Skip to main content

What Is a Seizure Network? Very Fast Oscillations at the Interface Between Normal and Epileptic Brain

  • Chapter
  • First Online:
Issues in Clinical Epileptology: A View from the Bench

Abstract

Although there is a great multiplicity of normal brain electrical activities, one can observe defined, relatively abrupt, transitions between apparently normal rhythms and clearly abnormal, higher amplitude, “epileptic” signals; transitions occur over tens of ms to many seconds. Transitional activity typically consists of low-amplitude very fast oscillations (VFO). Examination of this VFO provides insight into system parameters that differentiate the “normal” from the “epileptic.” Remarkably, VFO in vitro is generated by principal neuron gap junctions, and occurs readily when chemical synapses are suppressed, tissue pH is elevated, and [Ca2+]o is low. Because VFO originates in principal cell axons that fire at high frequencies, excitatory synapses may experience short-term plasticity. If the latter takes the form of potentiation of recurrent synapses on principal cells, and depression of these on inhibitory interneurons, then the stage is set for synchronized bursting – if [Ca2+]o recovers sufficiently. Our hypothesis can be tested (in part) in patients, once it is possible to measure brain tissue parameters (pH, [Ca2+]o) simultaneously with ECoG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACSF:

Artificial cerebrospinal fluid

DHPG:

(S)-3,5-dihydroxyphenylglycine

ECoG:

Electrocorticography

TMA:

Trimethylamine

VFO:

Very fast oscillations (>70 Hz)

References

  1. Angelovski G, Chauvin T, Pohmann R, Logothetis NK, Tóth E (2011) Calcium-responsive paramagnetic CEST agents. Bioorg Med Chem 19:1097–1105

    Article  CAS  PubMed  Google Scholar 

  2. Bähner F, Weiss EK, Birke G, Maier N, Schmitz D, Rudolph U, Frotscher M, Traub RD, Both M, Draguhn A (2011) Cellular correlate of assembly formation in oscillating hippocampal networks in vitro. Proc Natl Acad Sci U S A 108:E607–E616

    Article  PubMed Central  PubMed  Google Scholar 

  3. Bough KJ, Rho JM (2007) Anticonvulsant mechanisms of the ketogenic diet. Epilepsia 48:43–58

    Article  CAS  PubMed  Google Scholar 

  4. Buzsáki G, Horváth Z, Urioste R, Hetke J, Wise K (1992) High-frequency network oscillation in the hippocampus. Science 256:1025–1027

    Article  PubMed  Google Scholar 

  5. Cunningham MO, Roopun AK, Schofield IS, Whittaker RG, Duncan R, Russell A, Jenkins A, Nicholson C, Whittington MA, Traub RD (2012) Glissandi: transient fast electrocorticographic oscillation of steadily increasing frequency, explained by temporally increasing gap junction conductance. Epilepsia 53:1205–1214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Dhillon A, Jones RSG (2000) Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro. Neuroscience 99:413–422

    Article  CAS  PubMed  Google Scholar 

  7. Dichter M, Spencer WA (1969) Penicillin-induced interictal discharges from the cat hippocampus. I. Characteristics and topographical features. J Neurophysiol 32:649–662

    CAS  PubMed  Google Scholar 

  8. Draguhn A, Traub RD, Schmitz D, Jefferys JGR (1998) Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 394:189–192

    Article  CAS  PubMed  Google Scholar 

  9. Duffy S, MacVicar BA (1999) Modulation of neuronal excitability by astrocytes. In: Delgado-Escueta AV, Wilson WA, Olsen RW, Porter RJ (eds) Jasper’s basic mechanisms of the epilepsies, vol 79, 3rd edn, Advances in neurology. Lippincott, Philadelphia, pp 573–581

    Google Scholar 

  10. Dugladze T, Schmitz D, Whittington MA, Vida I, Gloveli T (2012) Segregation of axonal and somatic activity during fast network oscillations. Science 336:1458–1461

    Article  CAS  PubMed  Google Scholar 

  11. Fisahn A, Pike FG, Buhl EH, Paulsen O (1998) Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394:186–189

    Article  CAS  PubMed  Google Scholar 

  12. Foerster O (1924) Hyperventilationsepilepsie. Dtsch Z Nervenheilkd 83:347–356

    Article  Google Scholar 

  13. Haas HL, Jefferys JGR (1984) Low-calcium field burst discharges of CA1 pyramidal neurones in rat hippocampal slices. J Physiol 354:185–201

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Heinemann U, Gabriel S, Schuchmann S, Eder C (1999) Contribution of astrocytes to seizure activity. In: Delgado-Escueta AV, Wilson WA, Olsen RW, Porter RJ (eds) Jasper’s basic mechanisms of the epilepsies, vol 79, 3rd edn, Advances in neurology. Lippincott, Philadelphia, pp 583–590

