Skip to main content
Log in

Cytochromeb gene of marine mammals: Phylogeny and evolution

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The DNA sequences of the mitochondrial cytochromeb gene of marine mammals (Cetacea, Pinnipedia, Sirenia) were compared with cytochromeb genes of terrestrial mammals including the semiaquatic hippopotamus. The comparison included 28 sequences, representing 22 families and 10 orders. The dugong (order Sirenia) sequence associated with that of the elephant, supporting the Tethytheria clade. The fin whale and dolphin (order Cetacea) sequences are more closely related to those of the artiodactyls, and the comparison suggests that the hippopotamus may be the extant artiodactyl species that is most closely related to the cetaceans. The seal sequence may be more closely related to those of artiodactyls, cetaceans, and perissodactyls than to tethytheres, rodents, lagomorphs, or primates. The cytochromeb proteins of mammals do not evolve at a uniform rate. Human and elephant cytochromeb amino acid sequences were found to evolve the most rapidly, while those of myomorph rodents evolved slowest. The cytochromeb of marine mammals evolves at an intermediate rate. The pattern of amino acid substitutions in marine mammals is similar to that of terrestrial mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Anderson, S., Baniker, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G. (1981). Sequence and organization of the human mitochondrial genome.Nature 290: 457–465.

    PubMed  Google Scholar 

  • Anderson, S., deBruijn, M. H. L., Coulson, A. R., Eperon, I. C., Sanger, F., and Young, I. G. (1982). Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome.J. Mol. Biol. 156: 683–717.

    Google Scholar 

  • Árnason, Ú., and Johnsson, E. (1992). The complete sequence of the mitochondrial DNA of the harbor seal,Phoca vitudina.J. Mol. Evol. 34: 493–505.

    PubMed  Google Scholar 

  • Árnason, Ú., and Ledje, C. (1993). The use of highly repetitive DNA for resolving cetacean and pinniped phylogenies. In:Mammal Phylogeny: Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 74–80. Springer-Verlag, New York.

    Google Scholar 

  • Árnason, Ú. and Widegren B. (1986). Pinniped phylogeny enlightened by molecular hybridization using highly repetitive DNA.Mol. Biol. Evol. 3: 356–365.

    Google Scholar 

  • Árnason, Ú., Gullberg, A., and Widegren, B. (1991). The complete sequence of the mitochondrial DNA of the fin whale,Balaenoptera physalus.J. Mol. Evol.,33: 556–568.

    PubMed  Google Scholar 

  • Beintema, J. J., Schüller, C., Irie, M., and Carsana, A. (1988). Molecular evolution of the ribonuclease superfamily.Prog. Biophys. Mol. Biol. 51: 165–192.

    PubMed  Google Scholar 

  • Bibb, M. J., Van Etten R. A., Wright, C. T., Walberg, M. W., and Clayton, D. A. (1982). Sequence and gene organization of mouse mitochondrial DNA.Cell 26: 167–180.

    Google Scholar 

  • Benton, M. J. (1990). Phylogeny of the major tetrapod groups: morphological data and divergence dates.J. Mol. Evol. 30: 409–424.

    PubMed  Google Scholar 

  • Bulmer, M., Wolfe, K. H., and Sharp, P. M. (1991). Synonymous nucleotide substitution rates in mammalian genes: Imolications for the molecular clock and the relationship of mammalian orders.Proc. Natl. Acad. Sci. USA 88: 5974–5978.

    PubMed  Google Scholar 

  • Czelusniak, J., Goodman, M., Koop, B. F., Tagle, D. A., Shoshani, J., Braunitzer, G., Kleinschmidt, T. K., De Jong W. W., and Matsuda, G. (1990a). Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher taxa of Eutheria. In:Current Mammalogy, Vol. 2, H. H. Genoways, ed., pp. 545–572, Plenum, New York.

    Google Scholar 

  • Czelusniak, J., Goodman, M., Moncrief, N. D., and Kehoe, S. M. (1990b). Maximum parsimony approach to construction of evolutionary trees from aligned homologous sequences.Methods Enzymol. 183: 601–615.

    PubMed  Google Scholar 

  • De Jong, W. W., Zweers A., and Goodman, M. (1981). Relationship of aardvark to elephants, hyraxes and sea cows from α-crystallin sequences.Nature 292: 117–119.

    Google Scholar 

  • De Jong, W. W., Leunissen, J. A. M., and Wistow, G. J. (1993) Eye lens crystallins and the phylogeny of placental orders: Evidence for a macroscelid-paenungulate clade. In:Mammal Phylogemy; Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds. pp. 5–12, Springer-Verlag, New York.

    Google Scholar 

  • Desjardins, P., and Morais, R. (1990). Sequence and gene organization of the chicken mitochondrial genome: A novel gene order in higher vertebrates.J. Mol. Biol. 212: 599–634.

    PubMed  Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap.Evolution 39: 783–791.

    Google Scholar 

  • Felsenstein, J. (1988). Phylogenies from molecular sequences: Inference and reliability.Annu. Rev. Genet. 22: 521–565.

    PubMed  Google Scholar 

  • Felsenstein, J. (1993).PHYLIP. Phylogenetic Inference Package, Program and Documentation, Version 3.5, University of Washington, Seattle.

    Google Scholar 

  • Gadaleta, G., Pepe, G., De Candia, G., Quagliariello, C., Sbisà, E., and Saccone, C. (1989). The complete nucleotide sequence of theRattus norvegicus mitochondrial genome: Cryptic signals revealed by comparative analysis between vertebrates.J. Mol. Evol. 28: 497–516.

    PubMed  Google Scholar 

  • Gentry, A. W., and Hooker, J. J. (1988). The phylogeny of Artiodactyla. In:The Phylogeny of the Tetrapods, Vol. 2. Mammals, M. J. Benton, ed., pp. 235–272. Clarendon Press, Oxford.

    Google Scholar 

  • Gingerich, P. D., Wells, N. A., Russell, D. E., and Shaw, S. M. (1983). Origin of whales in epicontinental remnant seas: New evidence from the early Eocene of Pakistan,Science 220: 403–406.

    Google Scholar 

  • Gingerich, P. D., Smith, B. H., and Simons, E. L. (1990). Hind limbs of EoceneBasilosaurus: Evidence of feet in whales.Science 249: 154–157.

    Google Scholar 

  • Graur, D. (1993a). Molecular phylogeny and the higher classification of eutherian mammals.Trends Ecol. Evol. 8: 141–147.

    Google Scholar 

  • Graur, D. (1993b) Towards a molecular resolution of the ordinal phylogeny of the eutherian mammals.FEBS Lett. 325: 152–159.

    PubMed  Google Scholar 

  • Graur, D., Hide, W. A. and Li, W.-H. (1991). Is the guinea pig a rodent?Nature 351: 649–652.

    PubMed  Google Scholar 

  • Holmes, E. C. (1991). Different rates of substitution may produce different phylogenies of the eutherian mammals.J. Mol. Evol. 33: 209–215.

    PubMed  Google Scholar 

  • Howell, N. (1989). Evolutionary conservation of protein regions in the proton-motive cytochromeb and their possible roles in redox catalysis.J. Mol. Evol. 29: 157–169.

    PubMed  Google Scholar 

  • Irwin, D. M., and Wilson, A. C. (1993). Limitations of molecular methods for establishing the phylogeny of mammals, with special reference to the position of elephants. In:Mammal Phylogeny: Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 257–267, Springer-Verlag, New York.

    Google Scholar 

  • Irwin, D. M., Sidow, A., White, R. T., and Wilson, A. C. (1989). Multiple genes for ruminant lysozymes. In:The Immune Response to Structurally Defined Proteins: The Lysozyme Model., S. J. Smith-Gill and E. E. Sercarz, eds., pp. 73–85, Adenine Press, Schenectady, NY.

    Google Scholar 

  • Irwin, D. M. Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochromeb gene of mammals.J. Mol. Evol. 32: 128–144.

    PubMed  Google Scholar 

  • Li, W.-H., Gouy, M., Sharp, P. M., O'Huigin, C., and Yang, Y.-W. (1990). Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks.Proc. Natl. Acad. USA 87: 6703–6707.

    Google Scholar 

  • Luckett, W. P., and Hartenberger, J.-L. (1993). Monophyly or paraphyly of the order Rodentia: Possible conflicts between morphological and molecular interpretations.J. Mammal. Evol. 1: 127–147.

    Google Scholar 

  • Ma, D.-P., Zharkikh, A., Graur, D., VandeBerg, J. L., and Li, W.-H. (1993). Structure and evolution of opossum, guinea pig, and porcupine cytochromeb genes.J. Mol. Evol. 36: 327–334.

    PubMed  Google Scholar 

  • Martin, A. P., and Palumbi, S. R. (1993). Body size, metabolic rate, generation time, and the molecular clock.Proc. Natl. Acad. Sci. USA 90: 4087–4091.

    PubMed  Google Scholar 

  • McKerna M. C. (1987). Molecular and morphological analysis of higher-level mammalian interrelationships. In:Molecules and Morphology in Evolution: Conflict or Compromise? C. Patterson, ed., pp. 55–94. Cambridge University Press, Cambridge.

    Google Scholar 

  • Mindell, D. P., and Honeycutt, R. L. (1990). Ribosomal RNA in vertebrates: Evolution and phylogenetic applications.Annu. Rev. Ecol. Syst. 21: 541–566.

    Google Scholar 

  • Nei, M. (1991). Relative efficiencies of different tree-making methods for molecular data. In:Phylogenetic Analysis of DNA Sequences, M. M. Miyamoto and J. Cracraft, eds, pp. 90–128, Oxford University Press, New York.

    Google Scholar 

  • Novacek, M. J. (1989). Higher mammal phylogeny: The morphological-molecular synthesis. In:The Hierarchy of Life, B. Fernholm, K. Bremer, and H. Jörnvall, eds., pp. 421–435, Elsevier, Amsterdam.

    Google Scholar 

  • Novacek, M. J. (1992). Mammalian phylogeny: Shaking the tree.Nature 356: 121–125.

    PubMed  Google Scholar 

  • Pesole, G., Sbisa, E., Mlignotte, F., and Saccone, C. (1991). The branching order of mammals: Phylogenetic trees inferred from nuclear and mitochondrial molecular data.J. Mol. Evol. 33: 537–542.

    PubMed  Google Scholar 

  • Prager, E. M., and Wilson, A. C. (1988). Ancient origin of lactalbumin from lysozyme: Analysis of DNA and amino acid sequences,J. Mol. Evol. 27: 326–335.

    PubMed  Google Scholar 

  • Prothero, D. R. (1993). Ungulate phylogeny: Molecular vs. morphological evidence. In:Mammal Phylogeny: Placentals. F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 173–181. Springer-Verlag, New York.

    Google Scholar 

  • Prothero, D. R., Manning, E. M., and Fischer, M., (1988). The phylogeny of ungulates. In:The Phylogeny and Classification of the Tetrapods, Vol. 2 M. J. Benton, ed., pp. 201–234. Clarendon, Oxford.

    Google Scholar 

  • Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees.Mol. Biol. Evol. 4: 406–425.

    PubMed  Google Scholar 

  • Shoshani, J. (1986). Mammalian phylogeny: Comparison of morphological and molecular results.Mol. Biol. Evol. 3: 222–242.

    PubMed  Google Scholar 

  • Springer, M. S., and Kirsch, J. A. W. (1993). A molecular perspective on the phylogeny of placental mammals based on mitochondrial 12S rDNA sequences.J. Mammal. Evol. 1: 149–166.

    Google Scholar 

  • Stanhope, M. J., Bailey, W. J., Czelusniak, J. Goodman, M., Si, J.-S., Nickerson, J., Sgouros, J. G., Singer, G. A. M., and Kleinschmidt, T. D. (1993). A molecular view of primate supraordinal relationships from the analysis of both nucleotide and amino acid sequences. In:Primates and Their Relatives in Phylogenetic Perspective R. D. E. MacPhee, ed., pp. 251–292, Plenum Press, New York.

    Google Scholar 

  • Stewart, C.-B. (1993). The powers and pitfalls of parsimony.Nature 361: 603–607.

    PubMed  Google Scholar 

  • Swofford, D. L. (1993).PAUP: Phylogenetic Analysis Using Parsimony, Program and Documentation. Version 3. 1. 1.. Illinois Natural History Survey, Champaign.

    Google Scholar 

  • Swofford, D. L., and Olsen, G. L. (1990). Phylogeny reconstruction. In:Molecular Systematics, D. M. Hillis and C. Moritz, eds., pp. 411–501, Sinauer Associates, Sunderland, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irwin, D.M., Árnason, Ú. Cytochromeb gene of marine mammals: Phylogeny and evolution. J Mammal Evol 2, 37–55 (1994). https://doi.org/10.1007/BF01464349

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01464349

Key Words

Navigation