Skip to main content
  • 1168 Accesses

Abstract

The ability to harness biomolecules as tools for systematic engineering is fundamental to future developments of biotechnology and nanotechnology. Especially suitable for such applications are nucleic acid-based circuits with predictable interactions, allowing for rational design of circuit functions and dynamics. Here, we focus on synthetic transcriptional circuits utilizing the modular architecture of nucleic acid templates and the catalytic power of natural enzymes. The programmability of dynamic behaviors for synthetic circuits is illustrated through elementary circuits such as an adapter, a bistableBistable switch, and several oscillators. Further, the effect of downstream processes on the central dynamical system illustrates the need for systematic methods of composing biomolecular circuits. We present insulating and amplifying devices as a solution for scaling up biomolecular networks much as in electronic circuits. Future applications of biomolecular programs will open up new possibilities in nanorobotics, nanomedicine, and artificial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2:2006.0028

    Google Scholar 

  2. Atkinson MR, Savageau M, Myers J, Ninfa A (2003) Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113:597–607

    Google Scholar 

  3. Benenson Y, Shapiro E (2004) Molecular computing machines. Dekker Encyclopedia of Nanoscience and Nanotechnology. Springer, New York

    Google Scholar 

  4. Benner SA, Sismour AM (2005) Synthetic biology. Nature Rev Genet 6(7):533–543

    Article  CAS  PubMed  Google Scholar 

  5. Cheng ZF, Deutscher MP (2002) Purification and characterization of the Escherichia coli exoribonuclease RNase R: Comparison with RNase II. J Biol Chem 277:21,624–21,629

    Google Scholar 

  6. Del Vecchio D, Ninfa A, Sontag E (2008) Modular cell biology: retroactivity and insulation. Mol Syst Biol 4:161

    PubMed Central  PubMed  Google Scholar 

  7. Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070):831–834

    Article  CAS  PubMed  Google Scholar 

  8. Douglas SM, Dietz H, Liedl T, Hgberg B, Graf F, Shih WM (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459:414–418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Dyson F (2007) Our biotech future. The New York Review of Books 54. http://www.nybooks.com/articles/20370. Accessed 19 July 2007

  10. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  11. Endy D (2005) Foundations for engineering biology. Nature 438(7067):449–453

    Article  CAS  PubMed  Google Scholar 

  12. Feng X, Hooshangi S, Chen D, Li G, Weiss R, Rabitz H (2004) Optimizing genetic circuits by global sensitivity analysis. Biophys J 87:2195–2202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Fiedler TJ, Vincent HA, Zuo Y, Gavrialov O, Malhotra A (2004) Purification and crystallization of Escherichia coli oligoribonuclease. Acta Crystallogr D Biol Crystallogr 60:736–739

    Article  PubMed  Google Scholar 

  14. Franco E, Del Vecchio D, Murray RM (2009) Design of insulating devices for in vitro synthetic circuits. In: Proceedings of the IEEE conference on decision and control, pp 4584–4589

    Google Scholar 

  15. Franco E, Friedrichs E, Kim J, Jungmann R, Murray R, Winfree E, Simmel FC (2011) Timing molecular motion and production with a synthetic transcriptional clock. Proc Natl Acad Sci USA 108(40):E784–E793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Gao Y, Wolf LK, Georgiadis RM (2006) Secondary structure effects on DNA hybridization kinetics: a solution versus surface comparison. Nucleic Acids Res 34(11):3370–3377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Goodwin BC (1965) Oscllatory behavior in enzymatic control processes. Adv Enzyme Regul 3:425–436

    Article  CAS  PubMed  Google Scholar 

  18. Grate D, Wilson C (1999) Laser-mediated, site-specific inactivation of RNA transcripts. Proc Natl Acad Sci USA 96:6131–6136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hockenberry AJ, Jewett MC (2012) Synthetic in vitro circuits. Curr Opin Chem Biol 16:253–259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hodgman CE, Jewett MC (2012) Cell-free synthetic biology: thinking outside the cell. Metab Eng 14(3):261–269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Jiang M, Rong M, Martin C, McAllister WT (2001) Interrupting the template strand of the T7 promoter facilitates translocation of the DNA during initiation reducing transcript slippage and the release of abortive products. J Mol Biol 310:509–522

    Article  CAS  PubMed  Google Scholar 

  22. Karkare S, Bhatnagar D (2006) Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA and morpholino. Appl Microbiol Biotechnol 71:575–586

    Article  CAS  PubMed  Google Scholar 

  23. Ke Y, Ong LL, Shih WM, Yin P (2012) Three-dimensional structures self-assembled from DNA bricks. Science 338(6111):1177–1183

    Article  CAS  PubMed  Google Scholar 

  24. Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11(5):367–379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kim J, Hopfield JJ, Winfree E (2004) Neural network computation by in vitro transcriptional circuits. Adv Neural Inf Proc Syst 17:681–688

    Google Scholar 

  26. Kim J, Murray R (2011) Analysis and design of a synthetic transcriptional network for exact adaptation. In: IEEE biomedical circuits and systems conference (BioCAS), pp 345–348

    Google Scholar 

  27. Kim J, White KS, Winfree E (2006) Construction of an in vitro bistable circuit from synthetic transcriptional switches. Mol Syst Biol 2:68

    Article  PubMed Central  PubMed  Google Scholar 

  28. Kim J, Winfree E (2011) Synthetic in vitro transcriptional oscillators. Mol Syst Biol 7:465

    Article  PubMed Central  PubMed  Google Scholar 

  29. Krishnan Y, Simmel FC (2011) Nucleic acid based molecular devices. Angew Chem Int Ed 50(14):3124–3156

    Article  CAS  Google Scholar 

  30. Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller EM, Hogele A, Simmel FC, Govorov AO, Liedl T (2012) DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483:311–314

    Article  CAS  PubMed  Google Scholar 

  31. Lakin MR, Parker D, Cardelli L, Kwiatkowska M, Phillips A (2012) Design and analysis of DNA strand displacement devices using probabilistic model checking. J R Soc Interface 9(72):1470–1485

    Article  PubMed Central  PubMed  Google Scholar 

  32. Lesnik EA, Freier SM (1995) Relative thermodynamic stability of DNA, RNA, and DNA:RNA hybrid duplexes: relationship with base composition and structure. Biochemistry 34(34):10,807–10,815

    Google Scholar 

  33. Mandell D, Kortemme T (2009) Computer-aided design of functional protein interactions. Nat Chem Biol 5(11):797–807

    Article  CAS  PubMed  Google Scholar 

  34. Markham NR, Zuker M (2005) DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res 33:577–581

    Article  Google Scholar 

  35. Maune HT, Han SP, Barish RD, Bockrath M, III WAG, Rothemund PWK, Winfree E (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol 5:61–66

    Google Scholar 

  36. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827

    Article  CAS  PubMed  Google Scholar 

  37. Mitarai N, Benjamin JAM, Krishna S, Semsey S, Csiszovszki Z, Masse E, Sneppen K (2009) Dynamic features of gene expression control by small regulatory RNAs. Proc Natl Acad Sci USA 106:10,655–10,659

    Google Scholar 

  38. Noireaux V, Maeda YT, Libchaber A (2011) Development of an artificial cell, from self-organization to computation and self-reproduction. Proc Natl Acad Sci USA 108:3473–3480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Phillips A, Cardelli L (2009) A programming language for composable DNA circuits. J R Soc Interface 6:S419–S436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Pinheiro AV, Han D, Shih WM, Yan H (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6:763–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Qian L, Winfree E (2011) Scaling up digital circuit computation with DNA strand displacement cascades. Science 332:1196–1201

    Article  CAS  PubMed  Google Scholar 

  42. Qian L, Winfree E, Bruck J (2011) Neural network computation with DNA strand displacement cascades. Nature 475:368–372

    Article  CAS  PubMed  Google Scholar 

  43. Rizzo J, Gifford LK, Zhang X, Gewirtz AM, Lu P (2002) Chimeric RNA–DNA molecular beacon assay for ribonuclease H activity. Mol Cell Probes 16:277–283

    Article  CAS  PubMed  Google Scholar 

  44. Rondelez Y (2012) Competition for catalytic resources alters biological network dynamics. Phys Rev Lett 108(1):018,102

    Google Scholar 

  45. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and paterns. Nature 440:297–302

    Article  CAS  PubMed  Google Scholar 

  46. Rothemund PWK, Ekani-Nkodo A, Papadakis N, Kumar A, Fygenson DK, Winfree E (2004) Design and characterization of programmable DNA nanotubes. J Am Chem Soc 126(50):16,344–16, 352

    Google Scholar 

  47. Russo G, di Bernardo M, Sontag ED (2010) Global entrainment of transcriptional systems to periodic inputs. PLoS Comput Biol 6(4), e1000, 739

    Google Scholar 

  48. Saez-Rodriguez J, Kremling A, Gilles E (2005) Dissecting the puzzle of life: modularization of signal transduction networks. Comput Chem Eng 29(3):619–629

    Article  CAS  Google Scholar 

  49. Seelig G, Soloveichik D, Zhang DY, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Science 314(5805):1585–1588

    Article  CAS  PubMed  Google Scholar 

  50. Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19(8):751–755

    Article  CAS  PubMed  Google Scholar 

  51. Shin J, Noireaux V (2012) An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synth Biol 1(1):29–41

    Article  CAS  PubMed  Google Scholar 

  52. Smirnakis SM, Berry MJ, Warland DK, Bialek W, Meister M (1997) Adaptation of retinal processing to image contrast and spatial scale. Nature 386:69–73

    Article  CAS  PubMed  Google Scholar 

  53. Soloveichik D, Seelig G, Winfree E (2010) DNA as a universal substrate for chemical kinetics. Proc Natl Acad Sci USA 107:5393–5398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX—A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24(4):381–403

    Article  CAS  PubMed  Google Scholar 

  55. Subsoontorn P, Kim J, Winfree E (2012) Ensemble bayesian analysis of bistability in a synthetic transcriptional switch. ACS Synth Biol 1:299–316

    Article  CAS  PubMed  Google Scholar 

  56. Tombelli S, Mascini M (2010) Aptamers biosensors for pharmaceutical compounds. Comb Chem High Throughput Screening 13(7):641–649

    Article  CAS  Google Scholar 

  57. Triana-Alonso FJ, Dabrowski M, Wadzack J, Nierhaus KH (1995) Self-coded 3\(^{\prime }\)-extension of run-off transcripts produces aberrant products during in vitro transcription with T7 RNA polymerase. J Biol Chem 11:6298–6307

    Google Scholar 

  58. Tu Y, Shimizu TS, Berg HC (2008) Modeling the chemotactic response of Escherichia coli to time-varying stimuli. Proc Natl Acad Sci USA 105:14,855–14,860

    Google Scholar 

  59. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221–231

    Article  CAS  PubMed  Google Scholar 

  60. Vincent HA, Deutscher MP (2006) Substrate recognition and catalysis by the exoribonuclease RNase R. J Biol Chem 281:29,769–29,775

    Google Scholar 

  61. Wong WW, Tsai TY, Liao JC (2007) Single-cell zeroth-order protein degradation enhances the robustness of synthetic oscillator. Mol Syst Biol 3:130

    Article  PubMed Central  PubMed  Google Scholar 

  62. Yeung E, Kim J, Yuan Y, Gonçalves J, Murray R (2012) Quantifying crosstalk in biochemical systems. In: Proceedings of the IEEE conference on decision and control, pp 5528–5535

    Google Scholar 

  63. Yurke B, Mills AP (2003) Using DNA to power nanostructures. Genet Program Evolvable Mach 4:111–122

    Article  Google Scholar 

  64. Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR, Dirks RM, Pierce NA (2011) NUPACK: analysis of nucleic acid systems. J Comput Chem 32:170–173

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongmin Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kim, J., Franco, E. (2014). Synthetic Biochemical Devices for Programmable Dynamic Behavior. In: Kulkarni, V., Stan, GB., Raman, K. (eds) A Systems Theoretic Approach to Systems and Synthetic Biology II: Analysis and Design of Cellular Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9047-5_12

Download citation

Publish with us

Policies and ethics