  Google Scholar 

  • SIS (2009) SS 187106: Fasta biobränslen och torvbränslen – Terminologi (Solid boifules and peat fuels—Terminology). Swedish Standards Institute, Stockholm

    Google Scholar 

  • Skuratov N (2010) New lightweight solid wood panels for green building. In: Proceedings of the International convention of society of wood science and technology and United Nations Economic Commission for Europe—Timber Committee, Geneva, 11–14 Oct 2010

    Google Scholar 

  • Sonti SS, GangaRao HVS (1996) Banding timber crossties using composite fabrics for improving their performance. Materials for the new technology. ASCE Press, Washington, DC, pp 1449–1457

    Google Scholar 

  • Stamm AJ, Seborg RM (1939) Resin-treated wood. Ind Eng Chem 31:897–992

    Article  CAS  Google Scholar 

  • Stamm AJ, Burr HK, Kline AA (1946) Staybwood. Heat-stabilized wood. Ind Eng Chem 38:630–634

    Article  CAS  Google Scholar 

  • Stevens WC, Turner N (1970) Wood bending handbook. HMSO, London

    Google Scholar 

  • Strömberg B (2005) Bränslehandboken (Fuel Handbook). Report No 911, Thermal Engineering Research Association (Värmeforsk), Stockholm

    Google Scholar 

  • Suchsland O, Woodson GE (1986) Fiberboard manufacturing practices in the United States. USDA Forest Service Agriculture Handbook, 640, US Government Printing Office, Washington, DC

    Google Scholar 

  • Suida H, Titsh H (1928) Chemistry of beech wood: acetylation of beech wood and cleavage of the acetyl-beech wood. Ber Dtsch Chem Ges 61B:1599–1604

    Article  CAS  Google Scholar 

  • Sundqvist JO, Erlandsson M, Solyom P, Högberg B, Bergman G (2009) Impregnerat trä i kretsloppet – rekommendationer för restprodukthantering (Chemical preservative wood in recycling—recommendations for waste management). Report No B1827, Swedish Environmental Research Institute IVL, Stockholm

    Google Scholar 

  • Tarkow H, Stamm AJ, Erickson ECO (1946) Acetylated wood. Report No 1593, USDA, Forest Service, Forest Prod Lab, Madison

    Google Scholar 

  • Tannert T, Prion H, Lam F (2007) Structural performance of rounded dovetail connections under different loading conditions. Can J Civ Eng 34(12):1600–1605

    Article  Google Scholar 

  • Tannert T, Lam F, Vallée T (2011) Structural performance of rounded dovetail connections: experimental and numerical investigations. Eur J Wood Wood Prod 69(3):471–482

    Article  Google Scholar 

  • Tiemann HD (1915) The effect of different methods of drying on the strength of wood. Lumber World Rev 28:19–20

    Google Scholar 

  • The National Encyclopedia (2015) http://www.ne.se/dioxiner. Accessed 24 Aug 2015

  • Tullin C, Jermer J (1998) Inventering och energiutvinning av träskyddsbehandlat virke i Sverige (Inventory and energy of preservative-treated wood in Sweden). Report No 653, Thermal Engineering Research Association (Värmeforsk), Stockholm

    Google Scholar 

  • Wallenberg FT, Bingham P (2010) Fiberglass and glass technology, energy-friendly compositions and applications. Springer Science+Business Media LLC, New York

    Book  Google Scholar 

  • Werner F, Richter K (2007) Wood building products in comparative LCA. A literature review. Int J Life Cycle Ass 12(7):470–479

    Article  CAS  Google Scholar 

  • Wilson TRC (1920) The effect of kiln drying on the strength of airplane woods. Report No 68, National Advisory Committee for Aeronautics, Washington, DC

    Google Scholar 

  • Zwerger K (2012) Wood and wood joints: building traditions of Europe and Japan. Walter de Gruyter, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dick Sandberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sandberg, D. (2016). Additives in Wood Products—Today and Future Development. In: Kutnar, A., Muthu, S. (eds) Environmental Impacts of Traditional and Innovative Forest-based Bioproducts. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-10-0655-5_4

Download citation

Publish with us

Policies and ethics