Skip to main content

Multifactorial Diseases with Immunological Involvement

  • Chapter
  • First Online:
Practical Immunodermatology

Abstract

Urticaria is a disease with transient itching wheals/hives and/or angioedema. Urticaria is divided into acute urticaria (AU) or chronic urticaria (CU, duration more than 6 weeks) [1]. Urticaria may be the skin manifestation of food allergy, drug allergy, anaphylaxis, autoimmune disorders, or infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Urticaria

  1. Zuberbier T, Aberer W, Asero R, et al. The EAACI/GA2LEN/EDF/WAO guideline for the definition, classification, diagnosis, and management of urticaria: the 2013 revision and update. Allergy. 2014;69(7):868–87.

    Article  CAS  PubMed  Google Scholar 

  2. Burmester GR, Pezzutto A. Color atlas of immunology. 1st ed. Stuttgart: Georg Thieme Verlag; 2006. p. 200–1.

    Google Scholar 

  3. Roecken M, Grevers G, Burgdorf W. Color atlas of allergic diseases. 1st ed. Stuttgart: Georg Thieme Verlag; 2006. p. 116–7.

    Google Scholar 

  4. Spickett G. Oxford handbook of clinical immunology and allergy. 3rd ed. UK: Oxford University Press; 2013. p. 129–32.

    Book  Google Scholar 

  5. Bernstein JA, Lang DM, Khan DA, et al. The diagnosis and management of acute and chronic urticaria: 2014 update. J Allergy Clin Immunol. 2014;133(5):1270–7.

    Article  PubMed  Google Scholar 

  6. Kaplan AP. What the first 10,000 patients with chronic urticaria have taught me:a personal journey. J Allergy Clin Immunol. 2009;123:713–7.

    Article  PubMed  Google Scholar 

  7. Di Lorenzo G, Pacor ML, Mansueto P, Martinelli N, Esposito-Pellitteri M, Lo Bianco C, et al. Food-additive-induced urticaria: a survey of 838 patients with recurrent chronic idiopathic urticaria. Int Arch Allergy Immunol. 2005;138:235–42.

    Article  PubMed  Google Scholar 

  8. Leznoff A, Josse RG, Denburg J, Dolovich J. Association of chronic urticaria and angioedema with thyroid autoimmunity. Arch Dermatol. 1983;119:636–40.

    Article  CAS  PubMed  Google Scholar 

  9. Leznoff A, Sussman GL. Syndrome of idiopathic chronic urticaria and angioe- dema with thyroid autoimmunity: a study of 90 patients. J Allergy Clin Immunol. 1989;84:66–71.

    Article  CAS  PubMed  Google Scholar 

  10. Ferrer M, Kinet JP, Kaplan AP. Comparative studies of functional and binding assays for IgG anti-Fc(epsilon)RIalpha (alpha-subunit) in chronic urticaria. J Allergy Clin Immunol. 1998;101:672–6.

    Article  CAS  PubMed  Google Scholar 

  11. Tong LJ, Balakrishnan G, Kochan JP, Kinet JP, Kaplan AP. Assessment of auto- immunity in patients with chronic urticaria. J Allergy Clin Immunol. 1997;99:461–5.

    Article  CAS  PubMed  Google Scholar 

  12. Puccetti A, Bason C, Simeoni S, Millo E, Tinazzi E, Beri R, et al. In chronic idiopathic urticaria autoantibodies against Fc epsilonRII/CD23 induce histamine release via eosinophil activation. Clin Exp Allergy. 2005;35:1599–607.

    Article  CAS  PubMed  Google Scholar 

  13. Niimi N, Francis DM, Kermani F, O’Donnell BF, Hide M, Kobza-Black A, et al. Dermal mast cell activation by autoantibodies against the high affinity IgE receptor in chronic urticaria. J Invest Dermatol. 1996;106:1001–6.

    Article  CAS  PubMed  Google Scholar 

  14. Garmendia JV, Zabaleta M, Aldrey O, Rivera H, De Sanctis JB, Bianco NE, et al. Immunophenotype characteristics of peripheral blood mononuclear leukocytes of chronic idiopathic urticaria patients. Invest Clin. 2006;47:361–9.

    PubMed  Google Scholar 

  15. Garmendia JV, Zabaleta M, Blanca I, Bianco NE, De Sanctis JB. Total and biologically active serum-soluble CD154 in patients with chronic idiopathic urticaria. Allergy Asthma Proc. 2004;25:121–5.

    PubMed  Google Scholar 

  16. Eckman JA, Hamilton RG, Gober LM, Sterba PM, Saini SS. Basophil phenotypes in chronic idiopathic urticaria in relation to disease activity and autoantibodies. J Invest Dermatol. 2008;128:1956–63.

    Article  CAS  PubMed  Google Scholar 

  17. Zuberbier T, Maurer M. Urticaria: current opinions about etiology, diagnosis and therapy. Acta Derm Venereol. 2007;87:196–205.

    PubMed  Google Scholar 

  18. Magerl MA, Altrichter S, Boodstein N, Gu€zelbey O, Keßler B, Krause K, et al. Urticaria – classification and strategies for diagnosis and treatment. CME Dermatol. 2008;3:2–18.

    Google Scholar 

  19. Ventura MT, Napolitano S, Menga R, Cecere R, Asero R. Anisakis simplex hyper sensitivity is associated with chronic urticaria in endemic areas. Int Arch Allergy Immunol. 2013;160:297–300.

    Article  CAS  PubMed  Google Scholar 

  20. Daschner A, Pascual CY. Anisakis simplex: sensitization and clinical allergy. Curr Opin Allergy Clin Immunol. 2005;5:281–5.

    Article  PubMed  Google Scholar 

  21. Kaplan AP. Treatment of chronic spontaneous urticaria. Allergy Asthma Immunol Res. 2012;4:326–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Metz M, Maurer M. Omalizumab in chronic urticaria. Curr Opin Allergy Clin Immunol. 2012;12:406–11.

    Article  CAS  PubMed  Google Scholar 

  23. Ivyanskiy I, Sand C, Francis ST. Omalizumab for chronic urticaria: a case series and overview of the literature. Case Rep Dermatol. 2012;4:19–26.

    Article  PubMed Central  PubMed  Google Scholar 

Psoriasis

  1. Di Cesare A, Di Meglio P, Nestle FO. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol. 2009;129(6):1339–50.

    Article  CAS  PubMed  Google Scholar 

  2. Zaba LC, et al. Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signaling, not immediate response TNF genes. J Allergy Clin Immunol. 2009;124(5):1022–10.e1–395.

    Article  CAS  Google Scholar 

  3. Baliwag J, Barnes DH, Johnston A. Cytokines in psoriasis. Cytokine. 2015;73(2):342–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hijnen D, et al. CD8(+) T cells in the lesional skin of atopic dermatitis and psoriasis patients are an important source of IFN-gamma, IL-13, IL-17, and IL-22. J Invest Dermatol. 2013;133(4):973–9.

    Article  CAS  PubMed  Google Scholar 

  5. Jin L, Wang G. Keratin 17: a critical player in the pathogenesis of psoriasis. Med Res Rev. 2014;34(2):438–54.

    Article  CAS  PubMed  Google Scholar 

  6. Fu M, Wang G. Keratin 17 as a therapeutic target for the treatment of psoriasis. J Dermatol Sci. 2012;67(3):161–5.

    Article  CAS  PubMed  Google Scholar 

  7. Grine L, et al. An inflammatory triangle in psoriasis: TNF, type I IFNs and IL-17. Cytokine Growth Factor Rev. 2014;26(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  8. Puig L, Julia A, Marsal S. The pathogenesis and genetics of psoriasis. Actas Dermosifiliogr. 2014;105(6):535–45.

    Article  CAS  PubMed  Google Scholar 

  9. Nair RP, et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet. 2009;41(2):199–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Villablanca EJ, Mora JR. A two-step model for Langerhans cell migration to skin-draining LN. Eur J Immunol. 2008;38(11):2975–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Avramidis G, et al. The role of endothelial cell apoptosis in the effect of etanercept in psoriasis. Br J Dermatol. 2010;163(5):928–34.

    Article  CAS  PubMed  Google Scholar 

  12. Gottlieb AB, et al. TNF inhibition rapidly down-regulates multiple proinflammatory pathways in psoriasis plaques. J Immunol. 2005;175(4):2721–9.

    Article  CAS  PubMed  Google Scholar 

  13. Schmuth M, et al. Expression of the C-C chemokine MIP-3 alpha/CCL20 in human epidermis with impaired permeability barrier function. Exp Dermatol. 2002;11(2):135–42.

    Article  CAS  PubMed  Google Scholar 

  14. Chiricozzi A, et al. Integrative responses to IL-17 and TNF-alpha in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J Invest Dermatol. 2011;131(3):677–87.

    Article  CAS  PubMed  Google Scholar 

  15. Johnston A, et al. Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation. J Immunol. 2013;190(5):2252–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hartupee J, et al. IL-17 enhances chemokine gene expression through mRNA stabilization. J Immunol. 2007;179(6):4135–41.

    Article  CAS  PubMed  Google Scholar 

  17. Johnston A, et al. Early tissue responses in psoriasis to the antitumour necrosis factor-alpha biologic etanercept suggest reduced interleukin-17 receptor expression and signalling. Br J Dermatol. 2014;171(1):97–107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Nestle FO, et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med. 2005;202(1):135–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Albanesi C, et al. Chemerin expression marks early psoriatic skin lesions and correlates with plasmacytoid dendritic cell recruitment. J Exp Med. 2009;206(1):249–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Das RP, Jain AK, Ramesh V. Current concepts in the pathogenesis of psoriasis. Indian J Dermatol. 2009;54(1):7–12.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Kryczek I, et al. Induction of IL-17+ T cell trafficking and development by IFN-gamma: mechanism and pathological relevance in psoriasis. J Immunol. 2008;181(7):4733–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Bissonnette R, et al. A randomized, double-blind, placebo-controlled, phase I study of MEDI-545, an anti-interferon-alfa monoclonal antibody, in subjects with chronic psoriasis. J Am Acad Dermatol. 2010;62(3):427–36.

    Article  CAS  PubMed  Google Scholar 

  23. Johnson-Huang LM, et al. A single intradermal injection of IFN-gamma induces an inflammatory state in both non-lesional psoriatic and healthy skin. J Invest Dermatol. 2012;132(4):1177–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 2009;9(8):556–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lowes MA, et al. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol. 2008;128(5):1207–11.

    Article  CAS  PubMed  Google Scholar 

  26. Johnston A, et al. Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation. J Immunol. 2013;190(5):2252–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ortega C, et al. IL-17-producing CD8+ T lymphocytes from psoriasis skin plaques are cytotoxic effector cells that secrete Th17-related cytokines. J Leukoc Biol. 2009;86(2):435–43.

    Article  CAS  PubMed  Google Scholar 

  28. Res PC, et al. Overrepresentation of IL-17A and IL-22 producing CD8 T cells in lesional skin suggests their involvement in the pathogenesis of psoriasis. PLoS One. 2010;5(11):e14108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Lin AM, et al. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J Immunol. 2011;187(1):490–500.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Villanova F, et al. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J Invest Dermatol. 2014;134(4):984–91.

    Article  CAS  PubMed  Google Scholar 

  31. Teunissen MB, et al. The IL-17A-producing CD8+ T-cell population in psoriatic lesional skin comprises mucosa-associated invariant T cells and conventional T cells. J Invest Dermatol. 2014;134(12):2898–907.

    Article  CAS  PubMed  Google Scholar 

  32. Papp KA, et al. Efficacy and safety of secukinumab in the treatment of moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled phase II dose-ranging study. Br J Dermatol. 2013;168(2):412–21.

    Article  CAS  PubMed  Google Scholar 

  33. Leonardi C, et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl J Med. 2012;366(13):1190–9.

    Article  CAS  PubMed  Google Scholar 

  34. Rich P, et al. Secukinumab induction and maintenance therapy in moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled, phase II regimen-finding study. Br J Dermatol. 2013;168(2):402–11.

    Article  CAS  PubMed  Google Scholar 

  35. Papp KA, et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N Engl J Med. 2012;366(13):1181–9.

    Article  CAS  PubMed  Google Scholar 

  36. Gaffen SL, et al. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14(9):585–600.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Skepner J, et al. Pharmacologic inhibition of RORgammat regulates Th17 signature gene expression and suppresses cutaneous inflammation in vivo. J Immunol. 2014;192(6):2564–75.

