Skip to main content

p53 Mutation in the Genesis of Metastasis

  • Chapter
  • First Online:
Mutant p53 and MDM2 in Cancer

Part of the book series: Subcellular Biochemistry ((SCBI,volume 85))

Abstract

Development of metastatic cancer is a complex series of events that includes genesis of tumor-related vascular and lymphatic systems, enhanced cellular motility, and the capacity to invade and survive at distant sites, as well as evasion of host defences. The wild-type p53 protein plays key roles in controlling these facets of tumor progression, and loss of normal p53 function can be sufficient to predispose tumor cells to gain metastatic properties. In contrast, dominant p53 mutants that have gained oncogenic functions can actively drive metastasis through a variety of mechanisms. This chapter aims to highlight these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tarin D, Thompson EW, Newgreen DF (2005) The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 65:5996–6001

    Article  CAS  PubMed  Google Scholar 

  2. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133:571–573

    Article  Google Scholar 

  3. Fidler IJ (2002) Critical determinants of metastasis. Semin Cancer Biol 12:89–96

    Article  PubMed  Google Scholar 

  4. Bernards R, Weinberg RA (2002) A progression puzzle. Nature 418:823

    Article  CAS  PubMed  Google Scholar 

  5. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    Article  CAS  PubMed  Google Scholar 

  6. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massague J (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  Google Scholar 

  8. Van Meir EG, Polverini PJ, Chazin VR, Su Huang H-J, de Tribolet N, Cavenee WK (1994) Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nat Genet 8:171–176

    Article  PubMed  Google Scholar 

  9. Dameron K, Volpert O, Tainsky M, Bouck N (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265:1582–1584

    Article  CAS  PubMed  Google Scholar 

  10. Lawler J, Miao WM, Duquette M, Bouck N, Bronson RT, Hynes RO (2001) Thrombospondin-1 gene expression affects survival and tumor spectrum of p53-deficient mice. Am J Pathol 159:1949–1956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Brantley DM, Cheng N, Thompson EJ, Lin Q, Brekken RA, Thorpe PE, Muraoka RS, Cerretti DP, Pozzi A, Jackson D, Lin C, Chen J (2002) Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene 21:7011–7026

    Article  CAS  PubMed  Google Scholar 

  12. Dohn M, Jiang J, Chen X (2001) Receptor tyrosine kinase EphA2 is regulated by p53-family proteins and induces apoptosis. Oncogene 20:6503–6515

    Article  CAS  PubMed  Google Scholar 

  13. Cheng N, Brantley DM, Liu H, Lin Q, Enriquez M, Gale N, Yancopoulos G, Cerretti DP, Daniel TO, Chen J (2002) Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis. Mol Cancer Res 1:2–11

    Article  CAS  PubMed  Google Scholar 

  14. Nishimori H, Shiratsuchi T, Urano T, Kimura Y, Kiyono K, Tatsumi K, Yoshida S, Ono M, Kuwano M, Nakamura Y, Tokino T (1997) A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 15:2145–2150

    Article  CAS  PubMed  Google Scholar 

  15. Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, Dillehay LE, Madan A, Semenza GL, Bedi A (2000) Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α. Genes Dev 14:34–44

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Mukhopadhyay D, Tsiokas L, Sukhatme VP (1995) Wild-type p53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression. Cancer Res 55:6161–6165

    CAS  PubMed  Google Scholar 

  17. Pal S, Datta K, Mukhopadhyay D (2001) Central role of p53 on regulation of Vascular Permeability Factor/Vascular Endothelial Growth Factor (VPF/VEGF) expression in mammary carcinoma. Cancer Res 61:6952–6957

    CAS  PubMed  Google Scholar 

  18. Subbaramaiah K, Altorki N, Chung WJ, Mestre JR, Sampat A, Dannenberg AJ (1999) Inhibition of cyclooxygenase-2 gene expression by p53. J Biol Chem 274:10911–10915

    Article  CAS  PubMed  Google Scholar 

  19. Strieter RM, Burdick MD, Gomperts BN, Belperio JA, Keane MP (2005) CXC chemokines in angiogenesis. Cytokine Growth Factor Rev 16:593–609

    Article  CAS  PubMed  Google Scholar 

  20. Moskovits N, Kalinkovich A, Bar J, Lapidot T, Oren M (2006) p53 attenuates cancer cell migration and invasion through repression of SDF-1/CXCL12 expression in stromal fibroblasts. Cancer Res 66:10671–10676

    Article  CAS  PubMed  Google Scholar 

  21. Yeudall WA, Vaughan CA, Miyazaki H, Ramamoorthy M, Choi MY, Chapman CG, Wang H, Black E, Bulysheva AA, Deb SP, Windle B, Deb S (2012) Gain-of-function mutant p53 upregulates CXC chemokines and enhances cell migration. Carcinogenesis 33:442–451

    Article  CAS  PubMed  Google Scholar 

  22. Milyavsky M, Tabach Y, Shats I, Erez N, Cohen Y, Tang X, Kalis M, Kogan I, Buganim Y, Goldfinger N, Ginsberg D, Harris CC, Domany E, Rotter V (2005) Transcriptional programs following genetic alterations in p53, INK4A, and H-Ras genes along defined stages of malignant transformation. Cancer Res 65:4530–4543

    Article  CAS  PubMed  Google Scholar 

  23. Yeudall WA, Miyazaki H (2007) Chemokines and squamous cancer of the head and neck: targets for therapeutic intervention? Expert Rev Anticancer Ther 7:351–360

    Article  CAS  PubMed  Google Scholar 

  24. Zlotnik A (2004) Chemokines in neoplastic progression. Semin Cancer Biol 14:181–185

    Article  CAS  PubMed  Google Scholar 

  25. Miyazaki H, Takabe K, Yeudall WA (2013) Chemokines, chemokine receptors and the gastrointestinal system. World J Gastroenterol 19:2847–2863

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH, Tom E, Mack DH, Levine AJ (2000) Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev 14:981–993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Bajou K, Maillard C, Jost M, Lijnen RH, Gils A, Declerck P, Carmeliet P, Foidart JM, Noel A (2004) Host-derived plasminogen activator inhibitor-1 (PAI-1) concentration is critical for in vivo tumoral angiogenesis and growth. Oncogene 23:6986–6990

    Article  CAS  PubMed  Google Scholar 

  28. Czekay RP, Aertgeerts K, Curriden SA, Loskutoff DJ (2003) Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. J Cell Biol 160:781–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Czekay RP, Loskutoff DJ (2009) Plasminogen activator inhibitors regulate cell adhesion through a uPAR-dependent mechanism. J Cell Physiol 220:655–663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Grimshaw MJ, Wilson JL, Balkwill FR (2002) Endothelin-2 is a macrophage chemoattractant: implications for macrophage distribution in tumors. Eur J Immunol 32:2393–2400

    Article  CAS  PubMed  Google Scholar 

  31. Grimshaw MJ, Hagemann T, Ayhan A, Gillett CE, Binder C, Balkwill FR (2004) A role for endothelin-2 and its receptors in breast tumor cell invasion. Cancer Res 64:2461–2468

    Article  CAS  PubMed  Google Scholar 

  32. Lewis BC, Klimstra DS, Socci ND, Xu S, Koutcher JA, Varmus HE (2005) The absence of p53 promotes metastasis in a novel somatic mouse model for hepatocellular carcinoma. Mol Cell Biol 25:1228–1237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Guo F, Gao Y, Wang L, Zheng Y (2003) p19Arf-p53 tumor suppressor pathway regulates cell motility by suppression of phosphoinositide 3-Kinase and Rac1 GTPase Activities. J Biol Chem 278:14414–14419

    Article  CAS  PubMed  Google Scholar 

  34. Guo F, Zheng Y (2004) Rho family GTPases cooperate with p53 deletion to promote primary mouse embryonic fibroblast cell invasion. Oncogene 23:5577–5585

    Article  CAS  PubMed  Google Scholar 

  35. Xia M, Land H (2007) Tumor suppressor p53 restricts Ras stimulation of RhoA and cancer cell motility. Nat Struct Mol Biol 14:215–223

    Article  CAS  PubMed  Google Scholar 

  36. Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM, Valentin-Vega YA, Terzian T, Caldwell LC, Strong LC, El-Naggar AK, Lozano G (2004) Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119:861–872

    Article  CAS  PubMed  Google Scholar 

  37. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT, Crowley D, Jacks T (2004) Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119:847–860

    Article  CAS  PubMed  Google Scholar 

  38. Caulin C, Nguyen T, Lang GA, Goepfert TM, Brinkley BR, Cai WW, Lozano G, Roop DR (2007) An inducible mouse model for skin cancer reveals distinct roles for gain- and loss-of-function p53 mutations. J Clin Invest 117:1893–1901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Cardinali M, Kratochvil FJ, Ensley JF, Robbins KC, Yeudall WA (1997) Functional characterization in vivo of mutant p53 molecules derived from squamous cell carcinomas of the head and neck. Mol Carcinog 18:78–88

    Article  CAS  PubMed  Google Scholar 

  40. Scian MJ, Stagliano KE, Deb D, Ellis MA, Carchman EH, Das A, Valerie K, Deb SP, Deb S (2004) Tumor-derived p53 mutants induce oncogenesis by transactivating growth-promoting genes. Oncogene 23:4430–4443

    Article  CAS  PubMed  Google Scholar 

  41. Scian MJ, Stagliano KE, Ellis MA, Hassan S, Bowman M, Miles MF, Deb SP, Deb S (2004) Modulation of gene expression by tumor-derived p53 mutants. Cancer Res 64:7447–7454

    Article  CAS  PubMed  Google Scholar 

  42. Scian MJ, Stagliano KE, Anderson MA, Hassan S, Bowman M, Miles MF, Deb SP, Deb S (2005) Tumor-derived p53 mutants induce NF-kappaB2 gene expression. Mol Cell Biol 25:10097–10110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Weisz L, Damalas A, Liontos M, Karakaidos P, Fontemaggi G, Maor-Aloni R, Kalis M, Levrero M, Strano S, Gorgoulis VG, Rotter V, Blandino G, Oren M (2007) Mutant p53 enhances nuclear factor kappaB activation by tumor necrosis factor alpha in cancer cells. Cancer Res 67:2396–2401

    Article  CAS  PubMed  Google Scholar 

  44. Luo JL, Maeda S, Hsu LC, Yagita H, Karin M (2004) Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell 6:297–305

    Article  CAS  PubMed  Google Scholar 

  45. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431:461–466

    Article  CAS  PubMed  Google Scholar 

  46. Melino G (2011) p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Differ 18:1487–1499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Guo X, Keyes WM, Papazoglu C, Zuber J, Li W, Lowe SW, Vogel H, Mills AA (2009) TAp63 induces senescence and suppresses tumorigenesis in vivo. Nat Cell Biol 11:1451–1457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Barbieri CE, Tang LJ, Brown KA, Pietenpol JA (2006) Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Res 66:7589–7597

    Article  CAS  PubMed  Google Scholar 

  49. Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S, Lukashchuk N, Gillespie DA, Ludwig RL, Gosselin P, Cromer A, Brugge JS, Sansom OJ, Norman JC, Vousden KH (2009) Mutant p53 drives invasion by promoting integrin recycling. Cell 139:1327–1341

    Article  PubMed  Google Scholar 

  50. Zhang M (2004) Multiple functions of maspin in tumor progression and mouse development. Front Biosci 9:2218–2226

    Article  CAS  PubMed  Google Scholar 

  51. Kim S, Han J, Kim J, Park C (2004) Maspin expression is transactivated by p63 and is critical for the modulation of lung cancer progression. Cancer Res 64:6900–6905

    Article  CAS  PubMed  Google Scholar 

  52. Dong P, Tada M, Hamada J-I, Nakamura A, Moriuchi T, Sakuragi N (2007) p53 dominant-negative mutant R273H promotes invasion and migration of human endometrial cancer HHUA cells. Clin Exp Metastasis 24:471–483

    Article  CAS  PubMed  Google Scholar 

  53. Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, Solari A, Bobisse S, Rondina MB, Guzzardo V, Parenti AR, Rosato A, Bicciato S, Balmain A, Piccolo S (2009) A mutant-p53/Smad complex opposes p63 to empower TGF[beta]-induced metastasis. Cell 137:87–98

    Article  CAS  PubMed  Google Scholar 

  54. Wang SE, Narasanna A, Whitell CW, Wu FY, Friedman DB, Arteaga CL (2007) Convergence of p53 and Transforming Growth Factor beta (TGFbeta) signaling on activating expression of the tumor suppressor gene maspin in mammary epithelial cells. J Biol Chem 282:5661–5669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A, Blandino G, Piaggio G (2006) Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10:191–202

    Article  PubMed  Google Scholar 

  56. Fontemaggi G, Dell’Orso S, Trisciuoglio D, Shay T, Melucci E, Fazi F, Terrenato I, Mottolese M, Muti P, Domany E, Del Bufalo D, Strano S, Blandino G (2009) The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis. Nat Struct Mol Biol 16:1086–1093

    Article  CAS  PubMed  Google Scholar 

  57. Vaughan CA, Singh S, Windle B, Sankala HM, Graves PR, Andrew Yeudall W, Deb SP, Deb S (2012) p53 mutants induce transcription of NF-kappaB2 in H1299 cells through CBP and STAT binding on the NF-kappaB2 promoter and gain of function activity. Arch Biochem Biophys 518:79–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Vaughan CA, Singh S, Windle B, Yeudall WA, Frum R, Grossman SR, Deb SP, Deb S (2012) Gain-of-function activity of mutant p53 in lung cancer through up-regulation of receptor protein tyrosine kinase Axl. Genes Cancer 3:491–502

    Article  PubMed Central  PubMed  Google Scholar 

  59. Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759

    Article  CAS  PubMed  Google Scholar 

  60. Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310

    Article  CAS  PubMed  Google Scholar 

  61. Locati MDM, Murphy MDPM (1999) Chemokines and chemokine receptors: biology and clinical relevance in inflammation and AIDS1. Annu Rev Med 50:425–440

    Article  CAS  PubMed  Google Scholar 

  62. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–550

    Article  CAS  PubMed  Google Scholar 

  63. Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217

    Article  CAS  PubMed  Google Scholar 

  64. Strieter RM, Belperio JA, Phillips RJ, Keane MP (2004) CXC chemokines in angiogenesis of cancer. Semin Cancer Biol 14:195–200

    Article  CAS  PubMed  Google Scholar 

  65. Strieter RM, Burdick MD, Mestas J, Gomperts B, Keane MP, Belperio JA (2006) Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer 42:768–778

    Article  CAS  PubMed  Google Scholar 

  66. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    Article  CAS  PubMed  Google Scholar 

  67. Balentien E, Mufson BE, Shattuck RL, Derynck R, Richmond A (1991) Effects of MGSA/GRO alpha on melanocyte transformation. Oncogene 6:1115–1124

    CAS  PubMed  Google Scholar 

  68. Dhawan P, Richmond A (2002) Role of CXCL1 in tumorigenesis of melanoma. J Leukoc Biol 72:9–18

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Keane MP, Belperio JA, Xue YY, Burdick MD, Strieter RM (2004) Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J Immunol 172:2853–2860

    Article  CAS  PubMed  Google Scholar 

  70. Kryczek I, Lange A, Mottram P, Alvarez X, Cheng P, Hogan M, Moons L, Wei S, Zou L, Machelon V, Emilie D, Terrassa M, Lackner A, Curiel TJ, Carmeliet P, Zou W (2005) CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res 65:465–472

    CAS  PubMed  Google Scholar 

  71. Strieter RM, Belperio JA, Burdick MD, Sharma S, Dubinett SM, Keane MP (2004) CXC chemokines: angiogenesis, immunoangiostasis, and metastases in lung cancer. Ann N Y Acad Sci 1028:351–360

    Article  CAS  PubMed  Google Scholar 

  72. Miyazaki H, Patel V, Wang H, Edmunds RK, Gutkind JS, Yeudall WA (2006) Downregulation of CXCL5 inhibits squamous carcinogenesis. Cancer Res 66:4279–4284

    Article  CAS  PubMed  Google Scholar 

  73. Kunsch C, Rosen CA (1993) NF-kappa B subunit-specific regulation of the interleukin-8 promoter. Mol Cell Biol 13:6137–6146

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Kunsch C, Lang RK, Rosen CA, Shannon MF (1994) Synergistic transcriptional activation of the IL-8 gene by NF-kappa B p65 (RelA) and NF-IL-6. J Immunol 153:153–164

    CAS  PubMed  Google Scholar 

  75. Yang J, Richmond A (2001) Constitutive IkappaB kinase activity correlates with nuclear factor-kappaB activation in human melanoma cells. Cancer Res 61:4901–4909

    CAS  PubMed  Google Scholar 

  76. Wang D, Richmond A (2001) Nuclear factor-kappa B activation by the CXC chemokine melanoma growth-stimulatory activity/growth-regulated protein involves the MEKK1/p38 mitogen-activated protein kinase pathway. J Biol Chem 276:3650–3659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Chandrasekar B, Mummidi S, Perla RP, Bysani S, Dulin NO, Liu F, Melby PC (2003) Fractalkine (CX3CL1) stimulated by nuclear factor kappaB (NF-kappaB)-dependent inflammatory signals induces aortic smooth muscle cell proliferation through an autocrine pathway. Biochem J 373:547–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Dhawan P, Richmond A (2002) A novel NF-kappa B-inducing kinase-MAPK signaling pathway up-regulates NF-kappa B activity in melanoma cells. J Biol Chem 277:7920–7928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Richmond A (2002) NF-[kappa]B, chemokine gene transcription and tumour growth. Nat Rev Immunol 2:664–674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Rehman AO, Wang C-Y (2008) SDF-1{alpha} promotes invasion of head and neck squamous cell carcinoma by activating NF-{kappa}B. J Biol Chem 283:19888–19894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Furuya M, Suyama T, Usui H, Kasuya Y, Nishiyama M, Tanaka N, Ishiwata I, Nagai Y, Shozu M, Kimura S (2007) Up-regulation of CXC chemokines and their receptors: implications for proinflammatory microenvironments of ovarian carcinomas and endometriosis. Hum Pathol 38:1676–1687

    Article  CAS  PubMed  Google Scholar 

  82. Maroni P, Bendinelli P, Matteucci E, Desiderio MA (2007) HGF induces CXCR4 and CXCL12-mediated tumor invasion through Ets1 and NF-kappaB. Carcinogenesis 28:267–279

    Article  CAS  PubMed  Google Scholar 

  83. Sun Q, Matta H, Lu G, Chaudhary PM (2006) Induction of IL-8 expression by human herpesvirus 8 encoded vFLIP K13 via NF-kappaB activation. Oncogene 25:2717–2726

    Article  CAS  PubMed  Google Scholar 

  84. Yang X, Lu H, Yan B, Romano R-A, Bian Y, Friedman J, Duggal P, Allen C, Chuang R, Ehsanian R, Si H, Sinha S, Van Waes C, Chen Z (2011) DeltaNp63 versatilely regulates a broad NF-kappaB gene program and promotes squamous epithelial proliferation, migration, and inflammation. Cancer Res 71:3688–3700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137:1032–1046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Valastyan S, Weinberg RA (2010) Metastasis suppression: a role of the Dice(r). Genome Biol 11:141

    Article  PubMed Central  PubMed  Google Scholar 

  87. Su X, Chakravarti D, Cho MS, Liu L, Gi YJ, Lin YL, Leung ML, El-Naggar A, Creighton CJ, Suraokar MB, Wistuba I, Flores ER (2010) TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 467:986–990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Tucci P, Agostini M, Grespi F, Markert EK, Terrinoni A, Vousden KH, Muller PAJ, Dötsch V, Kehrloesser S, Sayan BS, Giaccone G, Lowe SW, Takahashi N, Vandenabeele P, Knight RA, Levine AJ, Melino G (2012) Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer. Proc Natl Acad Sci U S A 109:15312–15317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Tran MN, Choi W, Wszolek MF, Navai N, Lee ILC, Nitti G, Wen S, Flores ER, Siefker-Radtke A, Czerniak B, Dinney C, Barton M, McConkey DJ (2013) The p63 protein isoform ΔNp63α inhibits epithelial-mesenchymal transition in human bladder cancer cells: role of MIR-205. J Biol Chem 288:3275–3288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Park S-M, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894–907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910–14914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Ohashi S, Natsuizaka M, Wong GS, Michaylira CZ, Grugan KD, Stairs DB, Kalabis J, Vega ME, Kalman RA, Nakagawa M, Klein-Szanto AJ, Herlyn M, Diehl JA, Rustgi AK, Nakagawa H (2010) Epidermal growth factor receptor and mutant p53 expand an esophageal cellular subpopulation capable of epithelial-to-mesenchymal transition through ZEB transcription factors. Cancer Res 70:4174–4184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Neilsen PM, Noll JE, Mattiske S, Bracken CP, Gregory PA, Schulz RB, Lim SP, Kumar R, Suetani RJ, Goodall GJ, Callen DF (2013) Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene 32:2992–3000

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. Yeudall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yeudall, W.A. (2014). p53 Mutation in the Genesis of Metastasis. In: Deb, S., Deb, S. (eds) Mutant p53 and MDM2 in Cancer. Subcellular Biochemistry, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9211-0_6

Download citation

Publish with us

Policies and ethics