    Google Scholar 

  15. Heinemann U, Louvel J (1983) Changes in [Ca2+]o and [K+]o during repetitive electrical stimulation and during pentetrazol induced seizure activity in the sensorimotor cortex of cats. Pflugers Arch 398:310–317

    Article  CAS  PubMed  Google Scholar 

  16. Javaheri S, Clendening A, Papadakis N, Brody JS (1981) Changes in brain surface pH during acute isocapnic metabolic acidosis and alkalosis. J Appl Physiol 51:276–281

    CAS  PubMed  Google Scholar 

  17. Magnotta VA, Heo HY, Dlouhy BJ, Dahdaleh NS, Follmer RL, Thedens DR, Welsh MJ, Wemmie JA (2012) Detecting activity-evoked pH changes in human brain. Proc Natl Acad Sci U S A 109:8270–8273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Mercer A, Bannister AP, Thomson AM (2006) Electrical coupling between pyramidal cells in adult cortical regions. Brain Cell Biol 35:13–27

    Article  PubMed  Google Scholar 

  19. Miles R, Wong RKS (1983) Single neurones can initiate synchronized population discharge in the hippocampus. Nature 306:371–373

    Article  CAS  PubMed  Google Scholar 

  20. Miles R, Wong RKS (1986) Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus. J Physiol 373:397–418

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Mirza NS, Alfirevic A, Jorgensen A, Marson AG, Pirmohamed M (2011) Metabolic acidosis with topiramate and zonisamide: an assessment of its severity and predictors. Pharmacogenet Genomics 21:297–302

    Article  CAS  PubMed  Google Scholar 

  22. Nimmrich V, Maier N, Schmitz D, Draguhn A (2005) Induced sharp wave-ripple complexes in the absence of synaptic inhibition in mouse hippocampal slices. J Physiol 563:663–670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Nims LF, Gibbs EL, Lennox WG, Williams D (1940) Adjustment of acid-base balance of patients with petit mal epilepsy to overventilation. Arch Neurol Psychiatr 43:262–269

    Article  Google Scholar 

  24. Pais I, Hormuzdi SG, Monyer H, Traub RD, Wood IC, Buhl EH, Whittington MA, LeBeau FEN (2003) Sharp wave-like activity in the hippocampus in vitro in mice lacking the gap junction protein connexin 36. J Neurophysiol 89:2046–2054

    Article  CAS  PubMed  Google Scholar 

  25. Panayiotopoulos CP (2001) Treatment of typical absence seizures and related epileptic syndromes. Paediatr Drugs 3:379–403

    Article  CAS  PubMed  Google Scholar 

  26. Perez-Velazquez JL, Valiante TA, Carlen PL (1994) Modulation of gap junctional mechanisms during calcium-free induced field burst activity: a possible role for electrotonic coupling in epileptogenesis. J Neurosci 14:4308–4317

    CAS  PubMed  Google Scholar 

  27. Roopun AK, Simonotto JD, Pierce ML, Jenkins A, Schofield I, Kaiser M, Whittington MA, Traub RD, Cunningham MO (2010) A non-synaptic mechanism underlying interictal discharges in human epileptic neocortex. Proc Natl Acad Sci U S A 107:338–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Schmitz D, Schuchmann S, Fisahn A, Draguhn A, BuhlH EH, Petrasch-Parwez RE, Dermietzel R, Heinemann U, Traub RD (2001) Axo-axonal coupling: a novel mechanism for ultrafast neuronal communication. Neuron 31:831–840

    Article  CAS  PubMed  Google Scholar 

  29. Schuchmann S, Schmitz D, Rivera C, Vanhatalo S, Salmen B, Mackie K, Sipilä ST, Voipio J, Kaila K (2006) Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis. Nat Med 12:817–823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Schuchmann S, Hauck S, Henning S, Grüters-Kieslich A, Vanhatalo S, Schmitz D, Kaila K (2011) Respiratory alkalosis in children with febrile seizures. Epilepsia 52:1949–1955

    Article  PubMed  Google Scholar 

  31. Schwartzkroin PA (1999) Mechanisms underlying the anti-epileptic efficacy of the ketogenic diet. Epilepsy Res 37:171–180

    Article  CAS  PubMed  Google Scholar 

  32. Schwartzkroin PA, Prince DA (1977) Penicillin-induced epileptiform activity in the hippocampal in vitro preparation. Ann Neurol 1:463–469

    Article  CAS  PubMed  Google Scholar 

  33. Schwartzkroin PA, Prince DA (1978) Cellular and field potential properties of epileptogenic hippocampal slices. Brain Res 147:117–130

    Article  CAS  PubMed  Google Scholar 

  34. Schweitzer JS, Wang H, Xiong ZQ, Stringer JL (2000) pH Sensitivity of non-synaptic field bursts in the dentate gyrus. J Neurophysiol 84:927–933

    CAS  PubMed  Google Scholar 

  35. Simon A, Traub RD, Vladimirov N, Jenkins A, Nicholson C, Whittaker R, Schofield I, Clowry GJ, Cunningham MO, Whittington MA (2014) Gap junction networks can generate both ripple-like and fast-ripple-like oscillations. Eur J Neurosci 39:46–60

    Article  PubMed  Google Scholar 

  36. Spray DC, Harris AL, Bennett MVL (1981) Gap junctional conductance is a simple and sensitive function of intracellular pH. Science 211:712–715

    Article  CAS  PubMed  Google Scholar 

  37. Sypert GW, Ward AA Jr (1974) Changes in extracellular potassium activity during neocortical propagated seizures. Exp Neurol 45:19–41

    Article  CAS  PubMed  Google Scholar 

  38. Taylor CP, Dudek FE (1984) Synchronization without active chemical synapses during hippocampal afterdischarges. J Neurophysiol 52:143–155

    CAS  PubMed  Google Scholar 

  39. Traub RD, Wong RKS (1982) Cellular mechanism of neuronal synchronization in epilepsy. Science 216:745–747

    Article  CAS  PubMed  Google Scholar 

  40. Traub RD, Schmitz D, Jefferys JGR, Draguhn A (1999) High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions. Neuroscience 92:407–426

    Article  CAS  PubMed  Google Scholar 

  41. Traub RD, Bibbig A, Fisahn A, LeBeau FEN, Whittington MA, Buhl EH (2000) A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. Eur J Neurosci 12:4093–4106

    Article  CAS  PubMed  Google Scholar 

  42. Traub RD, Whittington MA, Buhl EH, LeBeau FEN, Bibbig A, Boyd S, Cross H, Baldeweg T (2001) A possible role for gap junctions in generation of very fast EEG oscillations preceding the onset of, and perhaps initiating, seizures. Epilepsia 42:153–170

    CAS  PubMed  Google Scholar 

  43. Traub RD, Cunningham MO, Gloveli T, LeBeau FEN, Bibbig A, Buhl EH, Whittington MA (2003) GABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations. Proc Natl Acad Sci USA 100:11047–11052

    Google Scholar 

  44. Traub RD, Pais I, Bibbig A, LeBeau FEN, Buhl EH, Monyer H, Whittington MA (2005) Transient depression of excitatory synapses on interneurons contributes to epileptiform bursts intermixed with gamma oscillations in the mouse hippocampal slice. J Neurophysiol 94:1225–1235

    Article  PubMed  Google Scholar 

  45. Traub RD, Whittington MA (2010) Cortical oscillations in health and disease. Oxford University Press, New York

    Book  Google Scholar 

  46. Traub RD, Duncan R, Russell AJC, Baldeweg T, Tu Y, Cunningham MO, Whittington MA (2010) Spatiotemporal patterns of electrocorticographic very fast oscillations (>80 Hz) consistent with a network model based on electrical coupling between principal neurons. Epilepsia 51:1587–1597

    Article  PubMed Central  PubMed  Google Scholar 

  47. Vladimirov N, Tu Y, Traub RD (2013) Synaptic gating at axonal branches, and sharp-wave ripples with replay: a simulation study. Eur J Neurosci 38:3435–3447

    Article  PubMed  Google Scholar 

  48. Wang Y, Barakat A, Zhou H (2010) Electrotonic coupling between pyramidal neurons in the neocortex. PLoS One 5:e10253

    Article  PubMed Central  PubMed  Google Scholar 

  49. Ward AA Jr (1978) Glia and epilepsy. In: Schoffeniels E, Franck G, Tower GB, Hertz L (eds) Dynamic properties of glia cells. Oxford, Pergamon, pp 413–427

    Google Scholar 

  50. Whittington MA, Doheny HC, Traub RD, LeBeau FEN, Buhl EH (2001) Differential expression of synaptic and non-synaptic mechanisms during stimulus-induced gamma oscillations in vitro. J Neurosci 21:1727–1738

    CAS  PubMed  Google Scholar 

  51. Yaari Y, Konnerth A, Heinemann U (1983) Spontaneous epileptiform activity of CA1 hippocampal neurons in low extracellular calcium solutions. Exp Brain Res 51:153–156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

With deepest gratitude to Philip A. Schwartzkroin who (with Robert Wong and David Prince) introduced RDT to epilepsy research in 1977.

Other Acknowledgement

Supported by IBM, NIH/NINDS, the Alexander von Humboldt Stiftung, Einstein Stiftung Berlin, the Hadwen Trust and the Wellcome Trust. We thank Andreas Draguhn, Dietmar Schmitz, Yoshio Okada, and Nikita Vladimirov for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger D. Traub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Traub, R.D., Cunningham, M.O., Whittington, M.A. (2014). What Is a Seizure Network? Very Fast Oscillations at the Interface Between Normal and Epileptic Brain. In: Scharfman, H., Buckmaster, P. (eds) Issues in Clinical Epileptology: A View from the Bench. Advances in Experimental Medicine and Biology, vol 813. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8914-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8914-1_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8913-4

  • Online ISBN: 978-94-017-8914-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics