Skip to main content

Chalcogenides to Nanochalcogenides; Exploring Possibilities for Future R&D

  • Chapter
  • First Online:
Advances in Nanomaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 79))

Abstract

Chalcogenides (Se, Te and S) are one of the interesting classes of materials studied so far. They have potential applications in phase change recording, memory and switching and various other solid state electronic devices. These materials got a great deal of attention of the scientists worldwide due to their low phonon energy, infrared transparency, large value of refractive index, high photosensitivity, reversible phase transformation etc. There are several techniques for the synthesis of chalcogenide materials, which include melt quenching, thermal evaporation, sputtering, chemical vapor deposition etc. Among all these techniques, melt quenching is one of the simplest and popular techniques for producing chalcogenide glasses. Recently, a lot of work is focussed on production of chalcogenides at nanoscale. The understanding of electrical, optical and thermal properties of these chalcogenides at nanoscale is of great interest both from fundamental and technological point of view. Due to their interesting physical properties, these nanochalcogenides has raised considerable deal of research interest followed by technological applications in the field of micro/optoelectronics. The structure of chalcogenides is disordered at the atomic scale. Therefore, the nanostructures of these materials can easily be tailored and may yield a greater variety than that of crystalline nanostructures. The synthesis of chalcogenide nanostructures in the form of nanoparticles, nanobelts, nanorods, and nanowires has stimulated intense research activity due to their improved properties at nanoscale. With these interesting results, the nano-chalcogenides have become the focus of attention and are expected to present interesting properties. A dramatic change in the physical and chemical properties of these materials is observed due to size reduction. Moreover, the work on the synthesis and characterization of nano-chalcogenides is still in the primarily stages and accordingly, overall features have not been explored so far. Therefore, more research work on these nanochalcogenides is needed for complete understanding of the mechanism responsible for change in properties in these materials at nanoscale. This chapter provides a comprehensive review of chalcogenides and nanochalcogenides, their synthesis and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.T. Kolomiets, Vitreous semiconductors (I), (II). in Proceedings of International Conference on Semiconductor Physics, 1960, (Czechoslovak Academy of Science) p. 884, Phys. Stat. Solidi, 1964, 7, p. 359

    Google Scholar 

  2. W.E. Spear, Amorphous and liquid semiconductors. Proc. Phys. Soc. (London) 870, 1139 (1957)

    Google Scholar 

  3. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Stat. Solidi 15, 627 (1966)

    Article  Google Scholar 

  4. S.R. Ovshinisky, Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450 (1968)

    Article  Google Scholar 

  5. Y. Shen, X. Wang, A. Xie, L. Huang, J. Zhu, L. Chen, Synthesis of dextran/Se nanocomposites for nanomedicine application. Mater. Chem. Phys. 109, 534–540 (2008)

    Article  Google Scholar 

  6. H.S. Lee, B. Cheong, T.S. Lee, K.S. Lee, W.M. Kim, J.Y. Huh, Optic material for potential application to super-resolution optical data storage. Surf. Coat. Technol. 193, 335–339 (2005)

    Article  Google Scholar 

  7. J. Pinkas, V. Reichlova, R. Zboril, Z. Moravec, P. Bezdicka, Sonochemical synthesis of amorphous nanoscopic iron(III) oxide from Fe(acac)3. Ultrason. Sonochem. 15, 257–264 (2008)

    Article  Google Scholar 

  8. B. Molina Concha, E. De Biasi, R.D. Zysler, Monte Carlo simulation of Fe–Co amorphous nanoparticles magnetization. Phys. B 403, 390–393 (2008)

    Article  Google Scholar 

  9. L.F. Xi, Y.M. Lam, Synthesis and characterization of CdSe nanorods using a novel microemulsion method at moderate temperature. J. Colloid Interface Sci. 316, 771–778 (2007)

    Article  Google Scholar 

  10. M. Rajamathi, R. Seshadri, Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions. Curr. Opin. Solid State Mater. Sci. 6, 337–345 (2002)

    Article  Google Scholar 

  11. D. Nesheva, H. Hofmeister, Z. Levi, Z. Aneva, Nanoparticle layers of CdSe buried in oxide and chalcogenide thin film matrices. Vacuum 65, 109–113 (2002)

    Article  Google Scholar 

  12. R.A. Street, N.F. Mott, States in the gap in glassy semiconductors. Phys. Rev. Iett. 35, 1293 (1975)

    Google Scholar 

  13. N.F. Mott, E.A. Davis, R.A. Street, States in a gap and recombination in amorphous semiconductors. Phil. Mag. 32, 961 (1975)

    Article  Google Scholar 

  14. M. Kastner, D. Adler, H. Fritzsche, Valence-alternation model for localized gap states in lone-pair semiconductors. Phys. Rev. Lett. 37, 1504 (1976)

    Article  Google Scholar 

  15. M.H. Cohen, H. Fritzsche, S.R. Ovshinsky, Simple band model for amorphous semiconducting alloys. Phys. Rev. Lett. 22, 1065 (1969)

    Article  Google Scholar 

  16. N.F. Mott, Introduction to the electron theory of metals. Phil. Mag. 13, 989 (1966)

    Article  Google Scholar 

  17. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. conductivity, optical absorption and photoconductivity in amorphous semiconductors. Phil. Mag. 22, 903 (1970)

    Article  Google Scholar 

  18. N.F. Mott, Tetrahedrally-bonded amorphous semiconductors. Phil. Mag. 26, 505 (1972)

    Article  Google Scholar 

  19. A.V. Kastner, H. Fritzsche, Photo-induced metastability in amorphous semiconductors. Phil. Mag. 37, 199 (1978)

    Article  Google Scholar 

  20. M. Pollak, T.H. Geballe, Low-frequency conductivity due to hopping processes in silicon. Phys. Rev. 122, 1742 (1961)

    Article  Google Scholar 

  21. S.R. Elliot, A theory of AC conduction in chalcogenide glasses. Phil. Mag. 36, 1291 (1977)

    Article  Google Scholar 

  22. M. Pollak, Coherence and energy transfer in glasses. Phil. Mag. 23, 519 (1976)

    Article  Google Scholar 

  23. M. Grevers, F. Du Pre, Discuss Faraday Soc. A. 42, 47 (1946)

    Article  Google Scholar 

  24. H. Frohlich, Theory of dielectrics; dielectric constant and dielectric loss (Clarendon Press, Oxford, 1949)

    MATH  Google Scholar 

  25. G.E. Pike, AC conductivity of scandium oxide and a new hopping model for conductivity. Phys. Rev. 8(6), 1572 (1972)

    Article  Google Scholar 

  26. H. Fritzsche, in Amorphous and Liquid Semiconductors, ed. by J. Tau (Plenum, London, 1974), p. 232

    Google Scholar 

  27. N.F. Mott, Localized states in a pseudogap and near extremities of conduction and valence bands. Phil. Mag. 19, 3 (1969)

    Article  Google Scholar 

  28. N.F. Mott, Introductory talk; conduction in non-crystalline materials. J. Non-Crys. Solids 1(72), p. 8 (1993)

    Google Scholar 

  29. V. Ambegokar, B.I. Helperin, J.S. Langer, Hopping conductivity in disordered systems. Phys. Rev. B, 4, p. 2162 (1971)

    Google Scholar 

  30. A.M. Phak, Electrical properties of thermally evaporated tellurium films. Thin Solid Films 41, 235 (1977)

    Article  Google Scholar 

  31. S.K. Srivastava, Krishna K. Srivastava, Shiveom Srivastava, Narayan P. Srivastava, Optical study of thin film of Ge10Se90−xbix. Int. J. Emerg. Technol. 3(2), 4 (2012)

    Google Scholar 

  32. J.P. Borgogro, B. Lazarides, E. Pelletier, Automatic determination of the optical constants of inhomogeneous thin films. Appl. Optics. 21, 4020 (1982)

    Article  Google Scholar 

  33. S.V. Babu, M. David. R.C. Patel, Improved hybrid solar cells via in situ UV polymerization. Appl. Optics. 30(7), p. 839 (1991)

    Google Scholar 

  34. F.J. Biatt, Physics of Electron Conduction in Solids (McGraw-Hill, New York, 1968)

    Google Scholar 

  35. K.L. Chopra, in Thin Film Phenomena (Mcgraw-Hill, New York, 1969)

    Google Scholar 

  36. K.A. Rubin, M. Chen, Progress and issues of phase-change erasable optical recording media. Thin Solid Films 181, 129 (1989)

    Article  Google Scholar 

  37. J. Tauc, in Amorphous and Liquid Semiconductors, ed. by J. Tauc (Plenum Press, New York, 2012) 197, p. 159

    Google Scholar 

  38. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    Article  Google Scholar 

  39. T.T. Nang, M. Okuda, T. Matsushita, S. Yokota, A. Suzuki, Electrical and optical properties of gese amorphous thin films. Jpn. J. Appl. Phys. 14, 849 (1976)

    Article  Google Scholar 

  40. M.L. Theye, in Proceedings 5th International Conference on Amorphous and Liquid Semiconductors, vol. 1, p. 479 (1973)

    Google Scholar 

  41. YuG Vlasov, E.A. Bychkov, Ion-selective chalcogenide glass electrodes. Ion-sel. Electrode Rev. 9, 5 (1987)

    Google Scholar 

  42. Y.G. Vlasov, New solid-state ion-selective electrodes—sensors for chemical analysis of solution. Fres. Z. Anal. Chem. 335, 92 (1989)

    Article  Google Scholar 

  43. Y.G. Vlasov, E.A. Bychkov, A.V. Legin, Chalcogenide glass chemical sensors: research and analytical applications. Talanta 41, 1059 (1994)

    Article  Google Scholar 

  44. J.H. Christensen, P. Clemmesen, G.H. H, K. Liltorp, J. Mortensen, Response characteristics and application of chalcogenide glass Cr(VI) selective electrode. Sens. Actuators B 45(3), 2393 (1997)

    Article  Google Scholar 

  45. R. Todorov, T. Iliev, K. Prtkev, Light-induced changes in the optical properties of thin films of Ge–S–Bi(Tl, In) chalcogenides. J. Non-Crys. Solid 263, 326 (2003)

    Google Scholar 

  46. A.A. Alnajjar, The role of thermal treatment on the optical properties of Ge0.15Se0.85 system. Renew. Energy 34, 71 (2009)

    Article  Google Scholar 

  47. M.B. El-Den, N.B. Olsen, I.H. Pedersen, P. Viscor, Dc and ac electrical transport in assete systems. J. Non-Crys. Solids 92, 20 (1987)

    Article  Google Scholar 

  48. S.A. Khan, F.S. Al-Hazmi, A.M. Al-Sanosi, A.S. Faidah, S.J. Yaghmour, A.A. Al-Ghamdi, Effect of Ag incorporation on electrical and optical properties of Se–S chalcogenide thin films. Phys. B 404, 1415 (2009)

    Article  Google Scholar 

  49. Z.H. Khan, M. Zulfequar, M. Ilyas, M. Husain, K.S. Begum, Electrical and thermal properties of a-(Se70Te30)100−x(Se98Bi2)x alloys. Current Appl. Phys. 2, 167 (2002)

    Article  Google Scholar 

  50. A. Ahmad, S.A. Khan, K. Sinha, L. Kumar, Z.H. Khan, M. Zulfequar, M. Husain, Optical characterization of vacuum evaporated a-Se80Te20−x Cux thin films. Vacuum 82, 608 (2008)

    Article  Google Scholar 

  51. E. Abd El-Wahabb, A.M. Farid, Electrical conductivity and optical absorption of (Ge2S3)1(Sb2Te3)1 amorphous thin films. J. Alloys Comp. 472, 352 (2009)

    Article  Google Scholar 

  52. Ambika P.B. Barman, An optical study of vacuum evaporated Se85−x Te15 Bix chalcogenide thin films. Phys. B Condense Matter 405, 822 (2010)

    Article  Google Scholar 

  53. A.M. Salem, Y.A. El-Gendy, E.A. El-Sayad, Optical and electrical properties of thermally evaporated In49Se48Sn3 films. Phys. B 404, 2425 (2009)

    Article  Google Scholar 

  54. S.A. Khan, F.S. Al-Hazmi, S. Al-Heniti, A.S. Faidah, A.A. Al-Ghamdi, Effect of cadmium addition on the optical constants of thermally evaporated amorphous Se–S–Cd thin films. Current Appl. Phys. 10, 145 (2010)

    Article  Google Scholar 

  55. A.S. Khomane, P.P. Hankare, Structural, optical and electrical characterization of chemically deposited cdSe thin films. J. Alloys Comp. 489, 605 (2010)

    Article  Google Scholar 

  56. K.A. Aly, N. Afify, A.M. Aboushly, Incorporation of Bi, Cd and Zn on the optical properties of Ge20Se80 thin films. Phys. B Condense Matter. 405, 1846 (2010)

    Article  Google Scholar 

  57. J. Orava, T. Kohoutek, T. Wagner, Z. Cerna, M. Vlcek, L. Benes, B. Frumarova, M. Frumar, Optical and structural properties of Ge–Se bulk glasses and Ag–Ge–Se thin films. J. Non-Crys. Solids 355, 1951 (2009)

    Article  Google Scholar 

  58. V. Takats, P. Nemec, A. Csik, S. Kokenyesi, Photo-and thermally induced interdiffusion in Se/As2S3 nanomultilayers prepared by pulsed laser deposition and thermal evaporation. J. Phys. Chem. Solids 68, 948 (2007)

    Article  Google Scholar 

  59. F.A. Al-Agel, S.A. Khan, E.A. Al-Arfaj, F.M. Al-Marzouki, A.A. Al-Ghamdi, Z.H. Khan, M. Zulfequar, Influence of laser-irradiation on structural and optical properties of phase change Ga25Se75−xTex thin films. Mater. Lett. 92, 424 (2013)

    Article  Google Scholar 

  60. M.A. Alvi, S.A. Khan, A.A. Al-Ghamdi, Photo-induced effects on structural and optical properties of Ga15Se81Ag4 chalcogenide thin films. J. Luminescence 132, 1237 (2012)

    Article  Google Scholar 

  61. F.A. Al-Agel, Structural and optical properties of Te doped Ge–Se phase-change thin films: a material for optical storage. Mater. Sci. Semicond. Process. 18, 36 (2014)

    Article  Google Scholar 

  62. Z.H. Khan, N. Salah, S. Habib, A.A. Al-Ghamdi, S.A. Khan, Electrical and optical properties of a-SexTe100−x thin films. Opt. Laser Technol. 44, 6 (2012)

    Article  Google Scholar 

  63. A.A. Shaheen, M.M.A. Imran, O.A. Lafi, M.I. Awadallah, M.K. Abdullah, Optical properties of a-Se90In10−xSnx chalcogenide thin films before and after gamma irradiation. Radiat. Phys. Chem. 79(9), 923 (2010)

    Article  Google Scholar 

  64. F.A. Al-Agel, Effects of annealing temperatures on optical and electrical properties of vacuum evaporated Ga 15Se77In8 chalcogenide thin films. Vacuum 85(9), 892 (2011)

    Article  Google Scholar 

  65. A.A. El-Sebaii, S.A. Khan, F.M. Al-Marzouki, A.S. Faidah, A.A. Al-Ghamdi, Role of heat treatment on structural and optical properties of thermally evaporated Ga10Se81Pb9 chalcogenide thin films. J. Luminescence 132(8), 2082–2087 (2012)

    Article  Google Scholar 

  66. A.A. Al-Ghamdi, S.A. Khan, S. Al-Heniti, F.A. Al-Agel, T. Al-Harbi, M. Zulfequar, Effects of laser irradiation on optical properties of amorphous and annealed Ga15Se81In4 and Ga15Se79In6 chalcogenide thin films. J. Alloys Compd. 505(1), 229 (2010)

    Article  Google Scholar 

  67. S.A. Khan, J.K. Lal, A.A. Al-Ghamdi, Thermal annealing effect of on optical constants of vacuum evaporated Se75S25−xCdx chalcogenide thin films, Opt. Laser Technol. 42(5), p. 839 (2010)

    Google Scholar 

  68. F.S. Al-Hazmi, Effect of annealing on optical constants of Se75S25−xCdx chalcogenide thin films. Phys. B 404(8–11), 1354 (2009)

    Article  Google Scholar 

  69. R. Chauhan, A.K. Srivastava, A. Tripathi, K.K. Srivastava, Photo-induced optical changes in GexAs40Se60−x thin films. Prog. Nat. Sci. Mater. Int. 20, 54 (2010)

    Article  Google Scholar 

  70. A.M. Farid, I.K. El-Zawawi, A.H. Ammar, Compositional effects on the optical properties of Ge x Sb40−x Se60 thin films. Vacuum 86(9), 1255 (2012)

    Article  Google Scholar 

  71. R. Chauhan, A.K. Srivastava, A. Tripathi, K.K. Srivastava, Linear and nonlinear optical changes in amorphous As2Se3 thin film upon UV exposure. Prog. Nat. Sci. Matet. Int. 21(3), 205 (2011)

    Article  Google Scholar 

  72. M.M.A. Imran, O.A. Lafi, M. Abu-Samak, Effect of thermal annealing on some electrical properties and optical band gap of vacuum evaporated Se65Ga30In5 thin films. Vacuum 86(10), 1589 (2012)

    Article  Google Scholar 

  73. M. Mishra, R. Cauhan, A. Katiyar, K.K. Srivastava, Optical properties of amorphous thin film of Se–Te–Ag system prepared by using thermal evaporation technique. Prog. Nat. Sci. Mater. Int. 21(1), 36–39 (2011)

    Article  Google Scholar 

  74. M. Abdel Rafea, H. Farid, Mater. Chem. Phys. 113, 268 (2009)

    Article  Google Scholar 

  75. A.H. Ammar, N.M. Abdel-Moniem, M. Farag, Influence of indium content on the optical, electrical and crystallization kinetics of Se100−xInx thin films deposited by flash evaporation technique. Phys. B 407(3), 356 (2012)

    Article  Google Scholar 

  76. A.K. Diab, M.M. Wakkad, EKh Shokr, W.S. Mohamed, Structural and optical properties of In35Sb45Se20−xTex phase-change thin films. J. Phys. Chem. Solids 71(9), 1381 (2010)

    Article  Google Scholar 

  77. A.F. Qasrawi, Temperature effects on the optoelectronic properties of agin 5s8 thin films. Thin Solid Films 519(11), p. 3768 (2011)

    Google Scholar 

  78. K.A. Aly, N. Afify, A.M. Abousehlly, A.M. Abd Elnaeim, Optical band gap and refractive index dispersion parameters of In–Se–Te amorphous films. J. Non-Crys. Solids 357(10), 2029 (2011)

    Article  Google Scholar 

  79. M.A. Alvi, S.A. Khan, A.A. Al-Ghamdi, Photo-induced effects on electrical properties of Ga15Se81Ag4 chalcogenide thin films. Mater. Lett. 66(1), 273 (2012)

    Article  Google Scholar 

  80. Zong-Hong Lin and R. Chris, “Evidence on the size-dependent absorption spectral evolution of selenium nanoparticles” Maters. Chem. Phys., 2005, 92(2–3), p.591

    Google Scholar 

  81. Xueyun Gao, Tao Gao, Lide Zhang, Solution-solid growth of α-monoclinic selenium nanowires at room temperature. J. Mater. Chem. 13, 6 (2003)

    Article  Google Scholar 

  82. X.L. Liu, Y.J. Zhu, A precursor nanowire templated route to CdS nanowires. Mater. Lett. 63, 1085 (2009)

    Article  Google Scholar 

  83. M.F. Kotkata, A.E. Masoud, M.B. Mohamed, E.A. Mahmoud, Synthesis and structural characterization of CdS nanoparticles. Phys. E 41, 640–645 (2009)

    Article  Google Scholar 

  84. S. Wageh, M.H. Badr, M.H. Khalil, A.S. Eid, Strong confinement of PbSe nanocrystals in phosphate glass. Phys. E 41, 1157–1163 (2009)

    Article  Google Scholar 

  85. R. Todorov, A. Paneva, K. Petkov, Optical characterization of thin chalcogenide films by multiple-angle-of-incidence ellipsometry. Thin Solid Films 518(12), 3280 (2010)

    Article  Google Scholar 

  86. Z. Chaia, Z. Penga, C. Wanga, H. Zhang, Synthesis of polycrystalline nanotubular Bi2Te3. Mater. Chem. Phys. 113, 664 (2009)

    Article  Google Scholar 

  87. S. Li, H.Z. Wang, W.W. Xu, H. Si, X. Tao, S. Lou, Z. Du, L.S. Li, Synthesis and assembly of monodisperse spherical Cu2S nanocrystals. J. Colloid. Interface Sci. 330, 483 (2009)

    Article  Google Scholar 

  88. J.K. Dongre, V. Nogriya, M. Ramrakhiani, Structural, optical and photoelectrochemical characterization of CdS nanowire synthesized by chemical bath deposition and wet chemical etching. Appl. Surf. Sci. 255, 6115 (2009)

    Article  Google Scholar 

  89. G.L. Tan, J.H. Du, Q.J. Zhang, Structural evolution and optical properties of CdSe nanocrystals prepared by mechanical alloying. J. Alloys Compd. 468, 421 (2009)

    Article  Google Scholar 

  90. Y. Yang, Y. Chai, D. Fanglin, Controllable synthesis of flower-like Cd1−xZnxSe microstructures from the self-prepared precursor. J. Alloys Compd. 478, 513 (2009)

    Article  Google Scholar 

  91. P.P. Ingole, P.M. Joshi, S.K. Haram, Room temperature synthesis of 1-hexanethiolate capped Cu2−xSe quantum dots in Triton X-100 water-in-oil microemulsions. Colloids Surf. A Physicochem. Eng. Aspects 337, 136 (2009)

    Article  Google Scholar 

  92. S. Lee, S. Hong, B. Park, S.R. Paik, S. Jung, Agarose and gellan as morphology-directing agents for the preparation of selenium nanowires in water. Carbohydr. Res. 344, 260 (2009)

    Article  Google Scholar 

  93. Q. Han, L. Chen, W. Zhu, M. Wang, X. Wang, X. Yang, L. Lu, Synthesis of Sb2S3 peanut-shaped superstructures. Mater. Lett. 63, 1030 (2009)

    Article  Google Scholar 

  94. K. Liu, H. Liu, J. Wang, L. Feng, Synthesis and characterization of SnSe2 hexagonal nanoflakes. Mater. Lett. 63, 512 (2009)

    Article  Google Scholar 

  95. Z. Li, X. Tao, W. Zhishen, P. Zhang, Z. Zhang, Preparation of In2S3 nanopraricle by ultrasonic dispersion and its tribology property. Ultrason. Sonochem. 16, 221 (2009)

    Article  Google Scholar 

  96. Y. Li, Y. Zhu, C. Li, X. Yang, C. Li, Synthesis of ZnS nanoparticles into the pore of mesoporous silica spheres. Mater. Lett. 63, p. 1068 (2009)

    Google Scholar 

  97. Z.H. Khan, S.A. Khan, N. Salah, S. Habib, S.M. Abdallah El-Hamidy, A.A. Al-Ghamdi, Effect of composition on electrical and optical properties of thin films of amorphous GaxSe100−x Nanorods. Nano Res. Letts. 5, 1512 (2010)

    Article  Google Scholar 

  98. Z.H. Khan, A.A. Al-Ghamdi, S.A. Khan, S. Habib, N. Salah, Morphology and optical properties of thin films of GaxSe100−x nanoparticles. Nanosci. Naotech. Lett. 3, 1 (2010)

    Google Scholar 

  99. Z.H. Khan, S.A. Khan, N. Salah, A.A. Al-Ghamdi, S. Habib, Electrical properties of thin films of a-GaxTe100−x composed of nanoparticles. Phil. Mag. Lett. 93(7), 207 (2010)

    Google Scholar 

  100. Z.H. Khan, S.A. Khan, N. Salah, A.A. Al-Ghamdi, S. Habib, Electrical transport properties of a-Se87Te13 nanorods. J. Expt. Nanosci. 6, 337 (2010)

    Article  Google Scholar 

  101. S.A. Khan, F.A. Al-Agel, A.S. Faidah, S.J. Yaghmour, A.A. Al-Ghamdi, Characterization of Se88Te12 nanostructured chalcogenide prepared by ball milling. Mater. Lett. 64, 1391 (2010)

    Article  Google Scholar 

  102. A.A. Al-Ghamdi, S.A. Khan, A. Nagat, M.S. Abd El-Sadek, Synthesis and Optical characterization of nanocrystalline cdte thin films. Opt. Laser Technol. 42, 1181 (2010)

    Article  Google Scholar 

  103. S.A. Khan, F.A. Al-Agel, A.A. Al-Ghamdi, Optical characterization of nanocrystalline and chalcogenides. Superlattices Microstruct. 47, 695 (2010)

    Article  Google Scholar 

  104. N. Salah, S.S. Habib, A. Memic, N.D. Alharbi, S.S. Babkair, Z.H. Khan, Syntheses and characterization of thin films of Te94Se6 nanoparticles for semiconducting and optical devices. Thin Solid Films 531, 70 (2013)

    Article  Google Scholar 

  105. F.A. Agel, Optical and structural properties of a-SexTe100−x aligned nanorods. Nanoscale Res. Lett. 8, 520 (2013)

    Article  Google Scholar 

  106. M.A. Alvi, Z.H. Khan, Synthesis and characterization of nanoparticle thin films of a-(PbSe)100−xCdx lead chalcogenides. Nanoscale Res. Lett. 8, 148 (2013)

    Article  Google Scholar 

  107. N. Salah, S.S. Habib, Z.H. Khan, E. Alarfaj, S.A. Khan, Synthesis and characterization of Se35Te65−xgex nanoparticle films and their optical properties. J. Nanomater. 2012, p. 393084 (2012)

    Google Scholar 

  108. Z.H. Khan, M. Husain, Electrical and optical properties of thin film of a-Se70Te30 nanorods. J. Alloy. Compd. 486, 774 (2009)

    Article  Google Scholar 

  109. R.M. Mehra, P.C. Mathur, Analysis of single polaron hopping in ac conductivity of amorphous Ge20SbxSe80−x glasses. Thin Solid Films 170, 15 (1989)

    Article  Google Scholar 

  110. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Clarendon, Oxford, 1979), p. 428

    Google Scholar 

  111. E.A. Davis, Electronic and Structural Properties of Amorphous Semiconductors (Academic Press, London, 1973), p. 425

    Google Scholar 

  112. J. Nishi, S. Morimoto, I. Ingawa, R. Iizuka, T. Yamashita, Recent advances and trends in chalcogenide glass fiber technology: a review. J. Non-Crys. Solids 140, 199 (1992)

    Article  Google Scholar 

  113. J.A. Savage, Infrared Opical Materials and their Anti-reflection Coatings (Adam Hilger, Bristol, 1985)

    Google Scholar 

  114. A.B. Seddon, M.A. Hemingway, Thermal characterisation of infrared-transmitting gesi glasses. J. Non-Crys. Solids 161, 323 (1993)

    Article  Google Scholar 

  115. W. Leung, N.W. Cheung, Studies of Ag photodoping in GexSe1-x glass using microlithography techniques. Appl. Phys. Lett. 46, 481 (1985)

    Article  Google Scholar 

  116. J. Feinleib, J.P. De Neufville, S.C. Moss, S.R. Ovshinsky, Rapid reversible light-induced crystallization of amorphous semiconductors. Appl. Phys. Lett. 18, 254 (1971)

    Article  Google Scholar 

  117. J.P. Deneufville, S.C. Moss, S.R. Ovshinsky, Photostructural transformations in amorphous As2Se3 and As2S3 films. J. Non-Crys. Solids 13, 191 (1973)

    Article  Google Scholar 

  118. B. Singh, S. Rajagopalan, P.K. Bhatt, D.K. Pandey, K.L. Chopra, Photocontraction effect in amorphous in Se1−XGex films. Solid State Commun. 29, 167 (1979)

    Article  Google Scholar 

  119. K.L. Chopra, S. Harshvardhan, S. Rajagopalan, L.K. Malhotra, On the origin of photocontraction effect in amorphous chalcogenide films. Solid State Commun. 40, 387 (1981)

    Article  Google Scholar 

  120. T. Okabe, S. Endu, S. Saito, Simultaneous crystallization of both elements in amorphous GeSb and GeAl eutectic alloys. J. Non-Cryst. Solids 222, 117 (1990)

    Google Scholar 

  121. J.M. Del Pozo, M.P. Herrero, Crystallization behavior of amorphous Ge(1−x)Sb1−x thin-films. J. Non-Crys. Solids 185, 183 (1995)

    Article  Google Scholar 

  122. T. Rajagopalen, G.B. Reddy, Effect of annealing rate on the crystallization process in Ge5Bi18Se77 films. Thin Solid Films 353, 254 (1999)

    Article  Google Scholar 

  123. J.M. Del Pozo, L. Diaz, Optical study of Ge(1−x)Sb1−x crystallization. J. Non-Crys. Solids 243, 45 (1999)

    Article  Google Scholar 

  124. A.H. Moharram, M.S. Rasheedy, A simple method for crystallization kinetics determination and its application to Ge10Te35As55 glass. Phys. Stat. Sol. (A) 169, 33 (1998)

    Article  Google Scholar 

  125. M. Chen, K.A. Rubin, R.W. Barton, Compound materials for reversible, phase-change optical data storage. Appl. Phys. Lett. 9, 502 (1986)

    Article  Google Scholar 

  126. Z.H. Khan, M. Zulfequar, M. Husain, Effect on Sb on Transport Properties of a-Se80−xGa20Sbx thin films. Jpn. J. Appl. Phys. 37, 23 (1998)

    Article  Google Scholar 

  127. M. Abkowitz, G.M.T. Foley, J.M. Morkovics, A.C. Palumbo, Etastable photoenhanced thermal generation in a-SeTe alloys. AIP Conf. Proc. 120, 117 (1984)

    Article  Google Scholar 

  128. N. Afify, Calorimetric study on the crystallization of a Se0.8Te0.2 chalcogenide glass. J. Non-Crys. Solids 142, 247 (1992)

    Article  Google Scholar 

  129. N. Afify, Kinetics study of non-isothermal crystallization in Se0.7Te0.3 chalcogenide glass. J. Non-Crys. Solids 136, 67 (1991)

    Article  Google Scholar 

  130. A.K. Agnihotri, A. Kumar, A.N. Nigam, The X-ray K-absorption studies in glassy Se80Te20 and Se80Te10Sb10. J. Non-Crys. Solids 101, 127 (1988)

    Article  Google Scholar 

  131. V. Damodara Das, P. Jansi Lakshmi, ‘‘Explosive’’ crystallization of amorphous Se80Te20 alloy thin films and oriented growth of crystallites. Phys. Rev. B 37, 720 (1988)

    Article  Google Scholar 

  132. S. Mahadevan, A. Giridhar, A.K. Singh, Calorimetric measurements on As–Sb–Se glasses. J. Non-Cryst. Solids 88, 11 (1986)

    Article  Google Scholar 

  133. H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702 (1957)

    Article  Google Scholar 

  134. M.A. Abdel-Rahim, M. Abu El-Oyoun, A.A. Abu-Sehly, Calorimetric study of the chalcogenide Se72.5Te20Sb7.5 glass. J. Phys. D Appl. Phys. 34, 2541 (2001)

    Article  Google Scholar 

  135. J. Vazquez, P.L. Lopez-Alemany, P. Villares, R. Jimenez-Garay, Generalization of the Avrami equation for the analysis of non-isothermal transformation kinetics. Application to the crystallization of the Cu0.20As0.30Se0.50 alloy. J. Phys. Chem. Solids 61, 493 (2000)

    Article  Google Scholar 

  136. A. El-Salam, M. Abousehly, Activation energy of Se2Ge0.2Sb0.8 chalcogenide glass by differential scanning calorimetry. J Thermal Anal 46, 177–186 (1996)

    Article  Google Scholar 

  137. M.J. Strink, A.M. Zahra, Determination of the transformation exponent s from experiments at constant heating rate. Thermochim. Acta 298, 179 (1997)

    Article  Google Scholar 

  138. W.A. Johnson, K.F. Mehl, Crystallization kinetics of the chalcogenide Bi10Se90 glass. Trans. Inst. Mining Met. Eng. 135, 315 (1981)

    Google Scholar 

  139. M. Avrami, Interfacial electrochemistry: theory: experiment, and applications. J. Chem. Phys. 7, 103 (1939)

    Article  Google Scholar 

  140. M. Avrami, Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 212 (1940)

    Article  Google Scholar 

  141. M. Avrami, Kinetics of phase change. III. granulation, phase change, and microstructure. J Chem. Phys 9, 177 (1941)

    Article  Google Scholar 

  142. F. Liu, F. Sommer, E.J. Mittemeijerr, An analytical model for isothermal and isochronal transformation kinetics. J. Mater. Sci. 39, 1621 (2004)

    Article  Google Scholar 

  143. A.A. Abou-Sehly, S.N. Alamri, A.A. Joraid, Measurements of DSC isothermal crystallization kinetics in amorphous selenium bulk samples. J. Alloys Compd. 476, 348 (2009)

    Article  Google Scholar 

  144. S. Vyazovkin, On the phenomenon of variable activation energy for condensed phase reactions. New J. Chem. 24, 913 (2000)

    Article  Google Scholar 

  145. K. Matusita, T. Konatsu, R. Yokota, Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J. Mater. Sci. 19, 291 (1984)

    Article  Google Scholar 

  146. T. Ozawa, A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn 38, 188 (1965)

    Article  Google Scholar 

  147. C.T. Moynihan, A.J. Easteal, J. Wilder, J. Tucker, Dependence of the fictive temperature of glass on cooling rate. J. Phys. Chem. 78, 2673 (1974)

    Article  Google Scholar 

  148. F.A. Al-Agel, E.A. Al-Arfaj, F.M. Al-Marzouki, Shamshad A. Khan, A.A. Al-Ghamdi, Study of phase separation in Ga25Se75−xTex chalcogenide thin films. Prog. Nat. Sci. Mater. Int. 23, 139 (2013)

    Article  Google Scholar 

  149. F.A. Al-Agel, E.A. Al-Arfaj, F.M. Al-Marzouki, S.A. Khan, Z.H. Khan, A.A. Al-Ghamdi, Phase transformation kinetics and optical properties of Ga–Se–Sb phase-change thin films. Mater. Sci. Semicond. Process. 16, 884 (2013)

    Article  Google Scholar 

  150. F.A. Al-Agel, Crystallization kinetics and effect of thermal annealing on optical constants in a-Ge25Se75−x te x glasses. J. Alloys Compd. 568, 92 (2013)

    Article  Google Scholar 

  151. Zishan H. Khan, N. Salah, Sami Habib, S.A. Khan, Kinetics of non-isothermal crystallization in Ga15Se76Pb9 chalcogenide glasses by differential scanning calorimeter (DSC). Chalcogenide Lett. 8, 615 (2011)

    Google Scholar 

  152. Shamshad A. Khan, J.K. Lal, F.A. Al-Agel, M.A. Alvi, Non-isothermal crystallization in Ga–Se–Ag chalcogenide glass by differential scanning calorimetry. J. Alloy. Compd. 554, 227 (2013)

    Article  Google Scholar 

  153. Z.H. Khan, S.A. Khan, M.A. Alvi, Study of glass transition and crystallization behaviour in Ga15Se80−xpbx (0 ≤ x ≤ 6). Acta Phys. Pol. A, 201, 123(1)

    Google Scholar 

  154. A.S. Farid, H.E. Atiya, Glass transition and crystallization study of Te additive Se Bi chalcogenide glass. J. Non-Cryst. Solids 408, 123 (2015)

    Article  Google Scholar 

  155. R. Svoboda, P. Bezdička, J. Gutwirth, J. Málek, Crystallization processes in Ge2Sb2Se4Te glass. Maters. Res. Bull. 61, 207 (2015)

    Article  Google Scholar 

  156. A. Dahshan, K.A. Aly, Characterization of new quaternary Ge20Se60Sb20−xAgx (0 ≤ x ≤ 20 at.%) glasses. J. Non-Cryst. Solids 408, 62 (2015)

    Article  Google Scholar 

  157. M.I. Abd-Elrahman, R.M. Khafagy, S.A. Zaki, M.M. Hafiz, Characterization of optical constants of Se30Te70 thin film: effect of the thickness. Thermochim. Acta 575, 285 (2014)

    Article  Google Scholar 

  158. O.A. Lafi, M.M.A. Imran, N.I. Abu-Shaweesh, F.M. Al-Kurdi, I.K. Khatatbeh, Effect of chemical ordering on the crystallization behavior of Se90Te10−xSnx (x = 2, 4, 6, and 8) chalcogenide glasses. J. Phys. Chem. Solids 75(6), 790 (2014)

    Article  Google Scholar 

  159. B. Bhoi, V. Srinivas, V. Singh, Evolution of microstructure and magnetic properties of nanocrystalline Fe70−xCuxCo30 alloy prepared by mechanical alloying. J. Alloy. Compd. 496, 423 (2010)

    Article  Google Scholar 

  160. F.A. Al-Agel, Z.H. Khan, F.M. Al-Marzouki, S.A. Khan, A.A. Al-Ghamdi, Kinetics of phase transformation in nanostructured GaSeTe glasses. J. Nanosci. Nanotechnol. 13, 2001 (2013)

    Article  Google Scholar 

  161. M. Abu El-Oyoun, DSC studies on the transformation kinetics of two separated crystallization peaks of Si12.5Te87.5 chalcogenide glass: an application of the theoretical method developed and isoconversional method. Mater. Chem. Phys. 131(1–2), 495 (2011)

    Article  Google Scholar 

  162. B.S. Patial, N. Thakur, S.K. Tripathi, On the crystallization kinetics of In additive Se–Te chalcogenide glasses. Thermochim. Acta 513(1–2), 1 (2011)

    Article  Google Scholar 

  163. S. Kumar, K. Singh, The effect of Indium additives on crystallization kinetics and thermal stability of Se–Te–Sn chalcogenide glasses. Phys. B 406(8), 1519 (2011)

    Article  Google Scholar 

  164. A.F. Kozmidis-Petrović, S.R. Lukić, G.R. Štrbac, Calculation of non-isothermal crystallization parameters for the Cu15 (As2Se3)85 metal-chalcogenide glass. J. Non-Cryst. Solids 356(41–42), 2151 (2010)

    Article  Google Scholar 

  165. O.A. Lafi, Glass transition kinetics and crystallization mechanism in Se90Cd8Bi2 and Se90Cd6Bi4 chalcogenide glasses. J. Alloy. Compd. 519, 123 (2012)

    Article  Google Scholar 

  166. M. Abu El-Oyoun, Evaluation of the transformation kinetics of Ga7.5Se92.5 chalcogenide glass using the theoretical method developed and isoconversional analyses. J. Alloy. Compd. 507(1), 6 (2010)

    Article  Google Scholar 

  167. F.A. Al-Agel, S.A. Khan, E.A. Al-Arfaj, A.A. Al-Ghamdi, Kinetics of non-isothermal crystallization and glass transition phenomena in Ga10Se87Pb3 and Ga10Se84Pb6 chalcogenide glasses by DSC. J. Non-Cryst. Solids 358, 564–570 (2012)

    Article  Google Scholar 

  168. A.M. Abd Elnaeim, K.A. Aly, N. Afify, A.M. Abousehlly, Glass transition and crystallization kinetics of Inx(Se0.75Te0.25)100−x chalcogenide glasses. J. Alloy. Compd. 491(1–2), 85 (2010)

    Article  Google Scholar 

  169. M.M.A. Imran, Thermal characterization of Se85−xSb15Snx (10 ≤ x ≤ 13) chalcogenide glasses. Phys. B 406(22), 4289 (2011)

    Article  Google Scholar 

  170. M.M. Abd El-Raheem, H.M. Ali, Crystallization kinetics determination of Pb15Ge27Se58 chalcogenide glass by using the various heating rates (VHR) method. J. Non-Cryst. Solids 356(2), 77 (2010)

    Article  Google Scholar 

  171. C.M. Muiva, S.T. Sathiaraj, J.M. Mwabora, Crystallization kinetics, glass forming ability and thermal stability in some glassy Se100−xInx chalcogenide alloys. J. Non-Cryst. Solids 357(22–23), 3726 (2011)

    Article  Google Scholar 

  172. A.A. Al-Ghamdi, M.A. Alvi, S.A. Khan, Non-isothermal crystallization kinetic study on Ga15Se85−xAgx chalcogenide glasses by using differential scanning calorimetry. J. Alloy. Compd. 509(5), 2087 (2011)

    Article  Google Scholar 

  173. A.S. Soltan, A study of DSC non-isothermal pre-crystallization kinetics of Pb10Se90 glass using isoconversional kinetic analysis. Phys. B 405(3), 965 (2010)

    Article  MathSciNet  Google Scholar 

  174. F. Abdel-Wahab, Observation of phase separation in some Se–Te–Sn chalcogenide glasses. Physica B 406(5), 1053 (2011)

    Article  Google Scholar 

  175. M. Abu El-Oyoun, The effect of addition of gallium on the thermal stability and crystallization kinetic parameters of GaxSe100−x glass system. J. Non-Cryst. Solids 357(7), 1729 (2011)

    Article  Google Scholar 

  176. M. Shapaan, E.R. Shaaban, Studying the crystallization behavior of the Se85S10Sb5 chalcogenide semiconducting glass by DSC and X-ray diffraction. J. Phys. Chem. Solids 71(9), 1301 (2010)

    Article  Google Scholar 

  177. S. Kumar, K. Singh, Glass transition, thermal stability and glass-forming tendency of Se90−xTe5Sn5Inx multicomponent chalcogenide glasses. Thermochim. Acta 528, 32 (2012)

    Article  Google Scholar 

  178. M. Abu El-Oyoun, The effect of addition of gallium on the thermal stability and crystallization kinetic parameters of GaxSe100−x glass system. Phys. B 406, 125 (2011)

    Article  Google Scholar 

  179. A.A. Abu-Sehly, Kinetics of the glass transition in As22S78 chalcogenide glass: activation energy and fragility index. Mater. Chem. Phys. 125(3), 672 (2011)

    Article  Google Scholar 

  180. M.M.A. Imran, Crystallization kinetics, glass transition kinetics, and thermal stability of Se70−xGa30Inx (x = 5, 10, 15, and 20) semiconducting glasses. Phys. B 406(3), 482 (2011)

    Article  Google Scholar 

  181. S. Kumar, K. Singh, Composition dependence UV-visible and MID-FTIR properties of Se98−xZn2Inx (X = 0, 2, 4, 6 and 10) chalcogenide glasses. Phys. B 405(15), 3135 (2010)

    Article  Google Scholar 

  182. J.C. Qiao, J.M. Pelletier, Isochronal and isothermal crystallization in Zr55Cu30Ni5Al10 bulk metallic glass. Trans. Nonferrous Met. Soc. China 22, 577 (2012)

    Article  Google Scholar 

  183. T. Zhang, Z. Song, B. Liu, S.F. Bomy, Investigation of phase change Si2Sb2Te5 material and its application in chalcogenide random access memory. Chem. Solid-State Electron. 51(6), 950 (2007)

    Article  Google Scholar 

  184. Y. Jialin, B. Liu, T. Zhang, Z. Song, S. Feng, B. Chen, Effects of Ge doping on the properties of Sb2Te3 phase-change thin films. Appl. Surf. Sci. 253(14), 6125 (2007)

    Article  Google Scholar 

  185. A.V. Kolobov, P. Fons, M. Krbal, J. Tominaga, A thermal component of amorphisation in phase-change alloys and chalcogenide glasses. J. Non-Cryst. Solids 17, 358 (2012). doi:10.1016/j.jnoncrysol.2011.10.024

    Google Scholar 

  186. M.H.R. Lankhorst, Modelling glass transition temperatures of chalcogenide glasses. Applied to phase-change optical recording materials. J. Non-Cryst. Solids 297(2–3), 210 (2002)

    Article  Google Scholar 

  187. A. Abrutis, V. Plausinaitiene, M. Skapas, C. Wiemer, O. Salicio, M. Longo, A. Pirovano, J. Siegel, W. Gawelda, S. Rushworth, C. Giesen, Chemical vapor deposition of chalcogenide materials for phase-change memories. Microelectron. Eng. 85(12), 2338 (2008)

    Article  Google Scholar 

  188. K. Takata, H. Maekawa, H. Endo, Thermal strain imaging of chalcogenide in a phase change memory. Cur. App. Phys. 11(3), 731 (2011)

    Article  Google Scholar 

  189. N. Mehta, A. Kumar, Observation of phase separation in some Se–Te–Ag chalcogenide glasses. Mater. Chem. Phys. 96(1), 73 (2006)

    Article  Google Scholar 

  190. N.S. Saxena, Phase transformation kinetics and related thermodynamic and optical properties in chalcogenide glasses. J. Non-Cryst. Solids 345–346, 161 (2004)

    Article  Google Scholar 

  191. M.M. Hafiz, O. El-Shazly, N. Kinawy, Reversible phase change in BiXSe100−X chalcogenide thin films for using as optical recording medium. Appl. Surf. Sci. 171(3–4), 231 (2001)

    Article  Google Scholar 

  192. M.N. Kozicki, M. Mitkova, J. Zhu, M. Park, Nanoscale phase separation in Ag–Ge–Se glasses. Eng. 63(1–3), 155 (2002)

    Google Scholar 

  193. S. Kumar, D. Singh, S. Sandhu, R. Thangaraj, Characterization of phase transition in silver photo-diffused Ge2Sb2Te5 thin films. Vacuum 86(10), 1443 (2012)

    Article  Google Scholar 

  194. A.L. Lacaita, D. Ielmini, D. Mantegazza, Status and challenges of phase change memory modeling. Solid-State Elect. 52, 1443 (2008)

    Article  Google Scholar 

  195. H. Fritzsche, Why are chalcogenide glasses the materials of choice for Ovonic switching devices? J. Phys. Chem. Solids 68, 878 (2007)

    Article  Google Scholar 

  196. Z.H. Khan, Glass transition kinetics in ball milled amorphous GaxTe100−x nanoparticles. J. Non-Cryst. Solids 380, 109–113 (2013)

    Article  Google Scholar 

  197. Z.H. Khan, A.A. Al-Ghamdi, F.A. Al-Agel, Crystallization kinetics in as-synthesis high yield of a-Se100−xTex nanorods. Mater. Chem. Phys. 134, 260 (2012)

    Article  Google Scholar 

  198. Z.H. Khan, Non-isothermal crystallization in amorphous GaxSe100−x nanorods. Jpn. J. Appl. Phys. 50, 105603 (2011)

    Google Scholar 

  199. Z.H. Khan, Glass transition kinetics of a-SexTe100−x nanoparticles. Sci. Adv. Maters. 4, 1 (2012)

    Article  Google Scholar 

  200. S. Lay, Tech. Dig. Int. Electron Devices Meet p. 255 (2003)

    Google Scholar 

  201. D.J. Gravesteijn, C.J. van der Poel, P.M.L.O. Scholte, C.M.J. van Uijen, Phase change optical recording. Philips Tech. Rev. 44, 250 (1989)

    Google Scholar 

  202. N. Yamada, Erasable phase-change optical materials. MRS Bull. 21, 48 (1996)

    Google Scholar 

  203. H.J. Borg, R. Van Woudenberg, Trends in optical recording. J. Magn. Magn. Mater. 193, 521 (1999)

    Article  Google Scholar 

  204. S. Ovshinsky, Amorphous materials—the key to new devices. IEEE Proc. CAS 1, 33 (1998)

    Google Scholar 

  205. P. Boolchand, D.G. Georgiev, T. Qu, F. Wang, L. Chai, Nanoscale phase separation effects near r = 2.4 and 2.67, and rigidity transitions in chalcogenide glasses. C.R. Chem. 5, 713 (2002)

    Article  Google Scholar 

  206. N. Yamada, E. Ohno, K. Nishiuchi, M. Takao, Rapid-phase transitions of GeTe–Sb2, Te3, pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849 (1991)

    Article  Google Scholar 

  207. J.H. Coombs, A.P.J.M. Jongenelis, W. Van Es-Spiekman, B.A.J. Jacobs, Laser-induced crystallization phenomena in GeTe-based alloys. … of nucleation and growth. J. Appl. Phys. 78, 4906 (1995)

    Article  Google Scholar 

  208. C. Peng, L. Cheng, M. Mansuripur, Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media. J. Appl. Phys. 82, 4183 (1997)

    Article  Google Scholar 

  209. K. Nakayama, K. Kojima, F. Hayakawa, Y. Imai, A. Kitagawa, M. Suzuki, Reversible and irreversible … Based on phase transitions in chalcogenide thin films. Jpn. J. Appl. Phys 39, 6157 (2000)

    Article  Google Scholar 

  210. S. Lai, T. Lowrey, Tech. Dig. Int. Electron Dev. Meeting 1, 803 (2001)

    Google Scholar 

  211. S.M. Yoon, N.Y. Lee, S.O. Ryu, K.J. Chio, Y.S. Park, S.Y. Lee, B.G. Yu, M.J. Kang, S.Y. Chio, M. Wuttig, Se-based phase-change memory device with lower power and higher speed operations. IEEE Electron Device Lett. 27, 445 (2006)

    Article  Google Scholar 

  212. P. Arun, A.G. Vedeshwar, Mater. Res. Bull. 34, 203 (1999)

    Article  Google Scholar 

  213. H. Tashiro, M. Harigaya, Y. Kageyama, K. Ito, M. Shinotsuka, K. Tani, A. Watada, N. Yiwata, Y. Nakata, S. Emura, Structural Analysis of Ag–In–Sb–Te phase-change material. Jpn. J. Appl. Phys. 41, 3758 (2002)

    Article  Google Scholar 

  214. J. Li, F. Gan, Optical properties of Ag8In14Sb55Te23 phase-change films. Thin Solid Films 40, 232 (2002)

    Article  Google Scholar 

  215. G.A. Prinz, Magnetoelectronics. Science 282, 1660 (1998)

    Article  Google Scholar 

  216. G.R. Fox, F. Chu, T. Davenport, Current and future ferroelectric nonvolatile memory technology. J. Vac. Sci. Technol., B 19, 1967 (2001)

    Article  Google Scholar 

  217. F. Pellizzer et al., Phase-change memory technology for embedded applications. in Proceedings of the IEEE Symposium on VLSI Technology, Digest of Technical Papers (unpublished), vol. 3.1, p. 18 (2004)

    Google Scholar 

  218. S.H. Lee et al., in Proceeding of the IEEE Symposium on VLSI Technology, Digest of Technical Papers (unpublished), p. 20 (2004)

    Google Scholar 

  219. K.L. Chopra, Dielectric properties of zns films. J. Appl. Phys. 36, 184 (1965)

    Article  Google Scholar 

  220. A. Beck, J.G. Bednorz, Ch. Gerber, C. Rossel, D. Widmer, Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77, 139 (2000)

    Article  Google Scholar 

  221. A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85, 4073 (2004)

    Article  Google Scholar 

  222. X. Chen, N. Wu, J. Strozier, A. Ignatiev, Spatially extended nature of resistance switching in perovskite oxide thin films. Appl. Phys. Lett. 89, 063507 (2006)

    Article  Google Scholar 

  223. A. Ignatiev, N.J. Wu, X. Chen, S.Q. Liu, C. Papagianni, J. Strozier, Resistance switching in perovskite thin films. Phys. Status Solidi B 243, 2089 (2006)

    Article  Google Scholar 

  224. K. Szot, R. Dittmann, W. Speier, R. Waser, Nanoscale resistive switching in SrTio3 thin films. Phys. Status Solidi (RRL) 1, 86 (2007)

    Article  Google Scholar 

  225. Y. Hirose, H. Hirose, Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films. J. Appl. Phys. 47, 2767 (1976)

    Article  Google Scholar 

  226. K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, Quantized conductance atomic switch. Nature 433, 47 (2005)

    Article  Google Scholar 

  227. T. Sakamoto, NEC J. Adv. Tech. 2, 260 (2005)

    Google Scholar 

  228. M.N. Kozicki, M. Park, M. Mitkova, Nanoscale memory elements based on solid-state electrolytes. IEEE Trans. Nanotechnol. 4, 331 (2005)

    Article  Google Scholar 

  229. C.J. Kim, S.G. Yoon, J. Vac. Sci. Technol., B 24, 721 (2006)

    Article  Google Scholar 

  230. Y. Yin, H. Sone, S. Hosaka, Memory effect in metal–chalcogenide–metal structures for ultrahigh-density nonvolatile memories. Jpn. J. Appl. Phys. 1(45), 4951 (2006)

    Article  Google Scholar 

  231. J.F. Gibbons, W.E. Beadle, Switching properties of thin Nio films. Solid-State Electron. 7, 785 (1964)

    Article  Google Scholar 

  232. W.R. Hiatt, T.W. Hickmott, Appl. Phys. Lett. 6, 106 (1965)

    Article  Google Scholar 

  233. F. Argall, Switching phenomena in titanium oxide thin films. Solid-State Electron. 11, 535 (1968)

    Article  Google Scholar 

  234. T.W. Hickmott, J. Vac. Sci. Technol. 6, 828 (1969)

    Article  Google Scholar 

  235. J.C. Bruyere, B.K. Chakraverty, Switching and negative resistance in thin films of nickel oxide. Appl. Phys. Lett. 16, 40 (1970)

    Article  Google Scholar 

  236. Y. Ogimoto, Y. Tamai, M. Kawasaki, Y. Tokura, Resistance switching memory device with a nanoscale confined current path. Appl. Phys. Lett. 90, 143515 (2007)

    Article  Google Scholar 

  237. Y. Watanabe, J.G. Bednorz, A. Bietsch, Ch. Gerber, D. Widmer, A. Beck, Appl. Phys. Lett. 78, 3738 (2001)

    Article  Google Scholar 

  238. C.J. Kim, I.W. Chen, Resistance switching of Al/(Pr, Ca)Mno3 thin films. Jpn. J. Appl. Phys. Part 2 44, 525 (2005)

    Article  Google Scholar 

  239. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single crystalline SrTiO3. Nat. Mater. 5, 312 (2006)

    Article  Google Scholar 

  240. S.Q. Liu, N.J. Wu, A. Ignatiev, Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749 (2000)

    Article  Google Scholar 

  241. W.W. Zhuang et al., Tech. Dig.—Int. Electron Devices Meet 193 (2002)

    Google Scholar 

  242. K. Terabe, T. Nakayama, T. Hasegawa, M. Aono, Formation and disappearance of a nanoscale silver cluster realized by solid electrochemical reaction. J. Appl. Phys. 91, 10110 (2002)

    Article  Google Scholar 

  243. M.N. Kozicki, M. Mitkova, M. Park, M. Balakrishnan, C. Gopalan, Information storage using nanoscale electrodeposition of metal in solid electrolytes. Superlattices Microstruct. 34, 459 (2003)

    Article  Google Scholar 

  244. A.L. Greer, N. Mathur, Changing face of the chameleon. Nature (News and Views) 437, 1246 (2005)

    Article  Google Scholar 

  245. S.K.M. Dehaldhar, S.P. Sengupta, Ind. J. Pure Appl. Phys. 17, 422 (1979)

    Google Scholar 

  246. W. Beyer, H. Mell, J. Phys. Status Solidi B 45, 153 (1971)

    Article  Google Scholar 

  247. N. Klein, Switching and breakdown in films. Thin Solid Films 7, 149 (1971)

    Article  Google Scholar 

  248. S.R. Ovshinsky, in Disordered Materials: Science and Technology, ed. by D. Alder (Amorphous Institute Press, New York, 1982)

    Google Scholar 

  249. K.W. Boer, S.R. Ovshinsky, Electrothermal Initiation of an electronic switching mechanism in semiconducting glasses. J. Appl. Phys. 41, 2675 (1970)

    Article  Google Scholar 

  250. D. Alder, M.S. Shur, M. Silver, S.R. Ovshinsky, Threshold switching in chalcogenide-glass thin films. J. Appl. Phys. 51, 3289 (1980)

    Article  Google Scholar 

  251. K.S. Hong, R.F. Speyer, J. Non-Cryst. Solids 116, 191 (1990)

    Article  Google Scholar 

  252. T. Ohta, S.R. Ovshinsky, in Photo-Induced Metastability in Amorphous Semiconductors, (Chapter 18), ed. by A.V. Kolobov (Wiley, Berlin, 2003), pp. 310–326

    Chapter  Google Scholar 

  253. S.R. Ovshinsky, D. Strand, J. Optoelectron. Adv. Mater. 7, 1679 (2005)

    Google Scholar 

  254. D. Adler, H.K. Henisch, N.F. Mott, Rev. Mod. Phys. 50, 209 (1978)

    Article  Google Scholar 

  255. T. Lowrey, S. Hudgens, W. Czubatyj, C. Dennison, S. Kostylev, G. Wicker, Mater. Res. Soc. Symp. Proc. 803, 101 (2004)

    Google Scholar 

  256. R. Aravinda Narayanan, S. Asokan, A. Kumar, Influence of chemical disorder on electrical switching in chalcogenide glasses. Phys. Rev. B 63, 092203 (2001)

    Article  Google Scholar 

  257. S.R. Ovshinsky, H. Fritzsche, Amorphous semiconductors for switching, memory, and imaging applications. IEEE Trans. Elect. Dev. 20(2), 91 (1973)

    Article  Google Scholar 

  258. H. Fritzsche, Electronic phenomena in amorphous semiconductors. Annu. Rev. Mater. Sci. 2, 697 (1972)

    Article  Google Scholar 

  259. S. Tyson, G. Wicker, T. Lowrey, S. Hudgens, K. Hunt, Nonvolatile, high density, high performance phase change memory. in Proceedings 2000 IEEE Aerospace Conference, Big Sky MT, Mar 2000, p.18

    Google Scholar 

  260. A. Pirovano, A.L. Lacaita, A. Benvenuti, Electronic switching in phase-change memories. IEEE Trans. Electron Devices 53, 452 (2004)

    Article  Google Scholar 

  261. S.R. Ovshinsky, S.J. Hudgens, W. Czubatyj, D.A. Strand, G.C. Wicker, Electrically erasable memory elements having improved set resistance stability. US Patent 5, p. 414, 1995

    Google Scholar 

  262. J. Hernandez, B. Chao, D. Strand, S.R. Ovshinsky, D. Pawlik, P. Gasiorowski, The relationship between crystal structure and performance as 58 optical recording media in Te–Ge–Sb thin films. Appl. Phys. Comm. 11(4), 557 (1992)

    Google Scholar 

  263. D. Adler, B.H. Schwartz, M.C. Steele (eds.), Physical Properties of Amorphous Materials (Plenum, New York, 1985)

    Google Scholar 

  264. A.D. Pearson, Memory and switching in semiconducting glasses: a review. J. Non-Cryst. Solids 2, 1 (1970)

    Article  Google Scholar 

  265. C. Mattheck, Phys. Stat. Sol. A 11, 117 (1971)

    Article  Google Scholar 

  266. H.K. Henisch, W.R. Smith, Switching in organic polymer films. Appl. Phys. Lett. 24, 589 (1974)

    Article  Google Scholar 

  267. H.K. Henisch, E.A. Fagen, S.R. Ovshinsky, A qualitative theory of electrical switching processes in monostable amorphous structures. J. Non-Cryst. Solids 4, 538 (1970)

    Article  Google Scholar 

  268. N.F. Mott, Conduction in non-crystalline systems VII. Non-ohmic behaviour and switching. Philos. Mag. 24, 911 (1971)

    Article  Google Scholar 

  269. A. Alegria, A. Arruabarrena, F. Sanz, J. Non-Cryst, Solids 58, 17 (1983)

    Google Scholar 

  270. S. Lukić, D. Petrović, Complex noncrystaline chalcogenides (University of Novi Sad,Faculty of Sciences, Novi Sad, 2002), p. 8

    Google Scholar 

  271. M. Popescu, Disordered Chalcogenide Optoelectronic Materials: Phenomena and Applications. J. Optoelectron. Adv. Mater. 7, 2189 (2005)

    Google Scholar 

  272. B. Stričić, M. Živanov, M. Slankamenac, 8th International Symposium Young People and Multidisciplinary Research. Timisoara, Romania 2, 257 (2006)

    Google Scholar 

  273. M. Slankamenac, M. Živanov, Research people and actual tasks on multidisciplinary sciences. Loznec, Bulgaria 2, 304 (2007)

    Google Scholar 

  274. T. Ivetić, M.V. Nikolić, M. Slankamenac, M. Živanov, D. Minić, P.M. Nikolić, M.M. Ristić, Influence of Bi2O3 on microstructure and electrical properties of ZnO–SnO2 ceramics. Sci. Sinter. 39, 229 (2007)

    Article  Google Scholar 

  275. S.R. Lukić, D.M. Petrović, A.F. Petrović, Effect of copper on conductivity of amorphous asse yi z. J. Non-Cryst. Solids 75, 241–245 (1998)

    Google Scholar 

  276. M. Slankamenac, S.R. Lukić, INDEL. Banja Luka 6, 20 (2006)

    Google Scholar 

  277. S. Prakash, S. Asokan, D.B. Ghare, Electrical switching behaviour of semiconducting aluminium telluride glasses. Semicond. Sci. Technol. 9, 1484 (1994)

    Article  Google Scholar 

  278. S.S.K. Titus, R. Chatterjee, S. Asokan, A. Kumar, Electrical switching and short-range order in As–Te glasses. Phys. Rev. B 48, 1650 (1993)

    Article  Google Scholar 

  279. N.A. Hegab, M. Fadel, K.A. Sharaf, Switching effects InSe90−xSbxBi10 thin-films. Vacuum 46, 1351 (1995)

    Article  Google Scholar 

  280. M.F. Kotkata, M.A. Afifi, H.H. Habib, N.A. Hegab, M.M. Abdel-Aziz, Memory switching in amorphous GeSeTe chalcogenide semiconductor films. Thin Solid Films 240, 143 (1994)

    Article  Google Scholar 

  281. R. Aravinda, S. Narayanan, A.K. Asokan, Influence of chemical disorder on electrical switching in chalcogenide glasses. Phys. Rev. B 63, 2203 (2001)

    Google Scholar 

  282. C. Das, R. Lokesh, G.M. Rao, S. Asokan, Electrical switching behavior of amorphous Al23Te77 thin film sample. J. Non-Cryst. Solids 356, 2203 (2010)

    Article  Google Scholar 

  283. H.E. Atyia, A.E. Bekheet, Switching phenomenon and optical properties of Se85Te10Bi5 films. Phys. B 403, 3130 (2008)

    Article  Google Scholar 

  284. K.S. Bang, S.-Y. Lee, 한국진공학회지 23.1, 34–39 (2014)

    Google Scholar 

  285. M.J. Lee, D. Lee, S.-H. Cho, J.-H. Hur, S.-M. Lee, D.H. Seo, D.-S. Kim, M.-S. Yang, S. Lee, E. Hwang, Nat. Commun. 4, 3629 (2013)

    Google Scholar 

  286. C. Das, G.M. Rao, S. Asokan, Electrical switching behavior of amorphous Ge15Te85−xSix thin films with phase change memory applications. Mater. Res. Bull. 49, 388 (2014)

    Article  Google Scholar 

  287. B.J. Madhu a, H.S. Jayanna a, S. Asokan, The composition dependence of electrical switching behavior of Ge7Se93−xSbx glasses. J. Non-Cryst. Solids 355, 2630 (2009)

    Article  Google Scholar 

  288. S.R. Gunti, S. Asokan, Thermal and electrical switching studies on Ge20Se80−xBix (1 ≤ x ≤ 13) ternary chalcogenide glassy system. J. Non-Cryst. Solids 356, 1637 (2010)

    Article  Google Scholar 

  289. B.J. Madhu, H.S. Jayanna, S. Asokan, The composition dependence of electrical switching behavior of Ge7Se93−xSbx glasses. J. Non-Cryst. Solids 355, 459 (2009)

    Article  Google Scholar 

  290. S.B.B. Prashanth, S. Asokan, Effect of antimony addition on the thermal and electrical-switching behavior of bulk Se–Te glasses. J. Non-Cryst. Solids 355, 164–368 (2009)

    Article  Google Scholar 

  291. R.T.A. Kumar, C. Das, P.C. Lekha, S. Asokan, C. Sanjeeviraja, P. Padiyan, Enhancement in threshold voltage with thickness in memory switch fabricated using GeSe1.5S0.5 thin films. J. Alloys Compd. 615, 629–635 (2014)

    Article  Google Scholar 

  292. G. Sreevidya Varma, D.V.S. Muthu, A.K. Sood, S. Asokan, Electrical switching, SET-RESET, and Raman scattering studies on Ge15Te80−xIn5Agx glasses. J. Appl. Phys. 115, 164505 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zishan H. Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Khan, Z.H., Khan, S.A., Agel, F.A., Salah, N.A., Husain, M. (2016). Chalcogenides to Nanochalcogenides; Exploring Possibilities for Future R&D. In: Husain, M., Khan, Z. (eds) Advances in Nanomaterials. Advanced Structured Materials, vol 79. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2668-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2668-0_4

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2666-6

  • Online ISBN: 978-81-322-2668-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics