Skip to main content

Darwin and Phylogenetics: Past and Present

  • Chapter
  • First Online:
Handbook of Evolutionary Thinking in the Sciences
  • 3272 Accesses

Abstract

Phylogenetics is the science of tree reconstruction. The evolution and transformations of phylogenetics is analyzed from the unique illustration included in Darwin’s On the Origin of Species. From the nineteenth century up to the present the various treatments of the concept of pattern and process applied to relationships and evolutionary modes are discussed. Emphasis is put on the Hennigian phylogenetics and successive cladistic and probability approaches. The fate of the concept of homology is explored from Darwin’s time up to contemporaneous molecular methods.

T he mental features discoursed of as the analytical, are, in themselves, but little susceptible of analysis. We appreciate them only in their effects

(Edgar A. Poe, Murders in the Rue Morgue).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Group of organisms classified at any level of classification (example: Homo, taxon on the rank of genus).

  2. 2.

    On this theme, cf. among others, Hall (1994), Sanderson and Hufford (1996).

  3. 3.

    The form’s permanence even if it declines as variations of the archetype.

  4. 4.

    Differentiation of a mother species into daughter species (=speciation).

  5. 5.

    Organisms without a nucleus, with a cell membrane made of certain lipids, generally living in harsh environments.

  6. 6.

    Organisms whose cells have a nucleus.

  7. 7.

    Horizontal gene transfer: a case where genes are transferred from one species to another and not from one generation to another within a same species (for example, bacteria recuperate DNA from their hosts, DNA exchanges between different bacteria).

  8. 8.

    Mobile, multi-celled organisms with collagen; synonym for Animalia, animals.

  9. 9.

    In French, cf. Dupuis (1986) and Tassy (1983).

  10. 10.

    For a brief history of structural cladistics, cf. Tassy (2005).

  11. 11.

    Bayesian probabilities: probability statistics named in reference to English mathematician Thomas Bayes (1702–1761). In phylogenetics, probability methods for building kinship trees.

  12. 12.

    Evolutionary step: unit of evolution linked to the transformation from one character state to another.

  13. 13.

    Two types of mutations affecting genes (transition: substitution of a purine base for another and of a pyrimidine base for another, and transversion: substitution of a purine base for a pyrimidine base).

  14. 14.

    Cf. the discussion, among others, in Tassy (1991: 248–250).

  15. 15.

    Branch: in the phylogenetic tree, a segment connecting to nodes (internal branch) or a node and a terminal taxon (external branch).

  16. 16.

    Nucleotide substitution: in a gene, replacement of a nucleotide by another (e.g. adenine by guanine, two purine bases).

  17. 17.

    This is what Deleporte (2004) and Lecointre (2004) argue.

  18. 18.

    Two groups of organisms (clades) descended from one exclusive ancestral species.

  19. 19.

    Unsaturated gene: a gene for which there are not multiple nucleotide substitutions at a given site.

  20. 20.

    Gingerich and Russell (1981), Gingerich et al. (2001), Thewissen et al. (2001).

  21. 21.

    Regular rhythm of nucleotide substitution.

  22. 22.

    Cf. discussion and references in Burbrink and Pyron (2008).

  23. 23.

    Total evidence, supermatrix: the sum total of data (characters) that is accessible and analysed simultaneously during a phylogenetic analysis.

  24. 24.

    Tree of synthesis built from the combination of several trees that does not necessarily have the same taxa.

  25. 25.

    Baum and Ragan (1992), Cotton and Wilkinson (2007), Steel and Rodrigo (2008).

  26. 26.

    Group of metazoans with debated affinities, including one single marine species, Trichoplax adhaerens, an organism in the form of a pancake measuring 0.5 mm in diameter, with an extremely simple organisational plan.

  27. 27.

    Out-group: group of organisms not belonging to a phylogenetically analysed group, chosen to orient the transformation of characters from the primitive to the derived. Example: in order to study Primates phylogeny, any other group(s) of Mammalia can be used as extra-groups.

  28. 28.

    Group of animals comprising hydra, sea anemones, corals, and jellyfish.

  29. 29.

    Animals with bilateral symmetry.

  30. 30.

    Hypothesised derived traits at the node: resemblances assumed to be due to common ancestry.

  31. 31.

    Retention index: measure of characters’ degree of homology (which takes into account the number of observed transformations on the tree in relation to the minimum and maximum number of possible transformations).

  32. 32.

    Group comprising true animals, characterised by the presence of true embryonic layers.

  33. 33.

    Posterior probabilities: in Bayesian probabilities applied to phylogenetics, calculation of the degree of solidity of the tree’s different nodes.

References

  • Asher, R. J., Geisler, J. H., & Sanchez-Villagra, M. R. (2008). Morphology, paleontology, and placental mammal phylogeny. Systematic Biology, 57, 311–317.

    Article  PubMed  Google Scholar 

  • Bapteste, E. (2007). Au-delà de l’Arbre du vivant : pour une phylogénie postmoderne. Thèse de l’université Paris 1-Panthéon Sorbonne, Paris.

    Google Scholar 

  • Baum, B. R., & Ragan, M. A. (1992). Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon, 41, 3–10.

    Article  Google Scholar 

  • Boisserie, J.-R., Lihoreau, F., & Brunet, M. (2005). The position of Hippopotamidae within Cetartiodactyla. PNAS, 102, 1537–1541.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brower, A. V. Z. (2000). Evolution is not a necessary assumption of cladistics. Cladistics, 16, 143–154.

    Article  Google Scholar 

  • Burbrink, F. T., & Pyron, R. A. (2008). The taming of the skew: Estimating proper confidence intervals for divergence dates. Systematic Biology, 57, 317–328.

    Article  PubMed  Google Scholar 

  • Cao, N., Ducasse, J., & Zaragüeta Bagils, R. (2007). NELSON05, publié par les auteurs. Paris: Online http://lis.snv.jussieu.fr/apps/Nelson05/

  • Cotton, J. A., & Wilkinson, M. (2007). Majority-rule supertrees. Systematic Biology, 56, 445–452.

    Article  PubMed  Google Scholar 

  • Darlu, P., & Tassy, P. (1993). La reconstruction phylogénétique. Concepts et méthodes. Paris: Masson.

    Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection. London: John Murray.

    Google Scholar 

  • De Pinna, M. C. C. (1991). Concepts and tests of homology in the cladistic paradigm. Cladistics, 7, 317–338.

    Article  Google Scholar 

  • De Ricqlès, A. (2005). La distinction entre “patterns” et “processes” est-elle désuète en systématique ?. In P. Deleporte & G. Lecointre (coord.), Philosophie de la systématique (Biosystema, Vol. 24, pp. 33–41). Paris: Publication de la Société française de systématique.

    Google Scholar 

  • Debruyne, R., & Tassy, P. (2004). Vers une phylogénétique non systématique ? In A. Cibois, T. Bourgoin & J.-F. Silvain (coord.), Avenir et pertinence des méthodes d’analyse en phylogénie moléculaire (Bioystema, Vol. 22, pp. 25–34). Paris: Publication de la Société française de systématique.

    Google Scholar 

  • Deleporte, P. (2004). Parcimonie ou maximum de vraisemblance : mieux considérer les postulats pour en finir avec une querelle de sourds. In A. Cibois, T. Bourgoin & J.-F. Silvain (coord.), Avenir et pertinence des méthodes d’analyse en phylogénie moléculaire (Bioystema, Vol. 22, pp. 15–23). Paris: Publication de la Société française de systématique.

    Google Scholar 

  • Delsuc F., & Douzery, E. J. P. (2004a). Les méthodes probabilistes en phylogénie moléculaire. (1) Les modèles d’évolution des séquences et le maximum de vraisemblance. In A. Cibois, T. Bourgoin & J. -F. Silvain (coord.), Avenir et pertinence des méthodes d’analyse en phylogénie moléculaire (Bioystema, Vol. 22, pp. 59–74). Paris: Publication de la Société française de systématique.

    Google Scholar 

  • Delsuc, F., & Douzery, E. J. P. (2004b). Les méthodes probabilistes en phylogénie moléculaire. (2) L’approche bayésienne. In A. Cibois, T. Bourgoin & J.-F. Silvain (coord.), Avenir et pertinence des méthodes d’analyse en phylogénie moléculaire (Bioystema, Vol. 22, pp. 75–86). Paris: Publication de la Société française de systématique.

    Google Scholar 

  • Doolittle, W. F., & Bapteste, E. (2007). Pattern pluralism and the tree of life hypothesis. PNAS, 104, 2043–2049.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dupuis, C. (1986). Darwin et les taxinomies d’aujourd’hui. In P. Tassy (coord.), L’ordre et la diversité du vivant (pp. 215–240). Paris: Fayard/Fondation Diderot.

    Google Scholar 

  • Eldredge, N., & Cracraft, J. (1980). Phylogenetic patterns and the evolutionary process. New York: Columbia University Press.

    Google Scholar 

  • Farris, J. S. (1983). The logical basis of phylogenetic analysis. In N. I. Platnick & V. A. Funk (Eds.), Advances in Cladistics (Vol. 2, pp. 7–36). New York: Columbia University Press.

    Google Scholar 

  • Farris, S. (1997). Cycles. Cladistics, 13, 131–144.

    Google Scholar 

  • Felsenstein, J. (1978). Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology, 27, 401–410.

    Article  Google Scholar 

  • Felsenstein, J. (2001). The troubled growth of statistical phylogenetics. Systematic Biology, 50, 465–467.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. (2004). Inferring phylogenies. Sunderland: Sinauer Associates, Inc.

    Google Scholar 

  • Gascuel, O., & Steel, M. (Eds.). (2007). Reconstructing evolution: New mathematical and computational advances. Oxford: Oxford University Press.

    Google Scholar 

  • Gatesy, J. (1998). Molecular evidence for the phylogenetic affinities of Cetacea. In J. G. M. Thewissen (Ed.), The emergence of whales (pp. 63–111). New York/London: Plenum Press.

    Chapter  Google Scholar 

  • Gaudry, A. (1866). Considérations générales sur les animaux fossiles de Pikermi. Paris: F. Savy.

    Book  Google Scholar 

  • Gheerbrant, E., Sudre, J., Tassy, P., Amaghzaz, M., Bouya, B., & Iarochène, M. (2005). Nouvelles données sur Phosphatherium escuilliei (Mammalia, Proboscidea) de l’Eocène inférieur du Maroc, apports à la phylogénie des Proboscidea et des ongulés lophodontes. Geodiversitas, 27, 229–333.

    Google Scholar 

  • Gingerich, P. D., & Russell, D. E. (1981). Pakicetus inachus, a new archaeocete (Mammalia, Cetacea) from the early-middle Eocene Kuldana Formation of Kohat (Pakistan)”. Contributions from the Museum of Paleontology, University of Michigan, 25, 235–246.

    Google Scholar 

  • Gingerich, P. D., Ul Haq, M., Zalmout, I. S., Khan, I. H., & Malkani, M. S. (2001). Origin of whales from early artiodactyls: Hands and feet of Eocene Protocetidae from Pakistan. Science, 293, 2239–2242.

    Article  CAS  PubMed  Google Scholar 

  • Gould, S. J. (2002). The structure of evolutionary theory. Cambridge: The Belknap Press of Harvard University Press.

    Google Scholar 

  • Guindon, S., & Gascuel, O. (2003). A simple fast, and accurate algorithm to estimate larges phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.

    Article  PubMed  Google Scholar 

  • Haeckel, E. (1866). Generelle Morphologie des Organismen. Berlin: Georg Reimer.

    Book  Google Scholar 

  • Hall, B. K. (Ed.). (1994). Homology, the hierarchical basis of comparative biology. San Diego: Academic Press.

    Google Scholar 

  • Hall, B. G. (2008). Phylogenetic trees made easy: A how-to-manual (3rd ed.). Sunderland: Sinauer Associates, Inc.

    Google Scholar 

  • Harper, C. W., Jr. (1979). A Baesian probability view of phylogenetic systematics. Systematic Zoology, 28, 547–553.

    Article  Google Scholar 

  • Hennig, W. (1950). Grundzüge einer Theorie der phylogenetischen Systematik. Berlin: Deutscher Zentralverlag.

    Google Scholar 

  • Hennig, W. (1966). Phylogenetic systematics. Urbana: The University of Illinois Press.

    Google Scholar 

  • Huelsenbeck, J. P., & Hillis, D. M. (1993). Success of phylogenetic methods in the four-taxon case. Systematic Biology, 42, 247–264.

    Article  Google Scholar 

  • Huelsenbeck, J. P., Ronquist, F., Nielsen, R., & Bollback, J. P. (2001). Bayesian inference of phylogeny and its impact on evolutionary biology. Science, 294, 2310–2314.

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck, J. P., Larget, B., & Alfaro, M. E. (2004). Baesian phylogenetic model selection using reversible jump Markov chain MonteCarlo. Molecular and Biological Evolution, 21, 1123–1133.

    Article  CAS  Google Scholar 

  • Irwin, D. M., & Arnason, U. (1994). Cytochrome b gene of marine mammals: Phylogeny and evolution. Journal of Mammalian Evolution, 2, 37–55.

    Article  Google Scholar 

  • Kiriakoff, S. G. (1963). Les fondements philosophiques de la systématique biologique. In La classification dans les sciences (pp. 61–88). Gembloux: Duculot.

    Google Scholar 

  • Kluge, A., & Farris, J. S. (1969). Quantitative phyletics and the evolution of anurans. Systematic Zoology, 18, 1–32.

    Article  Google Scholar 

  • Lankester, E. R. (1870). On the use of the term homology in modern zoology, and the distinction between homogenetic and homoplastic agreements. Annals and Magazine of Natural History, 4(6), 34–43.

    Article  Google Scholar 

  • Lecointre, G. (2004). Le statut de la parcimonie. In A. Cibois, T. Bourgoin & J.-F. Silvain (coord.), Avenir et pertinence des méthodes d’analyse en phylogénie moléculaire (Bioystema, Vol. 22, pp. 7–14). Paris: Publication de la Société française de systématique.

    Google Scholar 

  • Lecointre, G., & Deleporte, P. (2000). Le principe du “total evidence” requiert l’exclusion de données trompeuses. In V. Barriel & T. Bourgoin (coord.), Caractères (Bioystema, Vol. 18, pp. 129–151). Paris: Publication de la Société française de systématique.

    Google Scholar 

  • Mayr, E. (1998). This is biology: The science of the living world. Cambridge: The Belknap Press of Harvard University Press.

    Google Scholar 

  • Mickevich, M. F. (1983). Introduction. In N. I. Platnick & V. A. Funk (Eds.), Advances in Cladistics (Vol. 2, pp. 3–5). New York: Columbia University Press.

    Google Scholar 

  • Morrison, D. A. (2008). Book reviews: Phylogenetic trees made easy: A How-to Manual (third edition), Barry G. Hall. Sunderland: Sinauer Associates, xiv + 230 pp., Systematic Biology, 57, 658–660.

    Google Scholar 

  • Nelson, G. (1979). Cladistic analysis and synthesis: Principles and definitions, with a historical note on Adanson’s Familles des Plantes (1763–1764). Systematic Zoology, 28, 1–21.

    Article  Google Scholar 

  • Nelson, G. (1994). Homology and systematics. In B. K. Hall (Ed.), Homology: The hierarchical basis of comparative biology (pp. 101–149). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Nelson, G. (1996). Nullius in Verba, New York, published by the author. Journal of Comparative Biology, 1, 141–152.

    Google Scholar 

  • Nelson, G., & Ladiges, P. Y. (1991). Standard assumptions for biogeographic analysis. Australian Systematic Botany, 4, 41–58.

    Google Scholar 

  • Nelson, G., & Platnick, N. I. (1991). Three-taxon statements: A more precise use of parsimony? Cladistics, 7, 351–366.

    Article  Google Scholar 

  • Patterson, C. (1987). Introduction. In C. Patterson (Ed.), Molecules and morphology: Conflict or compromise? (pp. 1–22). Cambridge: Cambridge University Press.

    Google Scholar 

  • Patterson, C. (1994). Null or minimal models. In R. W. Scotland, D. J. Siebert, & D. M. Williams (Eds.), Models in phylogeny reconstruction (The Systematics Association, special vol. 52, pp. 173–192). Oxford: Oxford University Press.

    Google Scholar 

  • Platnick, N. I. (1979). Philosophy and the transformation of cladistics. Systematic Zoology, 28, 537–546.

    Article  Google Scholar 

  • Rodrigue, N., Philippe, H., & Lartillot, N. (2007). Exploring fast computational strategies for probabilistic phylogenetic analysis. Systematic Biology, 56, 711–726.

    Article  PubMed  Google Scholar 

  • Rosen, D. E. (1984). Hierarchies and history. In J. W. Pollard (Ed.), Evolutionary Theory: Paths Into the Future (pp. 77–97). Chichester: Wiley.

    Google Scholar 

  • Sanderson, M. J., & Hufford, L. (Eds.). (1996). Homoplasy: The recurrence of similarity in evolution. San Diego: Academic.

    Google Scholar 

  • Shimodaira, H., & Hasegawa, M. (1999). Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular and Biological Evolution, 16, 1114–1116.

    Article  CAS  Google Scholar 

  • Siddall, M. E. (1998). Success of parsimony in the four-taxon case: Long-branch repulsion by likelihood in the Farris zone. Cladistics, 14, 209–220.

    Article  Google Scholar 

  • Springer, M. S., Burk-Herrick, A., Meredith, R., Eizirik, E., Teeling, E., O’Brien, S. J., & Murphy, W. J. (2007). The adequacy of morphology for reconstructing the early history of placental mammals. Systematic Biology, 56, 673–684.

    Article  PubMed  Google Scholar 

  • Srivastava, M., Begovic, E., Chapman, J., Putnam, N. H., Hellsten, U., Kawashima, T., Kuo, A., Mitros, T., Salamov, A., Carpenter, M. L., Signorovitch, A. Y., Moreno, M. A., Kamm, K., Grimwood, J., Schmutz, J., Shapiro, H., Grogoriev, I. V., Buss, L. W., Schierwater, B., Dellaporta, S. L., & Rokhsar, L. (2008). The Trichoplax genome and the nature of placozoans. Nature, 454, 955–960.

    Article  CAS  PubMed  Google Scholar 

  • Steel, M., & Rodrigo, A. (2008). Maximum likelihood supertrees. Systematic Biology, 57, 243–250.

    Article  PubMed  Google Scholar 

  • Tassy, P. (1983). Actualité de la classification zoologique selon Darwin. In Y. Conry (Dir.), De Darwin au darwinisme : science et idéologie (pp. 261–273). Paris: Vrin.

    Google Scholar 

  • Tassy, P. (1991). L’arbre à remonter le temps. Paris: Christian Bourgois.

    Google Scholar 

  • Tassy, P. (2005). Fait et théorie : quelle connaissance de base pour la cladistique structurale?. In P. Deleporte & G. Lecointre (coord.), Philosophie de la systématique (Biosystema, Vol. 24, pp. 63–74). Paris: Publication de la Société française de systématique.

    Google Scholar 

  • Tassy, P. (2006). Albert Gaudry et l’émergence de la paléontologie darwinienne au xixe siècle. Annales de paléontologie, 92, 41–70.

    Article  Google Scholar 

  • Thewissen, J. G. M., Williams, E. M., Roe, L. J., & Hussain, S. T. (2001). Skeletons of terrestrial cetaceans and the relationships of whales to artiodactyls. Nature, 413, 277–281.

    Article  CAS  PubMed  Google Scholar 

  • Wheeler, W., Aagesen, L., Arango, C. P., Faivovich, J., Grant, T., D’Haese, C., Janies, D., Smith, W. L., Varon, A., & Giribet, G. (2006). Dynamic Homology and Phylogenetic Systematics: A unified approach using POY. New York: American Museum of Natural History Press.

    Google Scholar 

  • Williams, D. M., & Ebach, M. C. (2005). Drowning by numbers – Rereading Nelson’s ‘Nullius in Verba’. The Botanical Review, 71, 415–447.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Tassy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tassy, P. (2015). Darwin and Phylogenetics: Past and Present. In: Heams, T., Huneman, P., Lecointre, G., Silberstein, M. (eds) Handbook of Evolutionary Thinking in the Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9014-7_18

Download citation

Publish with us

Policies and ethics