    Article  CAS  PubMed  Google Scholar 

  38. Sigmundsdottir H, et al. Differential effects of interleukin 12 and interleukin 10 on superantigen-induced expression of cutaneous lymphocyte-associated antigen (CLA) and alphaEbeta7 integrin (CD103) by CD8+ T cells. Clin Immunol. 2004;111(1):119–25.

    Article  CAS  PubMed  Google Scholar 

  39. Wilson NJ, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol. 2007;8(9):950–7.

    Article  CAS  PubMed  Google Scholar 

  40. Yawalkar N, et al. Expression of interleukin-12 is increased in psoriatic skin. J Invest Dermatol. 1998;111(6):1053–7.

    Article  CAS  PubMed  Google Scholar 

  41. Piskin G, et al. In vitro and in situ expression of IL-23 by keratinocytes in healthy skin and psoriasis lesions: enhanced expression in psoriatic skin. J Immunol. 2006;176(3):1908–15.

    Article  CAS  PubMed  Google Scholar 

  42. Lee E, et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med. 2004;199(1):125–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Cargill M, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet. 2007;80(2):273–90.

    Article  CAS  PubMed  Google Scholar 

  44. Johnston A, et al. Susceptibility-associated genetic variation at IL12B enhances Th1 polarization in psoriasis. Hum Mol Genet. 2013;22(9):1807–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Nair RP, et al. Polymorphisms of the IL12B and IL23R genes are associated with psoriasis. J Invest Dermatol. 2008;128(7):1653–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Desmet J, et al. Structural basis of IL-23 antagonism by an Alphabody protein scaffold. Nat Commun. 2014;5:5237.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Quiniou C, et al. Specific targeting of the IL-23 receptor, using a novel small peptide noncompetitive antagonist, decreases the inflammatory response. Am J Physiol Regul Integr Comp Physiol. 2014;307(10):R1216–30.

    Article  CAS  PubMed  Google Scholar 

  48. Commins S, Steinke JW, Borish L. The extended IL-10 superfamily: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29. J Allergy Clin Immunol. 2008;121(5):1108–11.

    Article  CAS  PubMed  Google Scholar 

  49. Asadullah K, et al. IL-10 is a key cytokine in psoriasis. Proof of principle by IL-10 therapy: a new therapeutic approach. J Clin Invest. 1998;101(4):783–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Sa SM, et al. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol. 2007;178(4):2229–40.

    Article  CAS  PubMed  Google Scholar 

  51. Sabat R, Ouyang W, Wolk K. Therapeutic opportunities of the IL-22-IL-22R1 system. Nat Rev Drug Discov. 2014;13(1):21–38.

    Article  CAS  PubMed  Google Scholar 

  52. Ward NL, Umetsu DT. A new player on the psoriasis block: IL-17A- and IL-22-producing innate lymphoid cells. J Invest Dermatol. 2014;134(9):2305–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Boniface K, et al. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol. 2005;174(6):3695–702.

    Article  CAS  PubMed  Google Scholar 

  54. Nikamo P, et al. Genetic variants of the IL22 promoter associate to onset of psoriasis before puberty and increased IL-22 production in T cells. J Invest Dermatol. 2014;134(6):1535–41.

    Article  CAS  PubMed  Google Scholar 

  55. Natsuaki Y, et al. Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin. Nat Immunol. 2014;15(11):1064–9.

    Article  CAS  PubMed  Google Scholar 

  56. Foster AM, et al. IL-36 promotes myeloid cell infiltration, activation, and inflammatory activity in skin. J Immunol. 2014;192(12):6053–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Johnston A, et al. IL-1F5, −F6, −F8, and -F9: a novel IL-1 family signaling system that is active in psoriasis and promotes keratinocyte antimicrobial peptide expression. J Immunol. 2011;186(4):2613–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Kumar S, et al. Identification and initial characterization of four novel members of the interleukin-1 family. J Biol Chem. 2000;275(14):10308–14.

    Article  CAS  PubMed  Google Scholar 

  59. Smith DE, et al. Four new members expand the interleukin-1 superfamily. J Biol Chem. 2000;275(2):1169–75.

    Article  CAS  PubMed  Google Scholar 

  60. Onoufriadis A, et al. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am J Hum Genet. 2011;89(3):432–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Marrakchi S, et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N Engl J Med. 2011;365(7):620–8.

    Article  CAS  PubMed  Google Scholar 

  62. Hijnen D, et al. CD8(+) T cells in the lesional skin of atopic dermatitis and psoriasis patients are an important source of IFN-gamma, IL-13, IL-17, and IL-22. J Invest Dermatol. 2013;133(4):973–9.

    Article  CAS  PubMed  Google Scholar 

  63. Koga C, et al. Possible pathogenic role of Th17 cells for atopic dermatitis. J Invest Dermatol. 2008;128(11):2625–30.

    Article  CAS  PubMed  Google Scholar 

  64. Nair RP, et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet. 2009;41(2):199–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Li B, et al. Transcriptome analysis of psoriasis in a large case–control sample: RNA-seq provides insights into disease mechanisms. J Invest Dermatol. 2014;134(7):1828–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Sharma S, et al. The IL-1 family member 7b translocates to the nucleus and down-regulates proinflammatory cytokines. J Immunol. 2008;180(8):5477–82.

    Article  CAS  PubMed  Google Scholar 

  67. Nold MF, et al. IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol. 2010;11(11):1014–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Garcia-Valladares I, Cuchacovich R, Espinoza LR. Comparative assessment of biologics in treatment of psoriasis: drug design and clinical effectiveness of ustekinumab. Drug Des Devel Ther. 2011;5:41–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Menter A, et al. A randomized comparison of continuous vs. intermittent infliximab maintenance regimens over 1 year in the treatment of moderate-to-severe plaque psoriasis. J Am Acad Dermatol. 2007;56(1):31.e1–15.

    Article  Google Scholar 

  70. Thaci D, et al. Adalimumab for the treatment of moderate to severe psoriasis: subanalysis of effects on scalp and nails in the BELIEVE study. J Eur Acad Dermatol Venereol. 2015;29(2):353–60.

    Article  CAS  PubMed  Google Scholar 

  71. Turner D, et al. Adalimumab for the treatment of psoriasis. Health Technol Assess. 2009;13 Suppl 2:49–54.

    Article  PubMed  Google Scholar 

  72. Mrowietz U, et al. An assessment of adalimumab efficacy in three Phase III clinical trials using the European Consensus Programme criteria for psoriasis treatment goals. Br J Dermatol. 2013;168(2):374–80.

    Article  CAS  PubMed  Google Scholar 

  73. Strober BE, et al. Efficacy and safety results from a phase III, randomized controlled trial comparing the safety and efficacy of briakinumab with etanercept and placebo in patients with moderate to severe chronic plaque psoriasis. Br J Dermatol. 2011;165(3):661–8.

    Article  CAS  PubMed  Google Scholar 

  74. Bartelds GM, et al. Anti-infliximab and anti-adalimumab antibodies in relation to response to adalimumab in infliximab switchers and anti-tumour necrosis factor naive patients: a cohort study. Ann Rheum Dis. 2010;69(5):817–21.

    Article  CAS  PubMed  Google Scholar 

  75. Wolbink GJ, et al. Development of antiinfliximab antibodies and relationship to clinical response in patients with rheumatoid arthritis. Arthritis Rheum. 2006;54(3):711–5.

    Article  CAS  PubMed  Google Scholar 

  76. Solomon DH, et al. Association between disease-modifying antirheumatic drugs and diabetes risk in patients with rheumatoid arthritis and psoriasis. JAMA. 2011;305(24):2525–31.

    Article  CAS  PubMed  Google Scholar 

  77. Wu JJ, Poon KY. Tumor necrosis factor inhibitor therapy and myocardial infarction risk in patients with psoriasis, psoriatic arthritis, or both. J Drugs Dermatol. 2014;13(8):932–4.

    PubMed  Google Scholar 

  78. Wu JJ, et al. Association between tumor necrosis factor inhibitor therapy and myocardial infarction risk in patients with psoriasis. Arch Dermatol. 2012;148(11):1244–50.

    Article  CAS  PubMed  Google Scholar 

  79. Mease PJ. Inhibition of interleukin-17, interleukin-23 and the TH17 cell pathway in the treatment of psoriatic arthritis and psoriasis. Curr Opin Rheumatol. 2015;27(2):127–33.

    Article  CAS  PubMed  Google Scholar 

  80. Papp KA, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet. 2008;371(9625):1675–84.

    Article  CAS  PubMed  Google Scholar 

  81. McInnes IB, et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet. 2013;382(9894):780–9.

    Article  CAS  PubMed  Google Scholar 

  82. Ritchlin C, et al. Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial. Ann Rheum Dis. 2014;73(6):990–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Cai X, et al. PIKfyve, a class III PI kinase, is the target of the small molecular IL-12/IL-23 inhibitor apilimod and a player in Toll-like receptor signaling. Chem Biol. 2013;20(7):912–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Wada Y, et al. Apilimod inhibits the production of IL-12 and IL-23 and reduces dendritic cell infiltration in psoriasis. PLoS One. 2012;7(4):e35069.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Sofen H, et al. Guselkumab (an IL-23-specific mAb) demonstrates clinical and molecular response in patients with moderate-to-severe psoriasis. J Allergy Clin Immunol. 2014;133(4):1032–40.

    Article  CAS  PubMed  Google Scholar 

  86. Zandvliet A, et al. Tildrakizumab, a novel anti-IL-23 monoclonal antibody, is unaffected by ethnic variability in Caucasian, Chinese, and Japanese subjects. Int J Clin Pharmacol Ther. 2015;53(2):139–46.

    Article  CAS  PubMed  Google Scholar 

  87. Tausend W, Downing C, Tyring S. Systematic review of interleukin-12, interleukin-17, and interleukin-23 pathway inhibitors for the treatment of moderate-to-severe chronic plaque psoriasis: ustekinumab, briakinumab, tildrakizumab, guselkumab, secukinumab, ixekizumab, and brodalumab. J Cutan Med Surg. 2014;18(3):156–69.

    CAS  PubMed  Google Scholar 

  88. Gudjonsson JE, Johnston A, Ellis CN. Novel systemic drugs under investigation for the treatment of psoriasis. J Am Acad Dermatol. 2012;67(1):139–47.

    Article  CAS  PubMed  Google Scholar 

  89. Mitra A, Fallen RS, Lima HC. Cytokine-based therapy in psoriasis. Clin Rev Allergy Immunol. 2013;44(2):173–82.

    Article  CAS  PubMed  Google Scholar 

  90. Ryan C, et al. Association between biologic therapies for chronic plaque psoriasis and cardiovascular events: a meta-analysis of randomized controlled trials. JAMA. 2011;306(8):864–71.

    Article  CAS  PubMed  Google Scholar 

  91. Langley RG, et al. Secukinumab in plaque psoriasis – results of two phase 3 trials. N Engl J Med. 2014;371(4):326–38.

    Article  CAS  PubMed  Google Scholar 

  92. McInnes IB, et al. Efficacy and safety of secukinumab, a fully human anti-interleukin-17A monoclonal antibody, in patients with moderate-to-severe psoriatic arthritis: a 24-week, randomised, double-blind, placebo-controlled, phase II proof-of-concept trial. Ann Rheum Dis. 2014;73(2):349–56.

    Article  CAS  PubMed  Google Scholar 

  93. McInnes IB, et al. Efficacy and safety of secukinumab, a fully human anti-interleukin-17A monoclonal antibody, in patients with moderate-to-severe psoriatic arthritis: a 24-week, randomised, double-blind, placebo-controlled, phase II proof-of-concept trial. Ann Rheum Dis. 2014;73(2):349–56.

    Article  CAS  PubMed  Google Scholar 

  94. Mease PJ, et al. Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis. N Engl J Med. 2014;370(24):2295–306.

    Article  CAS  PubMed  Google Scholar 

  95. Study evaluating the safety and tolerability of ILV-094 in subjects with psoriasis. 2012. Clinical trial.gov.

    Google Scholar 

  96. Huffmeier U, et al. Successful therapy with anakinra in a patient with generalized pustular psoriasis carrying IL36RN mutations. Br J Dermatol. 2014;170(1):202–4.

    Article  CAS  PubMed  Google Scholar 

  97. Huffmeier U, et al. Successful therapy with anakinra in a patient with generalized pustular psoriasis carrying IL36RN mutations. Br J Dermatol. 2014;170(1):202–4.

    Article  CAS  PubMed  Google Scholar 

  98. Wolf J, Ferris LK. Anti-IL-36R antibodies, potentially useful for the treatment of psoriasis: a patent evaluation of WO2013074569. Expert Opin Ther Pat. 2014;24(4):477–9.

    Article  CAS  PubMed  Google Scholar 

  99. Papp KA, et al. Efficacy and safety of tofacitinib, an oral Janus kinase inhibitor, in the treatment of psoriasis: a Phase 2b randomized placebo-controlled dose-ranging study. Br J Dermatol. 2012;167(3):668–77.

    Article  CAS  PubMed  Google Scholar 

  100. Papp K, et al. Efficacy of apremilast in the treatment of moderate to severe psoriasis: a randomised controlled trial. Lancet. 2012;380(9843):738–46.

    Article  CAS  PubMed  Google Scholar 

  101. Kupetsky EA, Mathers AR, Ferris LK. Anti-cytokine therapy in the treatment of psoriasis. Cytokine. 2013;61(3):704–12.

    Article  CAS  PubMed  Google Scholar 

Drug Eruptions: Erythema Multiforme and SJS/ TEN

  1. Bastuji-Garin S, Rzany B, Stern RS, Shear NH, Naldi L, Roujeau J. Clinical classification of cases of toxic epidermal necrolysis, stevens-johnson syndrome, and erythema multiforme. Arch Dermatol. 1993;129(1):92–6.

    Article  CAS  PubMed  Google Scholar 

  2. Auquier-Dunant A, Mockenhaupt M, Naldi L, Correia O, Schröder W, Roujeau J-C. Correlations between clinical patterns and causes of erythema multiforme majus, Stevens-Johnson syndrome, and toxic epidermal necrolysis: results of an international prospective study. Arch Dermatol. 2002;138(8):1019–24.

    Article  PubMed  Google Scholar 

  3. Assier H, Bastuji-Garin S, Revuz J, Roujeau JC. Erythema multiforme with mucous membrane involvement and Stevens-Johnson syndrome are clinically different disorders with distinct causes. Arch Dermatol. 1995;131(5):539–43.

    Article  CAS  PubMed  Google Scholar 

  4. Huff JC, Weston WL, Tonnesen MG. Erythema multiforme: a critical review of characteristics, diagnostic criteria, and causes. J Am Acad Dermatol. 1983;8(6):763–75.

    Article  CAS  PubMed  Google Scholar 

  5. Bolognia JL, Cooper DL, Glusac EJ. Toxic erythema of chemotherapy: a useful clinical term. J Am Acad Dermatol. 2008;59(3):524–9.

    Google Scholar 

  6. Schalock PC, Dinulos JGH, Pace N, Schwarzenberger K, Wenger JK. Erythema multiforme due to Mycoplasma pneumoniae infection in two children. Pediatr Dermatol. 2006;23(6):546–55.

    Article  PubMed  Google Scholar 

  7. French S. Manipulative therapy or NSAIDS do not provide additional benefit to quality baseline care for acute back pain. Aust J Physiother. 2008;54(1):75.

    Google Scholar 

  8. Brice SL, Krzemien D, Weston WL, Huff JC. Detection of herpes simplex virus DNA in cutaneous lesions of erythema multiforme. J Invest Dermatol. 1989;93(1):183–7.

    Article  CAS  PubMed  Google Scholar 

  9. Schofield JK, Tatnall FM, Leigh IM. Recurrent erythema multiforme: clinical features and treatment in a large series of patients. Br J Dermatol. 1993;128(5):542–5.

    Article  CAS  PubMed  Google Scholar 

  10. Aurelian L, Ono F, Burnett J. Herpes simplex virus (HSV)-associated erythema multiforme (HAEM): a viral disease with an autoimmune component. Dermatol Online J. 2003;9(1):1.

    CAS  PubMed  Google Scholar 

  11. Ono F, Sharma B, Smith CC, Burnett JW, Aurelian L. CD34+ cells in the peripheral blood transport herpes simplex virus DNA fragments to the skin of patients with erythema multiforme (HAEM). J Invest Dermatol. 2005;124(6):1215–24.

    Article  CAS  PubMed  Google Scholar 

  12. Hebra F, Fagge CH. On diseases of the skin, including the exanthemata: translated and edited by CH Fagge, vol. 1. London: The New Sydenham Society; 1866.

    Google Scholar 

  13. Huff JC, Weston WL. Recurrent erythema multiforme. Medicine. 1989;68(3):133–40.

    Article  CAS  PubMed  Google Scholar 

  14. Brice SL, Huff JC, Weston WL. Erythema multiforme. Curr Probl Dermatol. 1990;2(1):5–25.

    Article  Google Scholar 

  15. Howland WW, Golttz LE, Weston WL, Huff JC. Erythema multiforme: clinical, histopathologic, and immunologic study. J Am Acad Dermatol. 1984;10(3):438–46.

    Article  CAS  PubMed  Google Scholar 

  16. Ackerman AB, Penneys NS, Clark WH. Erythema multiforme exudativum: distinctive pathological process. Br J Dermatol. 1971;84(6):554–66.

    Article  CAS  PubMed  Google Scholar 

  17. Schofield JK, Tatnall FM, Leigh IM. Recurrent erythema multiforme: clinical features and treatment in a large series of patients. Br J Dermatol. 1993;128(5):542–5.

    Google Scholar 

  18. Weston WL, Brice SL. Atypical forms of herpes simplex-associated erythema multiforme. J Am Acad Dermatol. 1998;39(1):124–6.

    Google Scholar 

  19. Zeitouni NC, Funaro D, Cloutier RA, Gagne E, Claveau J. Redefining Rowell’s syndrome. Br J Dermatol. 2000;142(2):343–6.

    Google Scholar 

  20. Wolf P, Soyer HP, Fink-Puches R, Huff JC, Kerl H. Recurrent post-herpetic erythema multiforme mimicking polymorphic light and juvenile spring eruption: report of two cases in young boys. Br J Dermatol. 1994;131(3):364–7.

    Google Scholar 

  21. Tatnall FM, Schofield JK, Leigh IM. A double-blind, placebo-controlled trial of continuous acyclovir therapy in recurrent erythema multiforme. Br J Dermatol. 1995;132(2):267–70.

    Google Scholar 

  22. Bean SF, Quezada RK. Recurrent oral erythema multiforme: clinical experience with 11 patients. JAMA. 1983;249(20):2810–2.

    Article  CAS  PubMed  Google Scholar 

  23. Farthing PM, Maragou P, Coates M, Tatnall F, Leigh IM, Williams DM. Characteristics of the oral lesions in patients with cutaneous recurrent erythema multiforme. J Oral Pathol Med. 1995;24(1):9–13.

    Article  CAS  PubMed  Google Scholar 

  24. Tatnall FM, Schofield JK, Leigh IM. A double-blind, placebo-controlled trial of continuous acyclovir therapy in recurrent erythema multiforme. Br J Dermatol. 1995;132(2):267–70.

    Article  CAS  PubMed  Google Scholar 

  25. Paquet P, Pierard GE. Erythema multiforme and toxic epidermal necrolysis: a comparative study. Am J Dermatopathol. 1997;19(2):127–32.

    Article  CAS  PubMed  Google Scholar 

  26. Roujeau J-C, Allanore L, Liss Y, Mockenhaupt M. Severe cutaneous adverse reactions to drugs (SCAR): definitions, diagnostic criteria, genetic predisposition. Dermatol Sinica. 2009;27(2):203–9.

    Google Scholar 

  27. Schwartz RA, McDonough PH, Lee BW. Toxic epidermal necrolysis: part I. Introduction, history, classification, clinical features, systemic manifestations, etiology, and immunopathogenesis. J Am Acad Dermatol. 2013;69(2):173.e1–113; quiz 185–176.

    Article  CAS  Google Scholar 

  28. Guillaume J, Roujeau J, Revuz J, Penso D, Touraine R. THe culprit drugs in 87 cases of toxic epidermal necrolysis (lyell’s syndrome). Arch Dermatol. 1987;123(9):1166–70.

    Article  CAS  PubMed  Google Scholar 

  29. Dayal S, Monga B, JainVk A. Anuradha. Comparative evaluation of antimicrobial and anticonvulsant induced cases of Steven Johnson syndrome and toxic epidermal necrolysis. Int J Pharma Col Clin Sci. 2014;3:1–6.

    Google Scholar 

  30. Reyes-Habito CM, Roh EK. Cutaneous reactions to chemotherapeutic drugs and targeted therapies for cancer: part I. Conventional chemotherapeutic drugs. J Am Acad Dermatol. 2014;71(2):203.e201–12. quiz 215–206.

    Google Scholar 

  31. Reyes-Habito CM, Roh EK. Cutaneous reactions to chemotherapeutic drugs and targeted therapy for cancer: part II. Targeted therapy. J Am Acad Dermatol. 2014;71(2):217.e1–211; quiz 227–218.

    Article  CAS  Google Scholar 

  32. Strom BL, Carson JL, Halpern AC, et al. Using a claims database to investigate drug‐induced Stevens‐Johnson syndrome. Stat Med. 1991;10(4):565–76.

    Article  CAS  PubMed  Google Scholar 

  33. Chowdhury AD, Oda M, Markus AF, Kirita T, Choudhury CR. Herbal medicine induced Stevens-Johnson syndrome: a case report. Int J Paediatrc Dent/Br Paedod Soc Inter Assoc Dent Children. 2004;14(3):204–7.

    CAS  Google Scholar 

  34. Ball R, Ball LK, Wise RP, Braun MM, Beeler JA, Salive ME. Stevens-Johnson syndrome and toxic epidermal necrolysis after vaccination: reports to the vaccine adverse event reporting system. Pediatr Infect Dis J. 2001;20(2):219–23.

    Article  CAS  PubMed  Google Scholar 

  35. Rzany B, Hering O, Mockenhaupt M, et al. Histopathological and epidemiological characteristics of patients with erythema exudativum multiforme major, Stevens-Johnson syndrome and toxic epidermal necrolysis. Br J Dermatol. 1996;135(1):6–11.

    Article  CAS  PubMed  Google Scholar 

  36. Tay Y-K, Huff JC, Weston WL. Mycoplasma pneumoniae infection is associated with Stevens-Johnson syndrome, not erythema multiforme (von Hebra). J Am Acad Dermatol. 1996;35(5):757–60.

    Article  CAS  PubMed  Google Scholar 

  37. Grieb G, Alazemi M, Das R, Dunda SE, Fuchs PC, Pallua N. A rare case of toxic epidermal necrolysis with unexpected fever resulting from dengue virus. Case Rep Dermatol. 2010;2(3):189–94.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Fournier S, Bastuji-Garin S, Mentec H, Revuz J, Roujeau JC. Toxic epidermal necrolysis associated with Mycoplasma pneumoniae infection. Eur J Clin Microbiol Infect Dis. 1995;14(6):558–9.

    Article  CAS  PubMed  Google Scholar 

  39. Mandelcorn R, Shear NH. Lupus-associated toxic epidermal necrolysis: a novel manifestation of lupus? J Am Acad Dermatol. 2003;48(4):525–9.

    Article  PubMed  Google Scholar 

  40. Lissia M, Mulas P, Bulla A, Rubino C. Toxic epidermal necrolysis (Lyell’s disease). Burns: J Inter Soc Burn Inj. 2010;36(2):152–63.

    Article  Google Scholar 

  41. Levi N, Bastuji-Garin S, Mockenhaupt M, et al. Medications as risk factors of Stevens-Johnson syndrome and toxic epidermal necrolysis in children: a pooled analysis. Pediatrics. 2009;123(2):e297–304.

    Article  PubMed  Google Scholar 

  42. Schöpf E, Stühmer A, Rzany B, Victor N, Zentgraf R, Kapp J. Toxic epidermal necrolysis and stevens-johnson syndrome: an epidemiologic study from west Germany. Arch Dermatol. 1991;127(6):839–42.

    Article  PubMed  Google Scholar 

  43. Rzany B, Mockenhaupt M, Stocker U, Hamouda O, Schöpf E. INcidence of stevens-johnson syndrome and toxic epidermal necrolysis in patients with the acquired immunodeficiency syndrome in Germany. Arch Dermatol. 1993;129(8):1059.

    Article  CAS  PubMed  Google Scholar 

  44. Metry DW, Lahart CJ, Farmer KL, Hebert AA. Stevens-Johnson syndrome caused by the antiretroviral drug nevirapine. J Am Acad Dermatol. 2001;44(2 Suppl):354–7.

    Article  CAS  PubMed  Google Scholar 

  45. Hetherington S, Hughes AR, Mosteller M, et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet. 2002;359(9312):1121–2.

    Article  CAS  PubMed  Google Scholar 

  46. Mallal S, Nolan D, Witt C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet. 2002;359(9308):727–32.

    Article  CAS  PubMed  Google Scholar 

  47. Chung WH, Hung SI, Hong HS, et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature. 2004;428(6982):486.

    Article  CAS  PubMed  Google Scholar 

  48. Ueta M, Kannabiran C, Wakamatsu TH, et al. Trans-ethnic study confirmed independent associations of HLA-A*02:06 and HLA-B*44:03 with cold medicine-related Stevens-Johnson syndrome with severe ocular surface complications. Sci Rep. 2014;4:5981.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kaniwa N, Saito Y, Aihara M, et al. HLA-B locus in Japanese patients with anti-epileptics and allopurinol-related Stevens-Johnson syndrome and toxic epidermal necrolysis. Pharmacogenomics. 2008;9(11):1617–22.

    Article  CAS  PubMed  Google Scholar 

  50. Lonjou C, Borot N, Sekula P, et al. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics. 2008;18(2):99–107.

    Article  CAS  PubMed  Google Scholar 

  51. Downey A, Jackson C, Harun N, Cooper A. Toxic epidermal necrolysis: review of pathogenesis and management. J Am Acad Dermatol. 2012;66(6):995–1003.

    Article  CAS  PubMed  Google Scholar 

  52. Locharernkul C, Loplumlert J, Limotai C, et al. Carbamazepine and phenytoin induced Stevens‐Johnson syndrome is associated with HLA‐B* 1502 allele in Thai population. Epilepsia. 2008;49(12):2087–91.

    Article  PubMed  Google Scholar 

  53. Kim S-H, Kim M, Lee KW, et al. HLA-B* 5901 is strongly associated with methazolamide-induced Stevens-Johnson syndrome/toxic epidermal necrolysis. Pharmacogenomics. 2010;11(6):879–84.

    Article  CAS  PubMed  Google Scholar 

  54. Chang CC, Too CL, Murad S, Hussein SH. Association of HLA‐B* 1502 allele with carbamazepine‐induced toxic epidermal necrolysis and Stevens–Johnson syndrome in the multi‐ethnic Malaysian population. Int J Dermatol. 2011;50(2):221–4.

    Article  PubMed  Google Scholar 

  55. Tassaneeyakul W, Jantararoungtong T, Chen P, et al. Strong association between HLA-B* 5801 and allopurinol-induced Stevens–Johnson syndrome and toxic epidermal necrolysis in a Thai population. Pharmacogenet Genomics. 2009;19(9):704–9.

    Article  CAS  PubMed  Google Scholar 

  56. Kaniwa N, Saito Y, Aihara M, et al. HLA‐B* 1511 is a risk factor for carbamazepine‐induced Stevens‐Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Epilepsia. 2010;51(12):2461–5.

    Article  CAS  PubMed  Google Scholar 

  57. Viard I, Wehrli P, Bullani R, et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science. 1998;282(5388):490–3.

    Article  CAS  PubMed  Google Scholar 

  58. Abe R, Shimizu T, Shibaki A, Nakamura H, Watanabe H, Shimizu H. Toxic epidermal necrolysis and Stevens-Johnson syndrome are induced by soluble Fas ligand. Am J Pathol. 2003;162(5):1515–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Stur K, Karlhofer FM, Stingl G. Soluble FAS ligand: a discriminating feature between drug-induced skin eruptions and viral exanthemas. J Invest Dermatol. 2007;127(4):802–7.

    Article  CAS  PubMed  Google Scholar 

  60. Tohyama M, Shirakata Y, Sayama K, Hashimoto K. The influence of hepatic damage on serum soluble Fas ligand levels of patients with drug rashes. J Allergy Clin Immunol. 2009;123(4):971–2; author reply 972.

    Article  PubMed  Google Scholar 

  61. Chung W-H, Hung S-I, Yang J-Y, et al. Granulysin is a key mediator for disseminated keratinocyte death in Stevens-Johnson syndrome and toxic epidermal necrolysis. Nat Med. 2008;14(12):1343–50.

    Article  CAS  PubMed  Google Scholar 

  62. Abe R, Yoshioka N, Murata J, Fujita Y, Shimizu H. Granulysin as a marker for early diagnosis of the Stevens–Johnson syndrome. Ann Intern Med. 2009;151(7):514–5.

    Article  PubMed  Google Scholar 

  63. Nassif A, Bensussan A, Boumsell L, et al. Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T cells. J Allergy Clin Immunol. 2004;114(5):1209–15.

    Article  CAS  PubMed  Google Scholar 

  64. Posadas SJ, Padial A, Torres MJ, et al. Delayed reactions to drugs show levels of perforin, granzyme B, and Fas-L to be related to disease severity. J Allergy Clin Immunol. 2002;109(1):155–61.

    Article  CAS  PubMed  Google Scholar 

  65. Paquet P, Pierard GE. Glutathione-S-transferase pi expression in toxic epidermal necrolysis: a marker of putative oxidative stress in keratinocytes. Skin Pharmacol Physiol. 2007;20(2):66–70.

    Article  CAS  PubMed  Google Scholar 

  66. Nagata S. Apoptosis by death factor. Cell. 1997;88(3):355–65.

    Article  CAS  PubMed  Google Scholar 

  67. Abe R. Toxic epidermal necrolysis and Stevens–Johnson syndrome: soluble Fas ligand involvement in the pathomechanisms of these diseases. J Dermatol Sci. 2008;52(3):151–9.

    Article  CAS  PubMed  Google Scholar 

  68. Nassif A, Moslehi H, Le Gouvello S, et al. Evaluation of the potential role of cytokines in toxic epidermal necrolysis. J Invest Dermatol. 2004;123(5):850–5.

    Article  CAS  PubMed  Google Scholar 

  69. Kroncke KD, Fehsel K, Kolb-Bachofen V. Nitric oxide: cytotoxicity versus cytoprotection – how, why, when, and where? Nitric Oxide: Biol Chem/off J Nitric Oxide Soc. 1997;1(2):107–20.

    Article  CAS  Google Scholar 

  70. Brüne B, von Knethen A, Sandau KB. Nitric oxide and its role in apoptosis. Eur J Pharmacol. 1998;351(3):261–72.

    Article  PubMed  Google Scholar 

  71. Lerner LH, Qureshi AA, Reddy BV, Lerner EA. Nitric oxide synthase in toxic epidermal necrolysis and Stevens-Johnson syndrome. J Invest Dermatol. 2000;114(1):196–9.

    Article  CAS  PubMed  Google Scholar 

  72. Morel E, Escamochero S, Cabanas R, Diaz R, Fiandor A, Bellon T. CD94/NKG2C is a killer effector molecule in patients with Stevens-Johnson syndrome and toxic epidermal necrolysis. J Allergy Clin Immunol. 2010;125(3):703–10, 710.e701–710.e708.

    Article  CAS  PubMed  Google Scholar 

  73. Takahashi R, Kano Y, Yamazaki Y, Kimishima M, Mizukawa Y, Shiohara T. Defective regulatory T cells in patients with severe drug eruptions: timing of the dysfunction is associated with the pathological phenotype and outcome. J Immunol. 2009;182(12):8071–9.

    Article  CAS  PubMed  Google Scholar 

  74. Schwartz RA. Toxic epidermal necrolysis. Cutis. 1997;59(3):123–8.

    CAS  PubMed  Google Scholar 

  75. Revuz J, Penso D, Roujeau J, et al. Toxic epidermal necrolysis: clinical findings and prognosis factors in 87 patients. Arch Dermatol. 1987;123(9):1160–5.

    Article  CAS  PubMed  Google Scholar 

  76. Emberger M, Lanschuetzer CM, Laimer M, Hawranek T, Staudach A, Hintner H. Vaginal adenosis induced by Stevens-Johnson syndrome. J Eur Acad Dermatol Venereol: JEADV. 2006;20(7):896–8.

    CAS  PubMed  Google Scholar 

  77. Jha AK, Goenka MK. Colonic involvement in Stevens-Johnson syndrome: a rare entity. Dig Endosc: Off J Japan Gastroenterol Endosc Soc. 2012;24(5):382.

    Article  Google Scholar 

  78. Lebargy F, Wolkenstein P, Gisselbrecht M, et al. Pulmonary complications in toxic epidermal necrolysis: a prospective clinical study. Intensive Care Med. 1997;23(12):1237–44.

    Article  CAS  PubMed  Google Scholar 

  79. de Prost N, Mekontso-Dessap A, Valeyrie-Allanore L, et al. Acute respiratory failure in patients with toxic epidermal necrolysis: clinical features and factors associated with mechanical ventilation. Crit Care Med. 2014;42(1):118–28.

    Article  PubMed  Google Scholar 

  80. Blum L, Chosidow O, Rostoker G, Philippon C, Revuz J, Roujeau J-C. Renal involvement in toxic epidermal necrolysis. J Am Acad Dermatol. 1996;34(6):1088–90.

    Article  CAS  PubMed  Google Scholar 

  81. Lebargy F, Wolkenstein P, Gisselbrecht M, et al. Pulmonary complications in toxic epidermal necrolysis: a prospective clinical study. Intensive Care Med. 1997;23(12):1237–44.

    Article  CAS  PubMed  Google Scholar 

  82. Wallis C, McClymont W. Case reports Toxic epidermal necrolysis with adult respiratory distress syndrome. Anaesthesia. 1995;50(9):801–3.

    Article  CAS  PubMed  Google Scholar 

  83. McIvor RA, Zaidi J, Peters WJ, Hyland RH. Acute and chronic respiratory complications of toxic epidermal necrolysis. J Burn Care Rehabil. 1996;17(3):237–40.

    Article  CAS  PubMed  Google Scholar 

  84. Roujeau JC, Chosidow O, Saiag P, Guillaume JC. Toxic epidermal necrolysis (Lyell syndrome). J Am Acad Dermatol. 1990;23(6 Pt 1):1039–58.

    Article  CAS  PubMed  Google Scholar 

  85. Westly E, Wechsler HL. Toxic epidermal necrolysis: granulocytic leukopenia as a prognostic indicator. Arch Dermatol. 1984;120(6):721–6.

    Article  CAS  PubMed  Google Scholar 

  86. Lee T, Lee YS, Yoon S-Y, et al. Characteristics of liver injury in drug-induced systemic hypersensitivity reactions. J Am Acad Dermatol. 2013;69(3):407–15.

    Article  CAS  PubMed  Google Scholar 

  87. de Prost N, Ingen-Housz-Oro S, Duong T, et al. Bacteremia in Stevens-Johnson syndrome and toxic epidermal necrolysis: epidemiology, risk factors, and predictive value of skin cultures. Medicine. 2010;89(1):28–36.

    Article  PubMed  Google Scholar 

  88. Avakian R, Flowers FP, Araujo OE, Ramos-Caro FA. Toxic epidermal necrolysis: a review. J Am Acad Dermatol. 1991;25(1, Part 1):69–79.

    Article  CAS  PubMed  Google Scholar 

  89. Carter FM, Mitchell CK. Toxic epidermal necrolysis – an unusual cause of colonic perforation. Report of a case. Dis Colon Rectum. 1993;36(8):773–7.

    Article  CAS  PubMed  Google Scholar 

  90. Sakai N, Yoshizawa Y, Amano A, et al. Toxic epidermal necrolysis complicated by multiple intestinal ulcers. Int J Dermatol. 2008;47(2):180–2.

    Article  PubMed  Google Scholar 

  91. Chosidow O, Delchier JC, Chaumette MT, et al. Intestinal involvement in drug-induced toxic epidermal necrolysis. Lancet. 1991;337(8746):928.

    Article  CAS  PubMed  Google Scholar 

  92. Bouziri A, Khaldi A, Hamdi A, et al. Toxic epidermal necrolysis complicated by small bowel intussusception: a case report. J Pediatr Surg. 2011;46(2):e9–11.

    Article  PubMed  Google Scholar 

  93. Quinn AM, Brown K, Bonish BK, et al. UNcovering histologic criteria with prognostic significance in toxic epidermal necrolysis. Arch Dermatol. 2005;141(6):683–7.

    Article  PubMed  Google Scholar 

  94. Sidoroff A, Halevy S, Bavinck JNB, Vaillant L, Roujeau J-C. Acute generalized exanthematous pustulosis (AGEP) – A clinical reaction pattern. J Cutan Pathol. 2001;28(3):113–9.

    Article  CAS  PubMed  Google Scholar 

  95. Ladhani S, Joannou CL, Lochrie DP, Evans RW, Poston SM. Clinical, microbial, and biochemical aspects of the exfoliative toxins causing staphylococcal scalded-skin syndrome. Clin Microbiol Rev. 1999;12(2):224–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Gentilhomme E, Faure M, Piemont Y, Binder P, Thivolet J. Action of staphylococcal exfoliative toxins on epidermal cell cultures and organotypic skin. J Dermatol. 1990;17(9):526–32.

    Article  CAS  PubMed  Google Scholar 

  97. Husain Z, Reddy BY, Schwartz RA. DRESS syndrome: part I. Clinical perspectives. J Am Acad Dermatol. 2013;68(5):693.e691–14.

    Article  CAS  Google Scholar 

  98. Khan I, Hughes R, Curran S, Marren P. Drug-associated linear IgA disease mimicking toxic epidermal necrolysis. Clin Exp Dermatol. 2009;34(6):715–7.

    Article  CAS  PubMed  Google Scholar 

  99. Wojnarowska F, Marsden RA, Bhogal B, Black MM. Chronic bullous disease of childhood, childhood cicatricial pemphigoid, and linear IgA disease of adults. A comparative study demonstrating clinical and immunopathologic overlap. J Am Acad Dermatol. 1988;19(5 Pt 1):792–805.

    Article  CAS  PubMed  Google Scholar 

  100. Stone N, Sheerin S, Burge S. Toxic epidermal necrolysis and graft vs. host disease: a clinical spectrum but a diagnostic dilemma. Clin Exp Dermatol. 1999;24(4):260–2.

    Article  CAS  PubMed  Google Scholar 

  101. Jeanmonod P, Hubbuch M, Grunhage F, et al. Graft-versus-host disease or toxic epidermal necrolysis: diagnostic dilemma after liver transplantation. Trans Infect Dis: Off J Transpl Soc. 2012;14(4):422–6.

    Article  CAS  Google Scholar 

  102. Borchers AT, Lee JL, Naguwa SM, Cheema GS, Gershwin ME. Stevens–Johnson syndrome and toxic epidermal necrolysis. Autoimmun Rev. 2008;7(8):598–605.

    Article  CAS  PubMed  Google Scholar 

  103. Palmieri TL, Greenhalgh DG, Saffle JR, et al. A multicenter review of toxic epidermal necrolysis treated in U.S. burn centers at the end of the twentieth century. J Burn Care Rehabil. 2002;23(2):87–96.

    Article  CAS  PubMed  Google Scholar 

  104. Chave TA, Mortimer NJ, Sladden MJ, Hall AP, Hutchinson PE. Toxic epidermal necrolysis: current evidence, practical management and future directions. Br J Dermatol. 2005;153(2):241–53.

    Article  CAS  PubMed  Google Scholar 

  105. McGee T, Munster A. Toxic epidermal necrolysis syndrome: mortality rate reduced with early referral to regional burn center. Plast Reconstr Surg. 1998;102(4):1018–22.

    Article  CAS  PubMed  Google Scholar 

  106. Dorafshar AH, Dickie SR, Cohn AB, et al. Antishear therapy for toxic epidermal necrolysis: an alternative treatment approach. Plast Reconstr Surg. 2008;122(1):154–60.

    Article  CAS  PubMed  Google Scholar 

  107. Spies M, Sanford AP, Aili Low JF, Wolf SE, Herndon DN. Treatment of extensive toxic epidermal necrolysis in children. Pediatrics. 2001;108(5):1162–8.

    Article  CAS  PubMed  Google Scholar 

  108. Melandri D. Lyell’s syndrome skin lesions treated by Veloderm. J Eur Acad Dermatol Venereol: JEADV. 2007;21(3):426–7.

    Article  CAS  PubMed  Google Scholar 

  109. Bradley T, Brown RE, Kucan JO, Smoot III EC, Hussmann J. Toxic Epidermal necrolysis: a review and report of the successful use of biobrane for early wound coverage. Ann Plast Surg. 1995;35(2):124–32.

    Article  CAS  PubMed  Google Scholar 

  110. Arévalo JM, Lorente JA. Skin coverage with biobrane biomaterial for the treatment of patients with toxic epidermal necrolysis. J Burn Care Res. 1999;20(5):406–10.

    Article  Google Scholar 

  111. Boorboor P, Vogt PM, Bechara FG, et al. Toxic epidermal necrolysis: use of Biobrane® for skin coverage reduces pain, improves mobilisation and decreases infection in elderly patients. Burns: J Inter Soc Burn Inj. 2008;34(4):487–92.

    Article  CAS  Google Scholar 

  112. Li X, Wang D, Lu Z, Chen J, Zhang H, Sun L. Answer to ‘Toxic epidermal necrolysis with failure of re-epithelialization. Could umbilical cord mesenchymal stem cell transplantation have a role?’. J Eur Acad Dermatol Venereol. 2013;27(7):925.

    Article  CAS  PubMed  Google Scholar 

  113. Li X, Wang D, Lu Z, Chen J, Zhang H, Sun L. Umbilical cord mesenchymal stem cell transplantation in drug-induced Stevens-Johnson syndrome. J Eur Acad Dermatol Venereol. 2013;27(5):659–61.

    Article  CAS  PubMed  Google Scholar 

  114. Schwartz RA, McDonough PH, Lee BW. Toxic epidermal necrolysis: part II. Prognosis, sequelae, diagnosis, differential diagnosis, prevention, and treatment. J Am Acad Dermatol. 2013;69(2):187.e181–116; quiz 203–184.

    Article  CAS  Google Scholar 

  115. Letko E, Papaliodis DN, Papaliodis GN, Daoud YJ, Ahmed AR, Foster CS. Stevens-Johnson syndrome and toxic epidermal necrolysis: a review of the literature. Ann Aallergy Asthma Immunol: Off Publ Am Coll Allergy Asthma Immunol. 2005;94(4):419–36; quiz 436–418, 456.

    Article  Google Scholar 

  116. Araki Y, Sotozono C, Inatomi T, et al. Successful treatment of Stevens-Johnson syndrome with steroid pulse therapy at disease onset. Am J Ophthalmol. 2009;147(6):1004–11, 1011.e1001.

    Article  CAS  PubMed  Google Scholar 

  117. Sotozono C, Ueta M, Koizumi N, et al. Diagnosis and treatment of Stevens-Johnson syndrome and toxic epidermal necrolysis with ocular complications. Ophthalmology. 2009;116(4):685–90.

    Article  PubMed  Google Scholar 

  118. Gregory DG. Treatment of acute Stevens-Johnson syndrome and toxic epidermal necrolysis using amniotic membrane: a review of 10 consecutive cases. Ophthalmology. 2011;118(5):908–14.

    Article  PubMed  Google Scholar 

  119. Ciralsky JB, Sippel KC, Gregory DG. Current ophthalmologic treatment strategies for acute and chronic Stevens-Johnson syndrome and toxic epidermal necrolysis. Curr Opin Ophthalmol. 2013;24(4):321–8.

    Article  PubMed  Google Scholar 

  120. Segal O, Barkana Y, Hourovitz D, et al. Scleral contact lenses may help where other modalities fail. Cornea. 2003;22(4):308–10.

    Article  PubMed  Google Scholar 

  121. Tomlins PJ, Parulekar MV, Rauz S. “Triple-TEN” in the treatment of acute ocular complications from toxic epidermal necrolysis. Cornea. 2013;32(3):365–9.

    Article  PubMed  Google Scholar 

  122. Schneck J, Fagot JP, Sekula P, Sassolas B, Roujeau JC, Mockenhaupt M. Effects of treatments on the mortality of Stevens-Johnson syndrome and toxic epidermal necrolysis: a retrospective study on patients included in the prospective EuroSCAR study. J Am Acad Dermatol. 2008;58(1):33–40.

    Article  PubMed  Google Scholar 

  123. Halebian PH, Corder VJ, Madden MR, Finklestein JL, Shires GT. Improved burn center survival of patients with toxic epidermal necrolysis managed without corticosteroids. Ann Surg. 1986;204(5):503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Worswick S, Cotliar J. Stevens-Johnson syndrome and toxic epidermal necrolysis: a review of treatment options. Dermatol Ther. 2011;24(2):207–18.

    Article  PubMed  Google Scholar 

  125. Viard I, Wehrli P, Bullani R, et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science. 1998;282(5388):490–3.

    Article  CAS  PubMed  Google Scholar 

  126. Faye O, Roujeau JC. Treatment of epidermal necrolysis with high-dose intravenous immunoglobulins (IV Ig): clinical experience to date. Drugs. 2005;65(15):2085–90.

    Article  CAS  PubMed  Google Scholar 

  127. Roujeau JC, Bastuji-Garin S. Systematic review of treatments for Stevens-Johnson syndrome and toxic epidermal necrolysis using the SCORTEN score as a tool for evaluating mortality. Ther Adv Drug Safety. 2011;2(3):87–94.

    Article  Google Scholar 

  128. Huang YC, Li YC, Chen TJ. The efficacy of intravenous immunoglobulin for the treatment of toxic epidermal necrolysis: a systematic review and meta-analysis. Br J Dermatol. 2012;167(2):424–32.

    Article  CAS  PubMed  Google Scholar 

  129. Sakellariou G, Koukoudis P, Karpouzas J, et al. Plasma exchange (PE) treatment in drug-induced toxic epidermal necrolysis (TEN). Int J Artif Organs. 1991;14(10):634–8.

    CAS  PubMed  Google Scholar 

  130. Egan CA, Grant WJ, Morris SE, Saffle JR, Zone JJ. Plasmapheresis as an adjunct treatment in toxic epidermal necrolysis. J Am Acad Dermatol. 1999;40(3):458–61.

    Article  CAS  PubMed  Google Scholar 

  131. Chaidemenos GC, Chrysomallis F, Sombolos K, Mourellou O, Ioannides D, Papakonstantinou M. Plasmapheresis in toxic epidermal necrolysis. Int J Dermatol. 1997;36(3):218–21.

    Article  CAS  PubMed  Google Scholar 

  132. Furubacke A, Berlin G, Anderson C, Sjöberg F. Lack of significant treatment effect of plasma exchange in the treatment of drug-induced toxic epidermal necrolysis? Intensive Care Med. 1999;25(11):1307–10.

    Article  CAS  PubMed  Google Scholar 

  133. Košt́ál M, Bláha M, Lánská M, et al. Beneficial effect of plasma exchange in the treatment of toxic epidermal necrolysis: a series of four cases. J Clin Apher. 2012;27(4):215–20.

    Article  PubMed  Google Scholar 

  134. Hewitt J, Ormerod AD. Toxic epidermal necrolysis treated with cyclosporin. Clin Exp Dermatol. 1992;17(4):264–5.

    Article  CAS  PubMed  Google Scholar 

  135. Renfro L, Grant-Kels JM, Daman LA. Drug-induced toxic epidermal necrolysis treated with cyclosporin. Int J Dermatol. 1989;28(7):441–4.

    Article  CAS  PubMed  Google Scholar 

  136. Arévalo JM, Lorente JA, González-Herrada C, Jiménez-Reyes J. Treatment of toxic epidermal necrolysis with cyclosporin A. J Trauma Acute Care Surg. 2000;48(3):473–8.

    Article  Google Scholar 

  137. Valeyrie-Allanore L, Wolkenstein P, Brochard L, et al. Open trial of ciclosporin treatment for Stevens–Johnson syndrome and toxic epidermal necrolysis. Br J Dermatol. 2010;163(4):847–53.

    Article  CAS  PubMed  Google Scholar 

  138. Kirchhof MG, Miliszewski MA, Sikora S, Papp A, Dutz JP. Retrospective review of Stevens-Johnson syndrome/toxic epidermal necrolysis treatment comparing intravenous immunoglobulin with cyclosporine. J Am Acad Dermatol. 2014;71(5):941–7.

    Article  CAS  PubMed  Google Scholar 

  139. Wolkenstein P, Latarjet J, Roujeau JC, et al. Randomised comparison of thalidomide versus placebo in toxic epidermal necrolysis. Lancet. 1998;352(9140):1586–9.

    Article  CAS  PubMed  Google Scholar 

  140. Kreft B, Wohlrab J, Bramsiepe I, Eismann R, Winkler M, Marsch WC. Etoricoxib-induced toxic epidermal necrolysis: Successful treatment with infliximab. J Dermatol. 2010;37(10):904–6.

    Article  PubMed  Google Scholar 

  141. Fischer M, Fiedler E, Marsch WC, Wohlrab J. Antitumour necrosis factor-α antibodies (infliximab) in the treatment of a patient with toxic epidermal necrolysis. Br J Dermatol. 2002;146(4):707–9.

    Article  CAS  PubMed  Google Scholar 

  142. Famularo G, Di Dona B, Canzona F, Girardelli CR, Cruciani G. Etanercept for toxic epidermal necrolysis. Ann Pharmacother. 2007;41(6):1083–4.

    Article  PubMed  Google Scholar 

  143. Gubinelli E, Canzona F, Tonanzi T, Raskovic D, Didona B. Toxic epidermal necrolysis successfully treated with etanercept. J Dermatol. 2009;36(3):150–3.

    Article  PubMed  Google Scholar 

Vasculitis

  1. Rencic A, Rivadeneira A, Cummins D, Nousari CH. Cutaneous vasculitides. In: Kerdel F, editors. Dermatology: just the facts. New York: McGraw-Hill. 2003, p. 45–57.

    Google Scholar 

  2. Suresh E. Diagnostic approach to patients with suspected vasculitis. Postgrad Med J. 2006;82(970):483–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Carlson JA, Chen KR. Cutaneous vasculitis update: neutrophilic muscular vessel and eosinophilic, granulomatous, and lymphocytic vasculitis syndromes. Am J Dermatopathol. 2007;29(1):32–43.

    Article  PubMed  Google Scholar 

  4. Kao NL, Broy S, Tillawi I. Malignant angioendotheliomatosis mimicking systemic necrotizing vasculitis. J Rheumatol. 1992;19(7):11–5.

    Google Scholar 

  5. Thomas R, Vuitch F, Lakhanpal S. Angiocentric T cell lymphoma masquerading as cutaneous vasculitis. J Rheumatol. 1994;21(4):760–2.

    CAS  PubMed  Google Scholar 

  6. Ibrahim SF, Nousari CH. Clinical and basic immunodermatology. London: Springer; 2008.

    Google Scholar 

  7. Blanco R, Martinez-Taboada VM, Rodriguez Valverde V, Garcia-Fuentes M. Cutaneous vasculitis in children and adults. Associated diseases and etiologic factors in 303 patients. Medicine (Baltimore). 1998;77(6):403–18.

    CAS  Google Scholar 

  8. Sais G, Vidaller A, Jucgla A, et al. Prognostic factors in leukocytoclastic vasculitis: a clinicopathologic study of 160 patients. Arch Dermatol. 1998;134(3):309–15.

    Article  CAS  PubMed  Google Scholar 

  9. Kulthanan K, Pinkaew S, Jiamton S, Mahaisavariya P, Suthipinittharm P. Cutaneous leukocytoclastic vasculitis: the yield of direct immunofluorescence study. J Med Assoc Thai. 2004;87(5):531–5.

    PubMed  Google Scholar 

  10. Grzeszkiewicz TM, Fiorentino DF. Update on cutaneous vasculitis. Semin Cutan Med Surg. 2006;25(4):221–5.

    Article  CAS  PubMed  Google Scholar 

  11. Heeringa P, Huugen D, Tervaert JW. Anti-neutrophil cytoplasmic autoantibodies and leukocyte-endothelial interactions: a sticky connection? Trends Immunol. 2005;26(11):561–4.

    Article  CAS  PubMed  Google Scholar 

  12. Birck R, Schmitt WH, Kaelsch IA, van der Woude FJ. Serial ANCA determinations for monitoring disease activity in patients with ANCA-associated vasculitis: systematic review. Am J Kidney Dis. 2006;47(1):15–23.

    Article  PubMed  Google Scholar 

  13. Hermann J, Demel U, Stunzner D, Daghofer E, Tilz G, Graninger W. Clinical interpretation of antineutrophil cytoplasmic antibodies: parvovirus B19 infection as a pitfall. Ann Rheum Dis. 2005;64(4):641–3. Epub 2004 Oct 14.

    Article  CAS  PubMed  Google Scholar 

  14. Luqmani RA, Suppiah R, Grayson PC, Merkel PA, Watts R. Nomenclature and classification of vasculitis – update on the ACR/EULAR diagnosis and classification of vasculitis study (DCVAS). Clin Exp Immunol. 2011;164 Suppl 1:11–3.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Jennette JC, Falk RJ, Andrassy K, et al. Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum. 1994;37(2):187–92.

    Article  CAS  PubMed  Google Scholar 

  16. Rao JK, Allen NB, Pincus T. Limitations of the 1990 American College of Rheumatology classification criteria in the diagnosis of vasculitis. Ann Intern Med. 1998;129(5):345–52.

    Article  CAS  PubMed  Google Scholar 

  17. Sorensen SF, Slot O, Tvede N, Petersen J. A prospective study of vasculitis patients collected in a five year period: evaluation of the Chapel Hill nomencla ture. Ann Rheum Dis. 2000;59(6):478–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised International Chapel Hill Consensus Conference nomenclature of vasculitides. Arthritis Rheum. 2013;65:1–11.

    Article  CAS  PubMed  Google Scholar 

  19. Langford C. Takayasu’s arteritis. In: Hochberg MC, Silman AJ, Smolen JS, Weinblatt ME, editors. Rheumatology. Oxford: Elsevier; 2010. p. 1567–73.

    Google Scholar 

  20. Weyand CM, Goronzy JJ. Medium- and large-vessel vasculitis. N Engl J Med. 2003;349:160–9.

    Article  CAS  PubMed  Google Scholar 

  21. Chauhan SK, Singh M, Nityanand S. Reactivity of gamma/delta T cells to human 60-kd heat-shock protein and their cytotoxicity to aortic endothelial cells in Takayasu arteritis. Arthritis Rheum. 2007;56:2798–802.

    Article  CAS  PubMed  Google Scholar 

  22. Dourmishev AL, Erafimova DK, Vassileva SG, et al. Segmental ulcerative vasculitis: a cutaneous manifestation of Takayasu’s arteritis. Int Wound J. 2005;2(4):340–5.

    Article  PubMed  Google Scholar 

  23. Mukhtyar C, Guillevin L, Cid MC, et al. EULAR recommendations for the management of large vessel vasculitis. Ann Rheum Dis. 2009;68:318–23.

    Article  CAS  PubMed  Google Scholar 

  24. Tombetti E, Franchini S, Papa M, Sabbadini MG, Baldissera E. Treatment of refractory Takayasu arteritis with tocilizumab: seven Italian patients from a single referral center. J Rheumatol. 2013;40(12):2047–51.

    Article  CAS  PubMed  Google Scholar 

  25. Mekinian A, Neel A, Sibilia J, et al. Efficacy and tolerance of infliximab in refractory Takayasu arteritis: French multicentre study. Rheumatology (Oxford). 2012;51:882–6.

    Article  CAS  PubMed  Google Scholar 

  26. Burns JC. Kawasaki disease. In: Hochberg MC, Silman AJ, Smolen JS, Weinblatt ME, editors. Rheumatology. Oxford: Elsevier; 2010. p. 1583–6.

    Google Scholar 

  27. Chan M, Luqmani R. Pharmacotherapy of vasculitis. Expert Opin Pharmacother. 2009;10:1273–89.

    Article  CAS  PubMed  Google Scholar 

  28. Burns JC, Best BM, Mejias A, et al. Infliximab treatment of intrave-nous immunoglobulin-resistant Kawasaki disease. J Pediatr. 2008;153:833–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Breunis WB, Davila S, Shimizu C, et al. Disruption of vascular homeostasis in patients with Kawasaki disease: involvement of vascular endothelial growth factor and angiopoietins. Arthritis Rheum. 2012;64:306–15.

    Article  CAS  PubMed  Google Scholar 

  30. Burns JC, Song Y, Bujold M, et al. Immune-monitoring in Kawasaki disease patients treated with infliximab and intravenous immunoglobulin. Clin Exp Immunol. 2013;174:337–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Langford CA. Vasculitis. J Allergy Clin Immunol. 2010;125:S216–25.

    Article  PubMed  Google Scholar 

  32. Ishiguro N, Kawashima M. Cutaneous polyarteritis nodosa: a report of 16 cases with clinical and histopathological analysis and a review of the published work. J Dermatol. 2010;37:85–93.

    Article  PubMed  Google Scholar 

  33. Guillevin L, Lhote F, Amouroux J, Gherardi R, Callard P, Casassus P. Antineutrophil cytoplasmic antibodies, abnormal angiograms and pathological findings in polyarteritis nodosa and Churg-Strauss syndrome: indications for the classification of vasculitides of the polyarteritis Nodosa Group. Br J Rheumatol. 1996;35:958–64. [PubMed: 8883433].

    Article  CAS  PubMed  Google Scholar 

  34. Lidar M, Lipschitz N, Langevitz P, Shoenfeld Y. The infectious etiology of vasculitis. Autoimmunity. 2009;42:432–8.

    Article  PubMed  Google Scholar 

  35. de Menthon M, Mahr A. Treating polyarteritis nodosa: current state of the art. Clin Exp Rheumatol. 2011;29:S110–6.

    PubMed  Google Scholar 

  36. Gayraud M, Guillevin L, le Toumelin P, et al. Long-term followup of polyarteritis nodosa, microscopic polyangiitis, and Churg-Strauss syndrome: analysis of four prospective trials including 278 patients. Arthritis Rheum. 2001;44:666–75.

    Article  CAS  PubMed  Google Scholar 

  37. Chan M, Luqmani R. Pharmacotherapy of vasculitis. Expert Opin Pharmacother. 2009;10:1273–89.

    Article  CAS  PubMed  Google Scholar 

  38. Gayraud M, Guillevin L, le Toumelin P, et al. Long-term followup of polyarteritis nodosa, microscopic polyangiitis, and Churg-Strauss syndrome: analysis of four prospective trials including 278 patients. Arthritis Rheum. 2001;44:666–75.

    Article  CAS  PubMed  Google Scholar 

  39. Guillevin L, Mahr A, Cohen P, et al. Short-term corticosteroids then lamivudine and plasma exchanges to treat hepatitis B virus-related polyarteritis nodosa. Arthritis Rheum. 2004;51:482–7.

    Article  CAS  PubMed  Google Scholar 

  40. Fiorentino DF. Cutaneous vasculitis. J Am Acad Dermatol. 2003;48:311–40.

    Article  PubMed  Google Scholar 

  41. Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, et al. The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 2011;22:1795–803. [PubMed: 21949093].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Birchmore D, Sweeney C, Choudhury D, et al. IgA multiple myeloma presenting as Henoch-Schonlein purpura/polyarteritis nodosa overlap syndrome. Arthritis Rheum. 1999;39(4):698–703.

    Article  Google Scholar 

  43. Gonzalez-Gay MA, Garcia-Porrua C. Systemic vasculitides. Best Pract Res Clin Rheumatol. 2002;16:833–45.

    Article  PubMed  Google Scholar 

  44. Stefansson Thors V, Kolka R, Sigurdardottir SL, et al. Increased frequency of C4B*Q0 alleles in patients with Henoch- Schonlein purpura. Scand J Immunol. 2005;61:274–8.

    Article  CAS  PubMed  Google Scholar 

  45. Kawana S, Shen GH, Kobayashi Y, Nishiyama S. Membrane attack complex of complement in Henoch- Schonlein purpura skin and nephritis. Arch Dermatol Res. 1990;282:183–7.

    Article  CAS  PubMed  Google Scholar 

  46. Garcia-Porrua C, Gonzalez-Louzao C, Llorca J, et al. Predictive factors for renal sequelae in adults with Henoch-Schonlein purpura. J Rheumatol. 2001;28(5):1019–24.

    CAS  PubMed  Google Scholar 

  47. Besbas N, Duzova A, Topaloglu R, et al. Pulmonary haemorrhage in a 6-year-old boy with Henoch-Schonlein purpura. Clin Rheumatol. 2001;20(4):293–6.

    Article  CAS  PubMed  Google Scholar 

  48. Magro CM, Crowson AN. The cutaneous neutrophilic vascular injury syndromes: a review. Semin Diagn Pathol. 2001;18:47–58.

    CAS  PubMed  Google Scholar 

  49. Barnadas MA, Perez E, Gich I, et al. Diagnostic, prognostic and pathogenic value of the direct immunofluorescence test in cutaneous leukocytoclastic vasculitis. Int J Dermatol. 2004;43:19–26.

    Article  PubMed  Google Scholar 

  50. Pillebout E, Alberti C, Guillevin L, et al. Addi-tion of cyclophosphamide to steroids provides no benefit compared with steroids alone in treating adult patients with severe Henoch Schonlein purpura. Kidney Int. 2010;78:495–502.

    Article  CAS  PubMed  Google Scholar 

  51. Quartuccio L, Isola M, Corazza L, et al. Performance of the preliminary classification criteria for cryoglobulinaemic vasculitis and clinical manifestations in hepatitis C virus-unrelated cryoglobulinaemic vasculitis. Clin Exp Rheumatol. 2012;30:S48–52.

    PubMed  Google Scholar 

  52. Fabrizi F, Dixit V, Messa P. Antiviral therapy of symptomatic HCV-associated mixed cryoglobulinemia: meta-analysis of clinical studies. J Med Virol. 2013;85:1019–27.

    Article  CAS  PubMed  Google Scholar 

  53. Saadoun D, Rosenzwajg M, Landau D, Piette JC, Klatzmann D, Cacoub P. Restoration of peripheral immune homeostasis after rituximab in mixed cryoglobulinemia vasculitis. Blood. 2008;111:5334–41.

    Article  CAS  PubMed  Google Scholar 

  54. Lyons PA, Rayner TF, Trivedi S, et al. Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med. 2012;367:214–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Lionaki S, Blyth ER, Hogan SL, et al. Classification of antineutrophil cytoplasmic autoantibody vasculitides: the role of antineutrophil cytoplasmic autoantibody specificity for myeloperoxidase or proteinase 3 in disease recognition and prognosis. Arthritis Rheum. 2012;64:3452–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Kallenberg CGM. Advances in pathogenesis and treatment of ANCA-associated vasculitis. Discov Med. 2014;18(99):195–201.

    PubMed  Google Scholar 

  57. Tarzi RM, Pusey CD. Current and future prospects in the management of granulomatosis with polyangiitis (Wegener’s granulomatosis). Ther Clin Risk Manag. 2014;10:279–93.

    PubMed Central  PubMed  Google Scholar 

  58. Lenert P, Icardi M, Dahmoush L. ANA (+) ANCA (+) systemic vasculitis associated with the use of minocycline: case-based review. Clin Rheumatol. 2013;32(7):1099–106.

    Article  PubMed  Google Scholar 

  59. Merkel PA, Lo GH, Holbrook JT, et al. Brief communication: high incidence of venous thrombotic events among patients with Wegener granulomatosis: the Wegener’s Clinical Occurrence of Thrombosis (WeCLOT) Study. Ann Intern Med. 2005;142:620–6.

    Article  PubMed  Google Scholar 

  60. Allenbach Y, Seror R, Pagnoux C, Teixeira L, Guilpain P, Guillevin L. High frequency of venous thromboembolic events in Churg-Strauss syndrome, Wegener’s granulomatosis and microscopic polyangiitis but not polyarteritis nodosa: a systematic retrospective study on 1130 patients. Ann Rheum Dis. 2009;68:564–7.

    Article  CAS  PubMed  Google Scholar 

  61. Suppiah R, Judge A, Batra R, et al. A model to predict cardiovascular events in patients with newly diagnosed Wegener’s granulomatosis and microscopic polyangiitis. Arthritis Care Res (Hoboken). 2011;63:588–96.

    Article  Google Scholar 

  62. Springer J, Villa-Forte A. Thrombosis in vasculitis. Curr Opin Rheumatol. 2013;25:19–25.

    Article  PubMed  Google Scholar 

  63. Gaffo AL. Thrombosis in vasculitis. Best Pract Res Clin Rheumatol. 2013;27:57–67.

    Article  CAS  PubMed  Google Scholar 

  64. Cohen P, Pagnoux C, Mahr A, et al. Churg-Strauss syndrome with poor-prognosis factors: a prospective multicenter trial comparing glucocorticoids and six or twelve cyclophosphamide pulses in forty-eight patients. Arthritis Rheum. 2007;57:686–93.

    Article  CAS  PubMed  Google Scholar 

  65. Langford CA. Cyclophosphamide as induction therapy for Wegener’s granulomatosis and microscopic polyangiitis. Clin Exp Immunol. 2011;164 Suppl 1:31–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Jones RB, Tervaert JW, Hauser T, et al. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N Engl J Med. 2010;363:211–20.

    Article  CAS  PubMed  Google Scholar 

  67. Stone JH, Merkel PA, Spiera R, et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med. 2010;363:221–32 (Specks U, Merkel PA, Seo P et al. Efficacy of remission-induction regimens for ANCA-associated vasculitis. N Engl J Med 2013; 369: 417–27).

    Google Scholar 

  68. Niles J. Rituximab in induction therapy for anti-neutrophil cytoplasmic antibody (ANCA) vasculitis. Clin Exp Immunol. 2011;164 Suppl 1:27–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Guerry MJ, Brogan P, Bruce IN, et al. Recommendations for the use of rituximab in anti-neutrophil cytoplasm antibodyassociated vasculitis. Rheumatology (Oxford). 2012;51:634–43.

    Article  CAS  Google Scholar 

  70. Luqmani R. Maintenance of clinical remission in ANCAassociated vasculitis. Nat Rev Rheumatol. 2013;9:127–32.

    Article  CAS  PubMed  Google Scholar 

  71. Falk RJ, Gross WL, Guillevin L, et al; American College of Rheumatology, the American Society of Nephrology, and the European League Against Rheumatism. Granulomatosis with polyangiitis (Wegener’s): an alternative name for Wegener’s granulomatosis. Arthritis Rheum. 2011;63:863–4.

    Google Scholar 

  72. Jennette JC. Nomenclature and classification of vasculitis: lessons learned from granulomatosis with polyangiitis (Wegener’s granulomatosis). Clin Exp Immunol. 2011;164 Suppl 1:7–10.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Sinico RA, Di Toma L, Maggiore U, Tosoni C, Bottero P, Sabadini E, et al. Renal involvement in Churg-Strauss syndrome. Am J Kidney Dis. 2006;47:770–9. [PubMed: 16632015].

    Article  PubMed  Google Scholar 

  74. Guillevin L, Cohen P, Gayraud M, Lhote F, Jarrousse B, Casassus P. Churg-Strauss syndrome: clinical study and long-term follow-up of 96 patients. Medicine (Baltimore). 1999;78:26–37.

    Article  CAS  Google Scholar 

  75. Dunogue B, Pagnoux C, Guillevin L. Churg-strauss syndrome: clinical symptoms, complementary investigations, prognosis and outcome, and treatment. Semin Respir Crit Care Med. 2011;32:298–309.

    Article  PubMed  Google Scholar 

  76. Szczeklik W, Jakiela B, Adamek D, Musial J. Cutting edge issues in the Churg-Strauss syndrome. Clin Rev Allergy Immunol. 2013;44:39–50.

    Article  CAS  PubMed  Google Scholar 

  77. Sinico RA, Bottero P, Guillevin L. Antineutrophil cytoplasmic autoantibodies and clinical phenotype in patients with Churg-Strauss syndrome. J Allergy Clin Immunol. 2012;130:1440. Author reply, 1.

    Article  CAS  PubMed  Google Scholar 

  78. Szczeklik W, Jakiela B, Adamek D, Musial J. Cutting edge issues in the Churg-Strauss syndrome. Clin Rev Allergy Immunol. 2013;44:39–50.

    Article  CAS  PubMed  Google Scholar 

  79. Guillevin L, Pagnoux C, Seror R, Mahr A, Mouthon L, Le Toumelin P. The Five-Factor Score revisited: assessment of prognoses of systemic necrotizing vasculitides based on the French Vasculitis Study Group (FVSG) cohort. Medicine (Baltimore). 2011;90:19–27.

    Article  Google Scholar 

  80. Baldini C, Talarico R, Della Rossa A, Bombardieri S. Clinical manifestations and treatment of Churg-Strauss syndrome. Rheum Dis Clin North Am. 2010;36:527–43.

    Article  PubMed  Google Scholar 

  81. Bourgarit A, Le Toumelin P, Pagnoux C, et al. Deaths occurring during the f irst year after treatment onset for polyarteritis nodosa, microscopic polyangiitis, and Churg-Strauss syndrome: a retrospective analysis of causes and factors predictive of mortality based on 595 patients. Medicine (Baltimore). 2005;84:323–30.

    Article  Google Scholar 

  82. Phillip R, Luqmani R. Mortality in systemic vasculitis: a systematic review. Clin Exp Rheumatol. 2008;26(5 Suppl 51):S94–104.

    CAS  PubMed  Google Scholar 

  83. Koutkia P, Mylonakis E, Rounds S, Erickson A. Leucocytoclastic vasculitis: an update for the clinician. Scand J Rheumatol. 2001;30(6):315–22.

    Article  CAS  PubMed  Google Scholar 

  84. Davis MD, Daoud MS, Kirby B, et al. Clinicopathologic correlation of hypocomplementemic and normocomplementemic urticarial vasculitis. J Am Acad Dermatol. 1998;38(6 pt 1):899–905.

    CAS  PubMed  Google Scholar 

  85. Jaing TH, Hsueh C, Chiu CH, et al. Cutaneous lymphocytic vasculitis as the presenting feature of acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2002;24(7):555–7.

    Article  PubMed  Google Scholar 

  86. Kembre PS, Mahajan S, Kharkar V, Khopkar U. Cutaneous vasculitis as a presenting feature of multiple myeloma: a report of 2 cases. Indian J Dermatol Venereol Leprol. 2006;72(6):437–9.

    Article  PubMed  Google Scholar 

  87. Koulaouzidis A, Campbell S, Bharati A, et al. Primary biliary cirrhosis associated pustular vasculitis. Ann Hepatol. 2006;5(3):177–8.

    CAS  PubMed  Google Scholar 

  88. Ferrero P, Orzan F, Marchisio F, Trevi G. Vasculitis mimicking bacterial endocarditis. Ital Heart J. 2003;4(11):816–8.

    PubMed  Google Scholar 

  89. Golden MP, Hammer SM, Wanke CA, et al. Cytomegalovirus vasculitis. Case reports and review of the literature. Medicine (Baltimore). 1994;73(5):246–55.

    Article  CAS  Google Scholar 

  90. Lee YS, Lee SW, Lee JR, Lee SC. Erythema induratum with pulmonary tuberculosis: histopathologic features resembling true vasculitis. Int J Dermatol. 2001;40(3):193–6.

    Article  CAS  PubMed  Google Scholar 

  91. Feldmann R, Rieger W, Sator PG, Gschnait F, Breier F. Schonlein-Henoch purpura during pregnancy with successful outcome for mother and newborn. BMC Dermatol. 2002;2:1.

    Article  PubMed Central  PubMed  Google Scholar 

Eosinophilic Dermatoses: Wells’ Syndrome (Eosinophilic Cellulitis)

  1. Wells GC. Recurrent granulomatous dermatitis with eosinophilia. Trans St Johns Hosp Dermatol Soc. 1971;57:46–56.

    CAS  PubMed  Google Scholar 

  2. Fujimoto N, Wakabayashi M, Kato T, Nishio C, Tanaka T. Wells syndrome associated with Churg–Strauss syndrome. Clin Exp Dermatol. 2011;36(1):46–8.

    Article  CAS  PubMed  Google Scholar 

  3. Barreiros H, Matos D, Furtado C, Cunha H, Bártolo E. Wells syndrome in a child triggered by parvovirus B19 infection? J Am Acad Dermatol. 2012;67(4):1667.

    Article  Google Scholar 

  4. Gilliam AE, Bruckner AL, Howard RM, Lee BP, Wu S, Frieden IJ. Bullous “cellulitis” with eosinophilia:case report and review of Wells’ syndrome in childhood. Pediatrics. 2005;116:149–55.

    Article  Google Scholar 

  5. Van den Hoogenband HM. Eosinophilic cellulitis as a result of onchocerciasis. Clin Exp Dermatol. 1983;8:405–8.

    Article  PubMed  Google Scholar 

  6. Weiss G, Shemer A, Confino Y, Kaplan B, Trau H. Wells’ syndrome: report of a case and review of the literature. Int J Dermatol. 2001;40(2):148–52.

    Article  CAS  PubMed  Google Scholar 

  7. Holme SA, McHenry P. Nodular presentation of eosinophilic cellulitis (Wells’ syndrome). Clin Exp Dermatol. 2001;26(8):677–9.

    Article  CAS  PubMed  Google Scholar 

  8. Mitchell AJ, Anderson TF, Headington JT, Rasmussen JE. Recurrent granulomatous dermatitis with eosinophilia. Int J Dermatol. 1984;3:198–202.

    Article  Google Scholar 

  9. Wells CG. Recurrent granulomatous dermatitis with eosinophilia. Trans St Johns Hosp Dermatol Soc. 1971;57:46–56.

    CAS  PubMed  Google Scholar 

  10. Wells CG, Smith NP. Eosinophilic cellulitis. Br J Dermatol. 1979;100:101–9.

    Article  CAS  PubMed  Google Scholar 

  11. McKee PH. Pathology of the skin. 2nd ed. London: Mosby-Wolfe; 1996. p. 29–30.

    Google Scholar 

  12. Fisher GB, Greer KE, Cooper PH. Eosinophilic cellulitis (Wells’ Syndrome). Int J Dermatol. 1985;24:101–7.

    Article  CAS  PubMed  Google Scholar 

  13. Bogenrieder T, Griese DP, Schiffner R, et al. Wells’ syndrome associated with idiopathic hypereosinophilic syndrome. Br J Dermatol. 1997;137:978–82.

    Article  CAS  PubMed  Google Scholar 

  14. Coldiron BM, Robinson JK. Low-dose alternate-day prednisone for persistent Wells’ syndrome. Arch Dermatol. 1989;125:1625–6.

    Article  CAS  PubMed  Google Scholar 

  15. Anderson CR, Jenkins D, Tron V, Prendiville JS. Wells’ syndrome in childhood: case report and review of the literature. J Am Acad Dermatol. 1995;33:857–64.

    Article  CAS  PubMed  Google Scholar 

Eosinophilic Dermatoses: Hypereosinophic Syndrome

  1. Kojima K, Maeda J, Mikami S, Yamagishi H, Ide H, Hattori S, Takahashi T, Awazu M. Eosinophilic cystitis presented as a manifestation of hypereosinophilic syndrome: a case report and review of the literature. Nephron Extra. 2013;3:30–5.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Wechsler ME, Fulkerson PC, Bochner BS, Gauvreau GM, Gleich GJ, Henkel T, Kolbeck R, Mathur SK, Ortega H, Patel J, Prussin C, Renzi P, Rothenberg ME, Roufosse F, Simon D, Simon H-U, Wardlaw A, Weller PF, Klion AD. Novel targeted therapies for eosinophilic disorders. J Allergy Clin Immunol. 2012;130(3):563–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Simon H-U, Rothenberg ME, Bochner BS, Weller PF, Wardlaw AJ, Wechsler ME, Rosenwasser LJ, Roufosse F, Gleich GJ, Klion AD. Refining the definition of hypereosinophilic syndrome. J Allergy Clin Immunol. 2010;126(1):45–9.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Antoniu SA. Novel therapies for hypereosinophilic syndromes. Neth J Med. 2010;68:304–10.

    CAS  PubMed  Google Scholar 

  5. James WD, Berger TG, Elston DM. Andrews’ disease of the skin. Clinic dermatology. Philadelphia: Sunders Elsevier; 2011. p. 746–7.

    Google Scholar 

  6. Helbig G, Kyrcz-Krzemień S. Diagnostic and therapeutic management in patients with hypereosinophilic syndromes. Pol Arch Med Wewn. 2011;121(1–2):44–52.

    PubMed  Google Scholar 

  7. Amini-Vaughan ZJ, Martinez-Moczygemba M, Huston DP. Therapeutic strategies for harnessing human eosinophils in allergic inflammation, hypereosinophilic disorders, and cancer. Curr Allergy Asthma Rep. 2012;2(5):402–12.

    Article  CAS  Google Scholar 

  8. Roufosse F, Weller PF. Practical approach to the patient with hypereosinophilia. J Allergy Clin Immunol. 2010;126(1):39–44.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Simon H-U, Klion A. Therapeutic approaches to patients with hypereosinophilic syndromes. Semin Hematol. 2012;49(2):160–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Neutrophilic Dermatoses

  1. Caucanas M, Heylen A, Rolland F, et al. Associated pyoderma gangrenosum, erythema elevatum diutinum, and Sweet’s syndrome: the concept of neutrophilic disease. Int J Dermatol. 2013;52(10):1185–8.

    Article  PubMed  Google Scholar 

  2. Villareal-Villarreal CD, Ocampo-Candiani J, Villarreal-Martínez A. Sweet syndrome: a review and update. Actas Dermosifiliogr. 2016;107(5):369–78.

    Article  Google Scholar 

  3. Cohen PR. Sweet’s syndrome – a comprehensive review of an acute febrile neutrophilic dermatosis. Orphanet J Rare Dis. 2007;2:34.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Marzano AV, Cugno M, Trevisan V, et al. Inflammatory cells, cytokines and matrix metalloproteinases in amicrobial pustulosis of the folds and other neutrophilic dermatoses. Int J Immunopathol Pharmacol. 2011;24(2):451–60.

    Article  CAS  PubMed  Google Scholar 

  5. Marzano AV, Cugno M, Trevisan V, et al. Role of inflammatory cells, cytokines and matrix metallopro- teinases in neutrophil-mediated skin diseases. Clin Exp Immunol. 2010;162(1):100–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Sand FL, Thomsen SF. Off-label use of TNF-alpha inhibitors in a dermatological university department: retrospective evaluation of 118 patients. Dermatol Ther. 2015;28(3):158–65.

    Article  PubMed  Google Scholar 

  7. Kluger N, Gil-Bistes D, Guillot B, et al. Efficacy of anti- interleukin-1 receptor antagonist anakinra (Kineret) in a case of refractory Sweet’s syndrome. Dermatology. 2011;222(2):123–7.

    Article  PubMed  Google Scholar 

  8. Xu HH, Xiao T, Gao XH, et al. Ulcerative Sweet syndrome accompanied by interstitial lung disease and myelodysplastic syndrome. Eur J Dermatol. 2009;19(4):411–2.

    PubMed  Google Scholar 

  9. Srisuttiyakorn C, Reeve J, Reddy S, et al. Subcutaneous histiocytoid Sweet’s syndrome in a patient with myelodysplastic syndrome and acute myeloblastic leukemia. J Cutan Pathol. 2014;41(5):475–9.

    Article  PubMed  Google Scholar 

  10. Su WPD, Liu H-NH. Diagnostic criteria for Sweet’s syndrome. Cutis. 1986;37(3):167–70.

    CAS  PubMed  Google Scholar 

  11. Cohen PR, Holder WR, Tucker SB, et al. Sweet syndrome in patients with solid tumors. Cancer. 1993;72(9):2723–31.

    Article  CAS  PubMed  Google Scholar 

  12. Rahier JF, Lion L, Dewit O, et al. Regression of Sweet’s syndrome associated with Crohn’s disease after anti-Tumour Necrosis Factor therapy. Acta Gastroenterol Belg. 2005;68(3):376–9.

    CAS  PubMed  Google Scholar 

  13. Marzano AV, Borghi A, Meroni PL, et al. Pyoderma gangrenosum and its syndromic forms: Evidence for a link with autoinflammation. Br J Dermatol. 2016; 175(5): 882–891.

    Google Scholar 

  14. Agarwal S, Misra R, Aggarwal A. Interleukin 17 levels are increased in juvenile idiopathic arthritis synovial fluid and induce synovial fibroblasts to produce proinflammatory cytokines and matrix metalloproteinases. J Rheumatol. 2008;35(3):515–9.

    CAS  PubMed  Google Scholar 

  15. Marzano AV, Cugno M, Trevisan V, et al. Role of inflammatory cells, cytokines and matrix metalloproteinases in neutrophil- mediated skin diseases. Clin Exp Immunol. 2010;162(1):100–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Marzano AV, Fanoni D, Antiga E, et al. Expression of cytokines, chemokines and other effector molecules in two prototypic autoinflammatory skin diseases, pyoderma gangrenosum and Sweet’s syndrome. Clin Exp Immunol. 2014;178(1):48–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Dinarello CA. A clinical perspective of IL-1β as the gatekeeper of inflammation. Eur J Immunol. 2011;41(5):1203–17.

    Article  CAS  PubMed  Google Scholar 

  18. Marzano AV, Tourlaki A, Alessi E, et al. Widespread idiopathic pyoderma gangrenosum evolved from ulcerative to vegetative type: a 10-year history with a recent response to infliximab. Clin Exp Dermatol. 2008;33(2):156–9.

    Article  CAS  PubMed  Google Scholar 

  19. Stichweh DS, Punaro M, Pascual V. Dramatic improvement of pyoderma gangrenosum with infliximab in a patient with PAPA syndrome. Pediatr Dermatol. 2005;22(3):262–5.

    Article  PubMed  Google Scholar 

  20. Bister V, Mäkitalo L, Jeskanen L, et al. Expression of MMP-9, MMP-10 and TNF-α and lack of epithelial MMP-1 and MMP-26 characterize pyoderma gangrenosum. J Cutan Pathol. 2007;34(12):889–98.

    Article  PubMed  Google Scholar 

  21. Su WPD, Davis MDP, Weenig RH, et al. Pyoderma gangrenosum: clinicopathologic correlation and proposed diagnostic criteria. Int J Dermatol. 2004;43(11):790–800.

    Article  PubMed  Google Scholar 

  22. Pay S, Simşek I, Erdem H, et al. Immunopathogenesis of Behçet’s disease with special emphasize on the possible role of antigen presenting cells. Rheumatol Int. 2007;27(5):417–24.

    Article  CAS  PubMed  Google Scholar 

  23. Sfikakis PP, Markomichelakis N, Alpsoy E, et al. Anti-TNF therapy in the management of Behçet’s disease—review and basis for recommendations. Rheumatology. 2007;46(5):736–41.

    Article  CAS  PubMed  Google Scholar 

  24. Arida A, Sfikakis PP. Anti-cytokine biologic treatment beyond anti-TNF in Behçet’s disease. Clin Exp Rheumatol. 2014;32(4 Suppl 84):S149–55.

    PubMed  Google Scholar 

  25. Gul A, Tugal-Tutkun I, Dinarello CA, et al. Interleukin-1β-regulating antibody XOMA 052 (gevokizumab) in the treatment of acute exacerbations of resistant uveitis of Behçet’s disease: an open-label pilot study. Ann Rheum Dis. 2012;71(4):563–6.

    Article  CAS  PubMed  Google Scholar 

  26. Cantarini L, Lopalco G, Caso F, et al. Effectiveness and tuberculosis-related safety profile of interleukin-1 blocking agents in the management of Behçet’s dis- ease. Autoimmun Rev. 2015;14(1):1–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Xiao , Gang Wang MD, PhD , Alan Menter MD , Li-Ping Zhao , Yan Wu , Hong-Hui Xu , Ting Xiao , Gang Wang MD, PhD , Alan Menter MD , Li-Ping Zhao , Yan Wu or Hong-Hui Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Xiao, T. et al. (2017). Multifactorial Diseases with Immunological Involvement. In: Gao, XH., Chen, HD. (eds) Practical Immunodermatology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0902-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-0902-4_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-0900-0

  • Online ISBN: 978-94-024-0902-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics