Skip to main content

Superwicking Surfaces Produced by Femtosecond Laser

  • Chapter
  • First Online:
Advanced Lasers

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 193))

Abstract

Modifying material wetting properties using femtosecond laser surface nano/microstructuring has recently become an actively studied area due to many promising applications. In this chapter, we overview briefly the newly emerged femtosecond laser-based approaches for modifying the wetting properties of materials and describe recent developments in producing a novel type of surface structures that transform a regular surface of solids to superwicking. This novel type of the surface structure is an array of parallel nanostructured microgrooves. In a gravity defying way, water runs vertically uphill on the created superwicking surfaces. The fast self-propelling motion of the liquid is due to strong capillary force generated in the surface structure. The unique wetting and wicking properties of these novel materials may find a wide range of applications in nano/microfluidics, optofluidics, lab-on-chip technology, fluidic microreactors, chemical sensors, biomedicine, and heat transfer devices (e.g., heat pipes for cooling of electronic devices).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barthlott, W., Neinhuis, C.: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1), 1–8 (1997)

    Article  Google Scholar 

  2. Otten, A., Herminghaus, S.: How plants keep dry: a physicist’s point of view. Langmuir 20(6), 2405–2408 (2004)

    Article  Google Scholar 

  3. Gu, Z.Z., Uetsuka, H., Takahashi, K., Nakajima, R., Onishi, H., Fujishima, A., Sato, O.: Structural color and the lotus effect. Angew. Chem. Int. Ed. 42(8), 894–897 (2003)

    Article  Google Scholar 

  4. Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28(8), 988–994 (1936)

    Article  Google Scholar 

  5. Cassie A.B.D., Baxter S.: Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)

    Article  Google Scholar 

  6. Bico, J., Tordeux, C., Quere, D.: Rough wetting. Europhys. Lett. 55(2), 214–220 (2001)

    Article  ADS  Google Scholar 

  7. McHale, G., Shirtcliffe, N.J., Aqil, S., Perry, C.C., Newton, M.I.: Topography driven spreading. Phys. Rev. Lett. 93(3), 036102 (2004)

    Google Scholar 

  8. Courbin, L., Deniel, E., Dressaire, E., Roper, M., Ajdari, A., Stone, H.A.: Imbibition by polygonal spreading on microdecorated surfaces. Nat. Mater. 6, 661–664 (2007)

    Article  ADS  Google Scholar 

  9. Martines, E., Seunarine, K., Morgan, H., Gadegaard, N., Wilkinson, C.D.W., Riehle, M.O.: Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Lett. 5(10), 2097–2103 (2005)

    Article  ADS  Google Scholar 

  10. Wang, Q., Zhang, B.W., Qu, M.N., Zhang, J.Y., He, D.Y.: Fabrication of superhydrophobic surfaces on engineering material surfaces with stearic acid. Appl. Surf. Sci. 254(7), 2009–2012 (2008)

    Article  ADS  Google Scholar 

  11. Woodward, I., Schofield, W.C.E., Roucoules, V., Badyal, J.P.S.: Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films. Langmuir. 19(8), 3432–3438 (2003)

    Article  Google Scholar 

  12. Baldacchini, T., Carey, J.E., Zhou, M., Mazur, E.: Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser. Langmuir. 22(11), 4917–4919 (2006)

    Article  Google Scholar 

  13. Zorba, V., Persano, L., Pisignano, D., Athanassiou, A., Stratakis, E., Cingolani, R., Tzanetakis, P., Fotakis, C.: Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation. Nanotechnology. 17(13), 3234–3238 (2006)

    Article  ADS  Google Scholar 

  14. Fadeeva, E., Schlie, S., Koch, J., Chichkov, B.N., Vorobyev, A.Y., Guo, C.: Femtosecond laser-induced surface structures on platinum and their effects on hydrophobicity and fibroblast cell proliferation. In: Mittal, K.L. (ed.) Contact Angle, Wettability And Adhesion, vol. 6, pp. 163–171. VSP/Brill, Leiden (2009)

    Chapter  Google Scholar 

  15. Kietzig, A.M., Hatzikiriakos, S.G., Englezos, P.: Patterned superhydrophobic metallic surfaces. Langmuir. 25(8) 4821–4827 (2009)

    Article  Google Scholar 

  16. Vorobyev, A.Y., Guo, C.: Metal pumps liquid uphill. Appl. Phys. Lett. 94(22), 224102 (2009).

    Article  ADS  Google Scholar 

  17. Kruse, C., Anderson, T., Wilson, C., Zuhlke, C., Alexander, D., Gogos, G., Ndao, S.: Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces. Langmuir. 29(31), 9798–9806 (2013)

    Article  Google Scholar 

  18. Papadopoulou, E.L., Barberoglou, M., Zorba, V., Manousaki, A., Pagkozidis, A., Stratakis, E., Fotakis, C.: Reversible photoinduced transition of hierarchical ZnO structures. J. Phys. Chem. C 113(7), 2891–2895 (2009)

    Article  Google Scholar 

  19. Stratakis, E., Ranella, A., Fotakis, C.: Biomimetic micro/nanostructured functional surfaces for microfluidic and tissue engineering applications. Biomicrofluidics. 5(1), 013411 (2011)

    Article  Google Scholar 

  20. Wang, Z.K., Zheng, H.Y., Lim, C. P., Lam, Y.C.: Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation. Appl. Phys. Lett. 95(11), 111110 (2009)

    Article  ADS  Google Scholar 

  21. Yoon, T.O., Shin, H.J., Jeoung, S.C., Park, Y. I.: Formation of superhydrophobic poly(dimethysiloxane) by ultrafast laser-induced surface modification. Opt. Express. 16(17), 12715–12725 (2008)

    Google Scholar 

  22. Pazokian, H., Selimis, A., Barzin, J., Jelvani, S., Mollabashi, M., Fotakis, C., Stratakis, E.: Tailoring the wetting properties of polymers from highly hydrophilic to superhydrophobic using UV laser pulses. J. Micrimech. Microeng. 22(3), 035001 (2012)

    Article  ADS  Google Scholar 

  23. Vorobyev, A.Y., Guo, C.: Laser turns silicon superwicking. Opt. Express. 18(7), 6455–6460 (2010)

    Article  ADS  Google Scholar 

  24. Vorobyev, A.Y., Guo, C.: Superwicking glass produced by femtosecond laser. J. Appl. Phys. 108, 123512 (2010)

    Article  ADS  Google Scholar 

  25. Raphael, E.: Capillary rise of a wetting fluid in a semi-circular groove. J. Phys. France. 50(4), 485–491 (1989)

    Article  Google Scholar 

  26. Batchelor, G.K.: An introduction to fluid dynamics. Cambridge University Press (1967)

    Google Scholar 

  27. Vorobyev, A.Y., Guo, C.: Enhanced absorptance of gold following multi-pulse femtosecond laser ablation. Phys. Rev. B 72(19), 195422 (2005)

    Article  ADS  Google Scholar 

  28. Vorobyev, A.Y., Guo, C.: Femtosecond laser nanostructuring of metals. Opt. Express. 14(6) 2164–2169 (2006)

    Article  ADS  Google Scholar 

  29. Vorobyev, A.Y., Guo, C.: Femtosecond laser structuring of titanium implants. Appl. Surf. Sci. 253(17), 7272–7280 (2007)

    Article  ADS  Google Scholar 

  30. Zhakhovskii, V.V., Inogamov, N. A., Nishihara, K.: New mechanism of the formation of the nanorelief on a surface irradiated by a femtosecond laser pulse. JETP Lett. 87(8), 423–427 (2008)

    Article  ADS  Google Scholar 

  31. Zavestovskaya, I.N., Kanavin, A.P., Men’kova, N.A.: Crystallization of metals under conditions of superfast cooling when materials are processed with ultrashort laser pulses. J. Opt. Technol. 75(6), 353–358 (2008)

    Article  Google Scholar 

  32. Stratakis, E., Zorba, V., Barberoglou, M., Fotakis, C., Shafeev, G.: Laser writing of nanostructures on bulk Al via its ablation in liquids. Nanotechnology. 20(10), 105303 (2009)

    Article  ADS  Google Scholar 

  33. Barmina, E.V., Barberoglu, M., Zorba, V., Simakin, A.V., Stratakis, E., Fotakis, C., Shafeev, G.A. : Surface nanotexturing of tantalum by laser ablation in water. Quantum Electron. 39(1), 89–93 (2009)

    Google Scholar 

  34. Barmina, E.V., Stratakis, E., Fotakis, C., Shafeev, G.A.: Generation of nanostructures on metals by laser ablation in liquids: new results. Quantum Electron. 40(11), 1012–1020 (2010)

    Article  ADS  Google Scholar 

  35. Oliveira, V., Ausset, S., Vilar, R.: Surface micro/nanostructuring of titanium under stationary and non-stationary femtosecond laser irradiation. Appl. Surf. Sci. 255(17), 7556–7560 (2009)

    Article  ADS  Google Scholar 

  36. Demaske, B.J., Zhakhovsky, V.V., Inogamov, N.A., Oleynik, I.I.: Ablation and spallation of gold films irradiated by ultrashort laser pulses. Phys. Rev. B. 82(6), 064113 (2010)

    Article  ADS  Google Scholar 

  37. Li, X., Yuan, C., Yang, H., Li, J., Huang, W., Tang, D., Xu, Q.: Morphology and composition on Al surface irradiated by femtosecond laser pulses. Appl. Surf. Sci. 256(13), 4344–4349 (2010)

    Article  ADS  Google Scholar 

  38. Dai, Y., He, M., Bian, H., Lu, B., Yan, X., Ma, G.: Femtosecond laser nanostructuring of silver film. Appl. Phys. A. 106(3), 567–574 (2012)

    Google Scholar 

  39. Zuhlke, C.A., Alexander, D.R., Bruce III, J.C., Ianno, N.J., Kamler, C.A., Yang, W.: Self- assembled nanoparticle aggregates from line focused femtosecond laser ablation. Opt. Express. 18(5), 4329–4339 (2010)

    Article  ADS  Google Scholar 

  40. Nayak, B.K., Gupta, M.C.: Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation. Opt. Lasers Eng. 48(10), 940–949 (2010)

    Article  Google Scholar 

  41. Hwang, T. Y., Vorobyev, A. Y., Guo, C.: Ultrafast dynamics of femtosecond laser-induced nanostructure formation on metals. Appl. Phys. Lett. 95(12), 123111 (2009)

    Article  ADS  Google Scholar 

  42. Sivakumar, M., Venkatakrishnan, K., Tan, B.: Characterization of MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces. Nanoscale Res. Lett. 6(1), 78 (2011)

    Article  ADS  Google Scholar 

  43. Vorobyev, A.Y., Guo, C.: Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 7(3) 385–407 (2013)

    Article  Google Scholar 

  44. Psaltis, D., Quake, S.R., Yang, C.: Developing optofluidic technology through the fusion of microfluidics and optics. Nature. 442, 381–386 (2006)

    Article  ADS  Google Scholar 

  45. Monat, C., Domachuk, P., Eggleton, B. J.: Integrated optofluidics: a new river of light. Nat. Photonics. 1, 106–114 (2007)

    Article  ADS  Google Scholar 

  46. Tokeshi, M., Minagawa, T., Uchiyama, K., Hibara, A., Sato, K., Hisamoto, H., Kitamori, T.: Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network. Anal. Chem. 74(7), 1565–1571 (2002)

    Article  Google Scholar 

  47. Gattass, R.R., Mazur, E.: Femtosecond laser micromachining in transparent materials. Nature Photonics. 2, 219–225 (2008)

    Article  ADS  Google Scholar 

  48. Washburn, E.W.: The dynamics of capillary flow. Phys Rev. 17(3), 273–283 (1921)

    Article  ADS  Google Scholar 

  49. Romero, L.A., Yost, F.G.: Flow in an open channel capillary. J. Fluid Mech. 322, 109–129 (1996)

    Article  ADS  Google Scholar 

  50. Rye, R.R., Mann, J.A., Yost, F.G.: The flow of liquids in surface grooves. Langmuir. 12(2), 555–565 (1996)

    Article  Google Scholar 

  51. Khare, K., Herminghaus, S., Baret, J.-C., Law, B. M., Brinkmann, M., Seemann, R.: Switching liquid morphologies on linear grooves. Langmuir. 23(26), 12997–13006 (2007)

    Article  Google Scholar 

  52. Baret, J.-C., Decre, M.M.J., Herminghaus, S., Seemann, R.: Transport dynamics in open microfluidic grooves. Langmuir. 23(9), 5200–5204 (2007)

    Article  Google Scholar 

  53. Hay, K.M., Dragila, M.I., Liburdy, J.: Theoretical model for the wetting of a rough surface. J. Colloid Inteface Sci. 325(2), 472–477 (2008)

    Article  Google Scholar 

  54. Mai, T.T., Lai, C.Q., Zheng, H., Balasubramanian, K., Leong, K.C., Lee, P.S., Lee, C., Choi, W.K.: Dynamics of wicking in silicon nanopillars fabricated with interference lithography and metal-assisted chemical etching. Langmuir. 28(31), 11465–11471 (2012)

    Article  Google Scholar 

  55. Bico, J., Thiele, U., Quere, D.: Wetting of textured surfaces. Coll. Surf. A: Physicochem. Eng. Aspects. 206(1–3), 41–46 (2002)

    Article  Google Scholar 

  56. Vorobyev, A.Y., Guo, C. Laser makes silicon superwicking. Optics & Photonics News. December, p. 38. (2010). Video at http://www.opnmagazine-digital.com/opn/201012/?pg=40#pg40

  57. Vorobyev, A.Y., Guo, C.: Making human enamel and dentin surfaces superwetting for enhanced adhesion. Appl. Phys. Lett. 99(20), 031146 (2011)

    Google Scholar 

  58. Zhou, M., Yu, J., Li, J., Wu, B., Zhang, W.: Wetting induced fluid spread on structured surfaces at micro scale. Appl. Surf. Sci. 258(19) 7596–7600 (2012)

    Article  ADS  Google Scholar 

  59. Tuckerman, D.B., Pease, R.F.W.: High performance heat sinking for VLSI. IEEE Electron Device Lett. 2(5), 126–129 (1981)

    Article  ADS  Google Scholar 

  60. Stroock, A.D., Dertinger, S.K.W., Ajdari, A., Mezic, I., Stone, H.A., Whitesides, G.M.: Chaotic mixer for microchannels. Science. 295(5555), 647–651 (2002)

    Article  ADS  Google Scholar 

  61. Johnson, T.J., Ross, D., Locascio, L.E.: Rapid microfluidic mixing. Anal. Chem. 74(1), 45–51 (2002)

    Article  Google Scholar 

  62. Melin, J., Roxhed, N., Gimenez, G., Griss, P., van der Wijngaart, W., Stemme, G.: A liquid-triggered liquid microvalve for on-chip flow control. Sens. Actuators. B. 100(3), 463–468 (2004)

    Article  Google Scholar 

  63. Zimmermann, M., Hunziker, P., Delamarche, E.: Valves for autonomous capillary systems. Microfluid. Nanofluid. 5(3). 395–402 (2008)

    Article  Google Scholar 

  64. Brody, J.P., Yager, P.: Diffusion-based extraction in a microfabricated device. Sens. Actuators A. 58(1). 13–18 (1997)

    Article  Google Scholar 

  65. Zimmermann, M., Schmid, H., Hunziker, P., Delamarche, E.: Capillary pumps for autonomous capillary systems. Lab Chip. 7, 119–125 (2007)

    Article  Google Scholar 

  66. Juncker, D., Schmid, H., Drechsler, U., Wolf, H., Wolf, M., Michel, B., de Rooij, N., Delamarche, E.: Autonomous microfluidic capillary system. Anal. Chem. 74(24), 6139–6144 (2002)

    Article  Google Scholar 

  67. Drelich, J., Chibowski, E.: Superhydrophilic and superwetting surfaces: definition and mechanisms of control. Langmuir. 26(24), 18621–18623 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bill & Melinda Gates Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Vorobyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vorobyev, A., Guo, C. (2015). Superwicking Surfaces Produced by Femtosecond Laser. In: Shulika, O., Sukhoivanov, I. (eds) Advanced Lasers. Springer Series in Optical Sciences, vol 193. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9481-7_7

Download citation

Publish with us

Policies and ethics