Skip to main content

Crystalline and Amorphous Chalcogenides, High-Tech Materials with Structural Disorder and Many Important Applications

  • Conference paper
Nanomaterials and Nanoarchitectures

Abstract

The paper reviews and discusses crystalline, nanocrystalline, glassy and amorphous chalcogenides and their thin films and fibres, their preparation, structure, properties, changes and applications in optics, optoelectronics and electronics, data storage and sensors with accent on recent data and progress. The area of interest is so broad that only some materials and processes could be discussed in detail, and a lot of data were chosen for the sake of illustration only.

Various ways of the preparation of crystalline, glassy and amorphous chalcogenides, their crystals, thin films and nanoparticles are mentioned; the structure, properties and applications of individual groups of materials are discussed. The applications are numerous: in the infrared technique, data storage, in light transformation and emission, in sensors, X-ray sensors, Xerox facilities, luminophors, lasers, ferroelectrics, thermoelectrics, catalysers, plasmonics materials; in topological insulators, fibres, in light up-conversion, nanodots and nanomaterials; in one-, two-, and three-dimensional systems, planar optical circuits, waveguides, non-linear optical and optomechanical devices, in surgical instruments, etc. Some of them are discussed in detail.

The review paper is based on several lectures presented on the occasion of “Nanomaterials and Nanoarchitectures International Summer School, Advanced Study Institute of NATO”, held in June/July 2013, in Cork, Ireland. The paper is primarily devoted to MSc. and Ph.D. students and postdoctoral students of solid state physics, solid state chemistry, material science and material engineering, but also to researchers as well as to general audience interested in science and technical progress, in order to help them understand and apply some of these materials and data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACh:

Amorphous chalcogenide(s)

ACCh:

Amorphous and crystalline chalcogenide(s)

AChF:

Amorphous chalcogenide films

AGCh:

Amorphous and glassy chalcogenide(s)

AIST:

Argentum-Indium-Antimony-Telluride(s)

CCh:

Crystalline chalcogenide(s)

CD:

Compact disc

Ch:

Chalcogenide(s)

CTAB:

Cetyl trimethyl ammonium bromide

CVD:

Chemical vapour deposition

1D:

One-dimensional

2D:

Two-dimensional

3D:

Three-dimensional

DVD:

Digital video disc

ECM:

Electrochemical metallization memories

ECB RAM:

Electrochemical conductive bridge random access memory

Eg :

Energy gap

ESA:

Excited state absorption

ETU:

Energy transfer up-conversion

EXAFS:

Extended X-ray Absorption Fine Structure

GCh:

Glassy chalcogenide(s)

GSA:

Ground state absorption

HRTEM:

High-resolution transmission electron microscopy

IR:

Infrared region

LED:

Light emitting diode(s)

M:

Metal or metalloid

MID IR:

Mid infrared region

MOCVD:

Metal organic chemical vapour deposition

MOF:

Microstructured optical fibres

n:

Index of refraction

NIR:

Near-infrared region

OUM:

Ovshinsky Universal Memories

PCM:

Phase change memory

PCMM:

Phase change memory materials

PC RAM:

Phase change random access memory

PL:

Photoluminescence

RE:

Rare earth element(s)

SERS:

Surface enhanced Raman spectroscopy

SHG:

Second harmonic generation

SSM:

Solid state (non-volatile) memory

Tc :

Temperature of crystallization

Tg :

Temperature of glass transition

Tm :

Melting temperature

X:

Halogen (Cl Br, I)

XANES:

X-ray Absorption Near Edge Structure

Y:

Chalcogen

References

  1. Korbel P, Novak M (1999) Encyclopedia of minerals. Rebo International, Lisse, in Czech

    Google Scholar 

  2. Turjanica ID et al (1968) Some optical photoelectric and ferroelectric properties of mixed crystals SbSxSe1−x. Czech J Phys 18:1465

    Article  CAS  Google Scholar 

  3. Nolas GS, Sharp J, Goldsmid HJ (2001) Thermoelectrics, basic principles and new materials development. Springer, Berlin

    Google Scholar 

  4. Sherrer H, Sherrer S (2006) Chap. 27. In: Rowe DM (ed) Thermoelectrics handbook, macro to nano. CRC, Boca Raton, 2006 and papers cited

    Google Scholar 

  5. Cheetham AK, Day P (1992) Solid state chemistry, compounds. Clarendon Press, Oxford

    Google Scholar 

  6. Bonaccorso F, Sun Z (2014) Solution processing of graphene, topological insulators and other 2d crystals for ultrafast photonics. Opt Mat Express 4:63

    Article  CAS  Google Scholar 

  7. Tang P et al (2013) Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser. IEEE Photonics J 5:1500707

    Article  CAS  Google Scholar 

  8. Bao W et al (2013) High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects. Appl Phys Lett 102:042104

    Article  CAS  Google Scholar 

  9. Mikla VI, Mikla VV (2012) Amorphous chalcogenides, the past, present and future. Elsevier, London/Waltham

    Google Scholar 

  10. Kokorina VF (1996) Glasses for infrared optics. CRC, Boca Raton

    Google Scholar 

  11. Kasap SO (1991) Photoreceptors: chalcogenides. In: Diamond A (ed) The handbook of imaging materials. Dekker, New York

    Google Scholar 

  12. Chizhikov DM, Schastlivij VP (1964) Selene and selenides. Nauka, Moscow, in Russian

    Google Scholar 

  13. Zallen R (1983) The physics of amorphous solids. Wiley, New York

    Book  Google Scholar 

  14. Li X, Wang M et al (2011) Inorganic Sn-X-complex-induced 1D, 2D, and 3D copper sulfide superstructures from anisotropic hexagonal nanoplate building blocks. Chem-Eur J 17:10357

    Article  CAS  Google Scholar 

  15. Yamane M, Asahara Y (2000) Glasses for photonics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  16. Fuxi G, Lei X (eds) (2006) Photonics glassses. World Scientific, London

    Google Scholar 

  17. Frumar M et al (2011) Amorphous and glassy semiconducting chalcogenides. In: Bhattacharya P, Fornari R, Kamimura H (eds) Comprehensive semiconductor science and technology, vol 4, Materials preparation and properties. Elsevier, Amsterdam, pp 206–261

    Chapter  Google Scholar 

  18. Raoux S, Wuttig M (eds) (2009) Phase change materials, science and applications. Springer, New York

    Google Scholar 

  19. Tanaka K, Shimakawa K (2011) Amorphous chalcogenide semiconductors and related materials. Springer, New York

    Book  Google Scholar 

  20. Bleckan DI (2004) Crystalline and glassforming chalcogenides Si, Ge, Sn and alloys on their bases. Vidavnictvo “Zakarpatia”, in Russian

    Google Scholar 

  21. Wang RP (ed) (2013) Amorphous chalcogenides, advances and applications. Pan Stanford Publication, Singapore

    Google Scholar 

  22. Kolobov AV (ed) (2003) Photo-induced metastability in amorphous semiconductors. Wiley-VCH GmbH, Weinheim

    Google Scholar 

  23. Kolobov AV, Tominaga J (2012) Chalcogenides metastability and phase change phenomena. Springer, Berlin

    Google Scholar 

  24. Adam J-L, Zhang X (eds) (2014) Chalcogenide glasses, preparation, properties and applications. Woodhead Publishing, Oxford

    Google Scholar 

  25. Hilton AR (2010) Chalcogenide glasses for infrared optics. McGraw-Hill, New York

    Google Scholar 

  26. Feltz A (1983) Amorphe und glasartige anorganische Festkörper. Akademie-Verlag, Berlin, in German

    Google Scholar 

  27. Borisova ZU (1983) Chalcogenide semiconducting glasses. Izd Leningrad University, Leningrad, in Russian

    Google Scholar 

  28. Borisova ZU (1972) Chemistry of glassforming semiconductors. Izd Leningrad University, in Russian

    Google Scholar 

  29. Popescu MA (2000) Non-crystalline chalcogenides. Kluwer, Dordrecht

    Google Scholar 

  30. Boolchand P (ed) (2000) Insulating and semiconducting glasses. World Scientific Publishing, Singapore

    Google Scholar 

  31. Tauc J (ed) (1974) Amorphous and liquid semiconductors. Plenum Press, London

    Google Scholar 

  32. Elliott SR (1990) Physics of amorphous materials, 2nd edn. Longmann, Essex

    Google Scholar 

  33. Frumar M, Wagner T (2003) Ag doped chalcogenide glasses and their applications. Curr Opin Solid State Mater Sci 7:117–126

    Article  CAS  Google Scholar 

  34. Frumar M et al Photoinduced phenomena in amorphous and glassy chalcogenides. In [22], pp 23–44

    Google Scholar 

  35. Wagner T, Frumar M Optically induced diffusion and dissolution of metals in amorphous chalcogenides. In [22], pp 160–181

    Google Scholar 

  36. Chizhikov DM, Schastlivij VP (1966) Tellur and tellurides. Nauka, Moscow, in Russian

    Google Scholar 

  37. Shelimova LE et al (2000) Homologous series of layered tetradymite-like compounds in the Sb-Te and GeTe-Sb2Te3 systems. Inorg Mater 36:768

    Article  CAS  Google Scholar 

  38. Kifune K et al (2005) Extremely long period-stacking structure in the Sb-Te binary system. Acta Crystallogr B61:492

    Article  CAS  Google Scholar 

  39. Shelimova LE et al (1965) Ge-Te system in the region of GeTe compound. Zh Neorg Chimii 10:1200

    CAS  Google Scholar 

  40. Kozyukhin SA et al (2011) Phase-change-memory materials based on system chalcogenides and their application in phase-change random-access memory. Nanotechnol Russ 6:227

    Article  Google Scholar 

  41. Kroger FA (1964) The chemistry of imperfect crystals. North Holland Publishing, Amsterdam

    Google Scholar 

  42. Ipser H et al (1982) The germanium-selenium phase-diagram. Monatsh Chem 113:389

    Article  CAS  Google Scholar 

  43. Shelimova LE et al (2000) Structural and electrical properties of layered tetradymite-like compounds in the GeTe-Bi2Te3 and GeTe-Sb2Te3 systems. Inorg Mater 36:235

    Article  CAS  Google Scholar 

  44. Okamoto H (1998) C-Ti (carbon-titanium). J Phase Equilib 19:89

    Google Scholar 

  45. Hansen M, Anderko K (1953) Constitution of binary alloys. McGraw-Hill, New York

    Google Scholar 

  46. Gordon P (1968) Principles of phase diagrams in material systems. McGraw-Hill, New York

    Google Scholar 

  47. Giessen B, Willens R (1970) Rapidly quenched (splat-cooled) metastable alloy phases; their phase-diagram representation, preparation methods, occurrence, and properties. In: Alper AM (ed) Phase diagrams, material science and technology, vol 3. Academic, New York, p 104

    Google Scholar 

  48. Feldmann C (2013) Metastable solids – terra incognita awaiting discovery. Angew Chem Int Ed 52:7610

    Article  CAS  Google Scholar 

  49. Churbanov M, Plotnichenko V. In [50], p 209

    Google Scholar 

  50. Fairman R, Ushkov B (2004) Semiconducting chalcogenide glass III, applications of chalcogenide glasses. Elsevier, Amsterdam

    Google Scholar 

  51. Shaefer H (1961) Chemische transport reactionen. Chemie Verl, Berlin, in German

    Google Scholar 

  52. Frumar M et al (1972) Preparation and some physical properties of single-crystals of semiconducting compound PbSb2Se4. Collect Czech Chem Commun 37:2317

    Article  CAS  Google Scholar 

  53. Horak J et al (1972) Reflectivity of iodine-doped Sb2Te3 crystals. Phys Status Solidi (a) 14:289

    Article  CAS  Google Scholar 

  54. Orava J et al Deposition techniques for chalcogenide thin films. In [24], p 290

    Google Scholar 

  55. Reso D et al (2011) Hot wire chemical vapor deposition of Ge2Sb2Te5 thin films. J Electrochem Soc 158:D187–D190

    Article  CAS  Google Scholar 

  56. Frumar M et al Pulsed laser ablation and deposition of chalcogenide thin films. In [57], p 81

    Google Scholar 

  57. Popescu M (ed) (2005) Pulsed laser deposition of optoelectronic films. INOUE, Bucharest

    Google Scholar 

  58. Focsa C et al (2009) Laser ablation of AsxSe100-x chalcogenide glasses: plume investigations. Appl Surf Sci 255:5307

    Article  CAS  Google Scholar 

  59. Nemec P et al (2004) Structure, thermally and optically induced effects in amorphous As2Se3 films prepared by pulsed laser deposition. J Phys Chem Solids 65:1253

    Article  CAS  Google Scholar 

  60. Houska J et al (2014) Laser desorption time-of-flight mass spectrometry of atomic switch memory Ge2Sb2Te5 bulk materials and its thin films. Rapid Commun Mass Spectrom 28:699

    Article  CAS  Google Scholar 

  61. Zha Y et al (2013) A review on solution processing of chalcogenide glasses for optical components. Opt Mat Express B, 1259 and papers cited

    Google Scholar 

  62. Kohoutek T et al (2013) Large-area inverse opal structures in a bulk chalcogenide glass by spin-coating and thin-film transfer. Opt Mat 36:390

    Article  CAS  Google Scholar 

  63. Yitai Q Chemical preparation and characterization of nano crystalline materials. In Nalwa S (ed) In [66], p 423

    Google Scholar 

  64. Meister S et al (2006) Synthesis and characterization of phase-change nanowires. Nano-Lett 6:1514

    Article  CAS  Google Scholar 

  65. Caldwell MA, Raoux S et al (2010) Synthesis and size-dependent crystallization of colloidal germanium telluride nanoparticles. J Mat Chem 20:1285

    Article  CAS  Google Scholar 

  66. Nalwa HS (ed) (2000) Handbook of nanostructured materials and nanotechnology, vol 1, Synthesis and processing. Academic, London

    Google Scholar 

  67. Barber DJ, Freestone IC (1990) An investigation of the origin of the color of the Lycurgus cap by analytical transmission electron-microscopy. Archaeometry 32:33–45

    Article  Google Scholar 

  68. Duval D, Risbut SH, Semiconductor quantum dots: progress in processing. In [66], p 481

    Google Scholar 

  69. Jain H, Vlcek M Chalcogenide glass resists for litography. In [24], p 562

    Google Scholar 

  70. Vlcek M et al (2003) Selective etching of chalcogenides and its application for fabrication of diffractive optical elements. J Non-Cryst Solids 326–327:515

    Article  CAS  Google Scholar 

  71. Jain H, Vlcek M (2008) Glasses for lithography. J Non-Cryst Solids 354:1401

    Article  CAS  Google Scholar 

  72. Hughes MA et al (2013) On the analogy between photoluminescence and carrier-type reversal in Bi- and Pb-doped glasses. Opt Express 21:8101

    Article  CAS  Google Scholar 

  73. Yamada N Development of materials for third generation optical storage media. In [18], p 214

    Google Scholar 

  74. Matsunaga T, Yamada N (2002) A study of highly symmetrical crystal structures, commonly seen in high-speed phase-change materials, using synchrotron radiatio. Jpn J Appl Phys 41:1674

    Article  CAS  Google Scholar 

  75. Petrov II et al (1968) The determination of structure of Ge2Sb2Te5 and GeSb4Te7 by difraction of electrons. Kristallografiya 13:417, in Russian

    CAS  Google Scholar 

  76. Talybov AG, Vainstein BK (1962) The determination of the superstructure of PbBi4Te7 alloy by difraction of electrons. Kristallografya 7:43, in Russian

    CAS  Google Scholar 

  77. Talybov AG (1964) The determination of super structure III of PbBi4Te7 alloy by difraction of electrons. Kristallografa 9:57, in Russian

    CAS  Google Scholar 

  78. Bokij GB, Romanova EM (1961) Structural elements of complex thioarsenides. Kristallografiya 6:869, in Russian

    Google Scholar 

  79. Born L, Hellner E (1960) A structural proposal for boulangerite. Am Mineral 45:1266

    CAS  Google Scholar 

  80. Frumar M (1979) Semiconducting chalcogenides of the 4th and 5th groups of periodic law. DSc theses, Charles University, Prague, in Czech

    Google Scholar 

  81. Gan F, Xu L (eds) (2006) Photonic glasses. World Scientific, Singapore, p 56

    Google Scholar 

  82. Frumar M et al (1997) Photoinduced effects in amorphous chalcogenides. Chem Pap 51:310

    CAS  Google Scholar 

  83. Yamada N et al (1991) Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin-films for an optical disk memory. J Appl Phys 69:2849

    Article  CAS  Google Scholar 

  84. Frumar M et al (2009) On the atomic structure of thin amorphous Ge-Sb-Te films. Phys Status Solidi B 246:1871

    Article  CAS  Google Scholar 

  85. Fritzsche H Electronic properties of amorphous semiconductors. In [31], p 297

    Google Scholar 

  86. Tauc J Optical properties of amorphous semiconductors. In [31]

    Google Scholar 

  87. Cui S et al (2013) From selenium-to tellurium-based glass optical fibers for infrared spectroscopies. Molecules 18:5373

    Article  CAS  Google Scholar 

  88. Shimakawa K et al (2013) Terahertz and direct current losses and the origin of non-drude terahertz conductivity in the crystalline states of phase change materials. J Appl Phys 114:233105

    Article  CAS  Google Scholar 

  89. Zakery A, Elliott SR (2007) Optical nonlinearities in chalcogenide glasses and their applications. Springer, Berlin

    Google Scholar 

  90. Frumar M et al (2003) Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J Non-Cryst Solids 326 & 327:399, and papers quoted

    Article  CAS  Google Scholar 

  91. Ticha H, Tichy L (2002) Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J Optoelectron Adv Mat 4:381

    CAS  Google Scholar 

  92. Vogel EM (1991) Nonlinear optical phenomena in glass. Phys Chem Glasses 32:231

    CAS  Google Scholar 

  93. Petit L et al (2006) Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70-xSex. J Non-Cryst Solids 352:5413

    Article  CAS  Google Scholar 

  94. Petit L et al (2007) Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses. Mater Res Bul 42:2107

    Article  CAS  Google Scholar 

  95. Shen X et al (2011) Preparation and third-order optical nonlinearity of glass ceramics based on GeS2-Ga2S3-CsCl pseudo-ternary system. J Non-Cryst Solids 357:2316

    Article  CAS  Google Scholar 

  96. Singh J (ed) (2006) Optical properties of condensed matter. Wiley, Chester

    Google Scholar 

  97. Tanaka K (2005) Optical nonlinearity in photonic glasses. J Mater Sci Mater Electron 16:633

    Article  CAS  Google Scholar 

  98. Cherukulappurath S et al (2004) 4f coherent imager system and its application to nonlinear optical measurements. J Opt Soc Am B21:273

    Article  Google Scholar 

  99. Boudebs G, Cherukulappurath S (2005) Nonlinear refraction measurements in presence of nonlinear absorption using phase object in a 4f system. Opt Commun 250:416

    Article  CAS  Google Scholar 

  100. Yang J et al (2011) Measurement of nonlinear refraction using a reversal 4f coherent imaging system with phase objects. Opt Commun 284:4223

    Google Scholar 

  101. Boyd RW (2003) Non-linear optics, 2nd edn. Academic, San Diego

    Google Scholar 

  102. Wemple SH, Di Domenico M (1971) Behavior of electronic dielectric constant in covalent and ionic materials. Phys Rev B3:1338

    Article  Google Scholar 

  103. Frumarova B et al (2013) Preparation and physical properties of luminescent 80GeSe2 (20-x)Sb2Se3 xSb2Tey:Pr2Se3 glasses; x=0, 1, 3, 10; y=2, 3, 4. J Lumin 134:558

    Article  CAS  Google Scholar 

  104. Nasu H et al (1989) Optical 3rd-harmonic generation from some high-index glasses. J Non-Cryst Solids 110:229

    Article  CAS  Google Scholar 

  105. Stolen RH, Tom WK (1987) Self-organized phase-matched harmonic-generation in optical fibers. Opt Lett 12:585

    Article  CAS  Google Scholar 

  106. Vij DR (ed) (1998) Luminescence of solids. Plenum Press, New York, and references quoted

    Google Scholar 

  107. Liu G, Jacquier B (eds) (2010) Spectroscopic properties of rare earths in optical materials. Springer, Berlin

    Google Scholar 

  108. Judd BR (1962) Optical absorption intensities of rare-earth ions. Phys Rev 127:750

    Article  CAS  Google Scholar 

  109. Ofelt GS (1962) Intensities of crystal spectra of rare-earth ions. J Chem Phys 37:511

    Article  CAS  Google Scholar 

  110. Edgar A Optical properties of glasses. In [96], p 159

    Google Scholar 

  111. Digonnet MJE (1993) Rare-earth-doped fibre lasers and amplifiers. Marcel Dekker, New York

    Google Scholar 

  112. Nemec P et al (1999) Optical properties of germanium-gallium-selenide glasses doped by samarium. J Optoelectron Adv Mat 1:33

    CAS  Google Scholar 

  113. Sourkova P et al (2009) Spectroscopy of infrared transitions of Pr3+ ions in Ga-Ge-Sb-Se glasses. J Lumin 129:1148

    Article  CAS  Google Scholar 

  114. Nemec P, Frumar M (2008) Compositional dependence of spectroscopic parameters of Dy3+ ions in Ge-Ga-Se glasses. Mater Lett 62:2799

    Article  CAS  Google Scholar 

  115. Deol RS et al (1993) Improved fluoride glasses for 1.3 μm optical amplifiers. J Non-Cryst Solids 161:257

    Article  CAS  Google Scholar 

  116. Frumarova B et al (2013) Preparation of As-In-S:Sm thin films and a study of their properties. Thin Solid Films 548:429

    Article  CAS  Google Scholar 

  117. Sanghera JS et al Rare Earth doped infrared-transmitting glass fibers. In [111], p 449

    Google Scholar 

  118. Barnier S et al (1992) Raman and infrared studies of the structure of gallium sulfide based glasses. Mater Sci Eng B14:413

    Article  CAS  Google Scholar 

  119. Heo J et al (1998) Raman spectroscopic analysis on the solubility mechanism of La3+ in GeS2-Ca2S3 glasses. J Non-Cryst Solids 238:115

    Article  CAS  Google Scholar 

  120. Ren J et al (2011) Intense near-infrared and midinfrared luminescence from the Dy3+-doped GeSe2-Ca2Se3-MI (M=K, Cs, Ag) chalcohalide glasses at 1.32, 1.73, and 2.67 μm. J Appl Phys 109:033105

    Article  CAS  Google Scholar 

  121. Nemec P et al (2000) Optical properties of low-phonon-energy Ge30Ga5Se65 : Dy2Se3 chalcogenide glasses. J Phys Chem Solids 61:1583

    Article  CAS  Google Scholar 

  122. Nemec P et al (1999) Optical properties of germanium-gallium-selenide glasses doped by samarium. J Optoelectron Adv Mat 1:33

    CAS  Google Scholar 

  123. ASTM G173-03, Solar Spectrum; from: Kim S, Heo J, Joint Symp. MSE for the 21th century, poster

    Google Scholar 

  124. Strümpel C et al (2007) Modifying the solar spectrum to enhance silicon solar cell efficiency – an overview of available materials. Sol Energy Mater Sol Cells 91:238

    Article  CAS  Google Scholar 

  125. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104:139, In [133], p 243

    Article  CAS  Google Scholar 

  126. Strizik L et al (2014) Green, red and near-infrared photon up-conversion in Ga-Ge-Sb-S:Er3+ amorphous chalcogenides. J Lumin 147:209

    Article  CAS  Google Scholar 

  127. Frumar M et al (1988) Photoinduced changes of structure and properties of amorphous chalcogenides. React Solids 5:341

    Article  Google Scholar 

  128. Frumar M et al (2001) Structure and optically induced changes of reactivity and optical properties of amorphous chalcogenides. In: Thorpe MF, Tichy L (eds) Properties and application of amorphous materials. Kluwer, Dordrecht, pp 321–328

    Chapter  Google Scholar 

  129. Krecmer P et al (1997) Reversible nanocontraction and dilatation in a solid induced by polarized light. Science 277:1799–1802

    Article  CAS  Google Scholar 

  130. Stuchlik M et al The optomechanical effect in amorphous chalcogenide films. In [22], p 112

    Google Scholar 

  131. Frumar M et al (2007) Phase change memory materials-composition, structure, and properties. J Mater Sci Mater Electron 18:169

    Article  CAS  Google Scholar 

  132. Horak J et al (2005) Defect structure of Sb2-xMnxTe3 single crystals. J Solid State Chem 178:2907

    Article  CAS  Google Scholar 

  133. Ovshinsky SR (1968) Reversible electrical switching phenomena in disordered structures. Phys Rev Lett 21:1450

    Article  Google Scholar 

  134. Yamada N (1987) High-speed overwritable phase-change optical disk material. Jpn J Appl Phys 26(26–4):61

    Article  Google Scholar 

  135. Fritzsche H Switching and memory in amorphous semiconductors. In [31], p 313

    Google Scholar 

  136. Fritzsche H Electronic properties of amorphous semiconductors. In [31], p 221

    Google Scholar 

  137. Adler D, Moss SC (1972) Amorphous memories and bistable switches. J Vac Sci Technol 9:1182

    Article  CAS  Google Scholar 

  138. Ovshinsky SR (2004) The ovonic cognitive computer – a new paradigm. 3rd E\PCOS 04. Principality of Liechtenstein, Sept 2004. http://www.epcos.org/library/papers/pdf_2004/01paper_ovshinsky.pdf

  139. Yamada H HD DVD promising design. 3rd E\PCOS 04. Principality of Liechtenstein, 4–7 Sept 2004. http://www.epcos.org/library/papers/pdf_2004/02pp_yamada.pdf

  140. Frumar M et al (2005) Non-volatile phase change memory materials and their induced changes. E\PCOS 05. Cambridge, UK. 3–6 Sept 2005. http://www.epcos.org/library/papers/pdf_2005/Frumar.pdf

  141. Frumar M et al (1972) Preparation and some physical properties of semiconducting GeSb2Te4 crystals. Mater Res Bul 7:1075

    Article  CAS  Google Scholar 

  142. Frumar M et al (1999) Raman spectra and photostructural changes in the short-range order of amorphous As-S chalcogenides. J Non-Cryst Solids 256:105

    Article  Google Scholar 

  143. Frumar M et al (2001) Photoinduced changes of structure and properties of amorphous binary and ternary chalcogenides. J Optoelectron Adv Mat 3:177

    CAS  Google Scholar 

  144. Frumar M et al (1997) Photoinduced changes of the reactivity of amorphous chalcogenide layers. J Non-Cryst Solids 221:27

    Article  CAS  Google Scholar 

  145. Frumar M et al (1984) Reversible photodarkening and structural-changes in As2S3 thin-films. Philos Mag B50:483

    Google Scholar 

  146. Singh B et al (1979) Photo-contraction effect in amorphous Se1-xGex films. Solid State Commun 29:167

    Article  CAS  Google Scholar 

  147. Frumar M et al (1983) A model for photostructural changes in the amorphous As-S system. J Non-Cryst Solids 59 & 60:921

    Article  Google Scholar 

  148. Hamanaka H et al (1977) Reversible photostructural change in melt-quenched As2S3 glass. Solid State Commun 23:63

    Article  CAS  Google Scholar 

  149. Tanaka K Sub-gap photoinduced phenomena in chalcogenide glasses. In [22], p 69

    Google Scholar 

  150. Lankhorst MHR (2003) Prospects of doped Sb-Te phase-change materials for high-speed recording. Jpn J Appl Phys 42:863

    Article  CAS  Google Scholar 

  151. Hromadko L et al (2014) Physico-chemical properties of the thin films of the SbxSe100-x system (x=90, 85, 80). Thin Solid Films 569:17

    Article  CAS  Google Scholar 

  152. Yamada N et al (1987) High-speed overwritable phase-change optical disk material. Jpn J Appl Phys 26:61

    Article  Google Scholar 

  153. Bramberger M (2001)) Rapid solidification and microstructure, Chapt 8.2. In: Ready JF (ed) LIA handbook of laser materials processing. Magnolia Publishing and Springer, Laser Institute of America, Orlando, p 268

    Google Scholar 

  154. Fritzsche H Light-induced structural changes in glasses. In [30], p 653

    Google Scholar 

  155. Frumar M, Horak J (1971) Preparation and some physical properties of semiconducting PbBi4Te7 crystals. Phys Status Solidi (a) 6:K133

    Article  CAS  Google Scholar 

  156. Frumar M et al (1974) Some physical-properties of semiconducting GeSb4Te7 crystals. Phys Status Solidi (a) 22:535

    Article  CAS  Google Scholar 

  157. Matsunaga T et al (2011) From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. Nat Mater 10:129, supplementary Fig. 2

    Article  CAS  Google Scholar 

  158. Kozyukhin S (2013) Structural changes in doped Ge2Sb2Te5 thin films studied by Raman spectroscopy. Phys Procedia 44:82

    Article  CAS  Google Scholar 

  159. Hyot B Chalcogenide for phase optical and electrical memories. In [24], p 597

    Google Scholar 

  160. Ross JS et al (2014) Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat Nanotechnol 9:268

    Article  CAS  Google Scholar 

  161. Kanamori T et al (1985) Transmission loss characteristics of As40S60 and As38Ge5Se57 glass unclad fibers. J Non-Cryst Solids 69:231

    Article  CAS  Google Scholar 

  162. Conseil C et al (2012) Te-based chalcohalide glasses for far-infrared optical fiber. Opt Mat Express 2:1470

    Article  CAS  Google Scholar 

  163. Calvez L Transparent chalcogenide glass-ceramics. In [24], p 310

    Google Scholar 

  164. Tao H et al (2013) Optical non-linearity in nano- and micro-crystallized glasses. J Non-Cryst Solids 377:146

    Article  CAS  Google Scholar 

  165. Li W et al (2013) CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. J Am Chem Soc 135:7098

    Article  CAS  Google Scholar 

  166. Troles J Chalcogenide microstructured optical fibres for infrared applications. In [24], p 411

    Google Scholar 

  167. Roberts PJ (2005) Ultimate low loss of hollow-core photonic crystal fibres. Opt Express 13:236

    Article  CAS  Google Scholar 

  168. Hudgens SJ (2008) The future of phase-change semiconductor memory devices. J Non-Cryst Solids 354:2748

    Article  CAS  Google Scholar 

  169. Hubert Q et al (2013) Detailed analysis of the role of thin-HfO2 interfacial layer in Ge2Sb2Te5-based PCM. IEEE Trans Electron Devices 60:2267

    Article  CAS  Google Scholar 

  170. Tominaga J Application of Ge-Sb-Te glasses for ultrahigh-density optical storage. In [22], p 327

    Google Scholar 

  171. Bolda C (2007) Introduction to reconfigurable computing architectures. Springer Science and Business Media, Berlin

    Google Scholar 

  172. Kolar J et al (2014) Down-scaling of resistive switching to nanoscale using porous anodic alumina membranes. J Mater Chem C 2:349

    Article  CAS  Google Scholar 

  173. Valov T (2011) Electrochemical metallization memories-fundamentals, applications, prospects. Nanotechnology 22:254003

    Article  CAS  Google Scholar 

  174. Lu W et al (2012) Electrochemical metallization cells-blending nanoionics into nanoelectronics? MRS Bulletin 37:124

    Article  CAS  Google Scholar 

  175. Kasap S, Capper P (eds) (2006) Springer handbook of electronic and photonic materials. Springer Science and Business Media, New York

    Google Scholar 

  176. Kasap S, Rowlands J (2000) Amorphous chalcogenide photoconductors and imaging technologies. In [30]

    Google Scholar 

  177. Samson ZL et al (2010) Chalcogenide glasses in active plasmonics. Phys Status Solidi RRL 4:234

    Article  CAS  Google Scholar 

  178. Gu Q (2010) Plasmonic metallic nanostructures for efficient absorption enhancement in ultrathin CdTe-based photovoltaic cells. J Phys D Appl Phys 43:465101

    Article  CAS  Google Scholar 

  179. Hasan M, Kane C (2010) Topological insulators. Rev Mod Phys 82:3045

    Article  CAS  Google Scholar 

  180. Massobrio C, Du J, Bernasconi M, Salmon PS (eds) (2015) Molecular dynamics simulations of disordered materials, network glasses to phase-change memory alloys. Springer Science and Business Media, Inc, New York

    Google Scholar 

  181. Nishi Y (ed) (2014) Advances in non-volatile memory and storage technology. Chapts. 1, 5–7. Woodhed, Amsterdam

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Czech Science Foundation for grants 203/09/0827 and project CZ.1.07/2.3.00/20.0254 ReAdMat and for the institutional support RVO:61389013 of IMC AS CR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Frumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Frumar, M., Wagner, T., Shimakawa, K., Frumarova, B. (2015). Crystalline and Amorphous Chalcogenides, High-Tech Materials with Structural Disorder and Many Important Applications. In: Bardosova, M., Wagner, T. (eds) Nanomaterials and Nanoarchitectures. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9921-8_7

Download citation

Publish with us

Policies and ethics