Skip to main content

Genetic Analysis Methods of Quantitative Traits in Wheat

  • Chapter
  • First Online:
Genetic Analyses of Wheat and Molecular Marker-Assisted Breeding, Volume 1

Abstract

It is very important of understanding how to construct the genetic population and genetic maps, what methods should be used, etc., to researchers; so in this chapter, the types and quality of genetic population, construction methods of genetic population, types of genetic markers, and statistical methods of QTL mapping were introduced; moreover some new methods and key notes from our study experience were especially provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang SY, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet. 2006;113:1409–20.

    Article  CAS  PubMed  Google Scholar 

  • Atchley WR, Zhu J. Developmental quantitative genetics, conditional epigenetic variability and growth in mice. Genetics. 1997;147:765–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beavis WB. QTL analyses: power, precision, and accuracy. In: Patterson AH (ed) Molecular dissection of complex traits. Boca Raton: CRC Press; 1998.

    Google Scholar 

  • Botstein D, White RL, Skolnik M, Davis RW. Construction of a genetic linkage map in man using length polymorphism. Am J Hum Genet. 1980;32:314–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buckler ES, Holland JB, Acharya CB. The genetic architecture of maize flowering time. Science. 2009;325:714–8.

    Article  CAS  PubMed  Google Scholar 

  • Burr B, Burr EA, Thompson KH, Albertson MC, Stuber CW. Gene mapping with recombinant inbreds in maize. Genetics. 1988;118:519–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darvasi A, Solier M. Optimum spacing of genetic markers for determining linkage between marker loci and quantitative trait Ioci. Theor Appl Genet. 1994;89:351–68.

    CAS  PubMed  Google Scholar 

  • Dudley JW, Lamkey KR, Geadelmann JL. Evaluation of populations for their potential to improve three maize hybrids. Crop Sci. 1996;36:1553–9.

    Article  Google Scholar 

  • Fang XJ, Wu WR, Tang JL. DNA makers assisted breeding in crops. Australia: Science Press; 2001, 2.

    Google Scholar 

  • Guo LB, Xing YZ, Mei HW, Xu CG, Shi CH, Wu P, Luo LJ. Dissection of component QTL expression in yield formation in rice. Plant Breed. 2005;124:127–32.

    Article  CAS  Google Scholar 

  • Hong Y, Xiao N, Zhang C, Su Y, Chen J. Principle of diversity arrays technology (DArT) and its applications in genetic research of plants. HEREDITAS (Beijing). 2009;31:359–64.

    Article  CAS  Google Scholar 

  • Hua JP, Xing YZ, Wu WR, Xu CG, Sun XL, Yu SB, Zhang QF. Single-locus heterotic effects and dominance by dominance interaction can adequately explain the genetic basis of heterosis in an elite hybrid. Proc Natl Acad Sci USA. 2003;100:2574–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A. Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res. 2001;29:e25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen RC, Nap JP. Genetical genomics: the added value from segregation. Trends Genet. 2001;17(7):388–391.

    Google Scholar 

  • Knapp SJ, Bridges WC, Birkes D. Mapping quantitative trait loci using molecular marker linkage maps. Theor. Appl. Genet. 1990;79:583–592.

    Google Scholar 

  • Lander ES, Botstein S. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989;121:185–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Wu W, Lu H. Worland A J, Law C N. QTL mapping and effect estimating on chromosome 7D of wheat. Acta Agro Sinica. 1996;22:641–645.

    Google Scholar 

  • Lin F, Xue SL, Tian DG, Li CJ, Cao Y, Zhang ZZ, Zhang CQ, Ma ZQ. Mapping chromosomal regions affecting flowering time in a spring wheat RIL population. Euphytica. 2008;164:769–77.

    Article  Google Scholar 

  • Liu G, Peng H, Ni Z, Qin D, Song F, Song G, Sun Q. Integrating genetic and gene expression data: methods and applications of eQTL mapping. Heredity (Beijing). 2008;30(9):1228–36.

    Article  CAS  Google Scholar 

  • Liu J, Liu Y, He N, Cui D. Genetics analysis of several quantitative traits of doubled haploid population in wheat. J Triticeae Crops. 2005;25:16–9.

    CAS  Google Scholar 

  • Michelmore RW, Shaw DV. Quantitative genetics: character dissection. Nature. 1988;335:672–3.

    Article  CAS  PubMed  Google Scholar 

  • Olson M, Flood L, Cantor D, Boston D. A common language for physical mapping of the human genome. Science. 1989;245:1434–5.

    Article  CAS  PubMed  Google Scholar 

  • Paran I, Michelmore RW. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce [J]. Theor Appl Genet, 1993;85:985–993.

    Google Scholar 

  • Paterson AH. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphysiums. Nature. 1988;335:721–6.

    Article  CAS  PubMed  Google Scholar 

  • Potokina E, Druka A, Luo ZW, Wise R, Waugh R, Mike K. Gene expression quantitative trait locus analysis of 16000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J. 2008;53:90–101.

    Article  CAS  PubMed  Google Scholar 

  • Rao SQ, Xu S. Mapping quantitative trait loci for ordered categorical traits in four-way crosses. Heredity. 1998;81:214–24.

    Article  PubMed  Google Scholar 

  • Rosa GJM, Leon N, Rosa AJM. Review of microarray experimental design strategies for genetical genomics studies. Physiol Genomics. 2006;28:15–23.

    Article  CAS  PubMed  Google Scholar 

  • Schön CC, Utz HF, Groh S, Truberg B, Openshaw S, Melchinger AE. Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics. 2004;167:485–98.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi CH, Wu JG, Fan LJ, Zhu J, Wu P. Developmental genetic analysis of brown rice weight under different environmental conditions in indica rice. Acta Bot Sin. 2001;43:603–9.

    Google Scholar 

  • Vuylsteke M, Daele HVD, Vercauteren A, Zabeau M, Kuiper M. Genetic dissection of transcriptional regulation by cDNA-AFLP. Plant J. 2006;45:439–46.

    Article  CAS  PubMed  Google Scholar 

  • Wang J. Inclusive composite interval mapping of quantitative traits genes. Acta Agro Sinca. 2009;35:239–45.

    Article  CAS  Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A. Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA. 2004;101:9915–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Li W, Lu H. Dynamic mapping strategy of quantitative trait locus. J Biomathematics. 1997;12:490–8.

    Google Scholar 

  • Williams J, Kubelik A, Livak K, Rafalski J, Tingey S. DNA polymorphisms amplified by arbitrary primers is useful as genetic markers. Nucl Acid Res. 1990;18:6531–5.

    Article  CAS  Google Scholar 

  • Wittenberg A H J, van der L, Cayla C, Kilian A, Visser R G F, Schouten H J. Validation of the high-throughput marker technology DArT using the model plant a rabidops is thaliana. Mol Genet Genomics. 2005; 274:30–39.

    Google Scholar 

  • Xia L, Peng K, Yang SY, Wenzl P, Vicente MCD, Fregene M, Kilian A. DArT for high-throughput genotyping of Cassava (Manihotesculenta) and its wild relatives. Theor Appl Genet. 2005;110:1092–8.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y. Factors influencing the power of QTL mapping: population size. J Zhejiang Agric Univ. 1994;20:573–8.

    Google Scholar 

  • Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet. 1997;95:1025–32.

    Article  CAS  Google Scholar 

  • Ye ZH, Lu ZZ, Zhu J. Genetic analysis for developmental behavior of some seed quality traits in upland cotton (Gossypumhirsutum L.). Euphytica. 2003;129:183–91.

    Article  CAS  Google Scholar 

  • You G, Zhang X. Identification of important genes by marker-trait associationg analysis based on hitchhiking mapping. Heredity (Beijing). 2007;29(7):881–8.

    Article  CAS  Google Scholar 

  • Zeng ZB. Precision mapping of quantitative trait loci. Genetics. 1994;136:1457–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Liu P, Liu X. Construction of chromosome single segment substitution lines and QTL fine mapping. Mol Plant Breed. 2004;2(3):743–6.

    CAS  Google Scholar 

  • Zhang Y. Research progress on crop QTL mapping methods. Chin Sci Bull. 2006;51:2223–31.

    Google Scholar 

  • Zhang YM, Mao YC, Xie CQ, Smith H, Luo L, Xu SZ. Mapping QTL using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L). Genetics. 2005;169:2267–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J. Analytic methods for seed models with genotype × ´environment interaction. Chin J Genet. 1996;23:11–22.

    Google Scholar 

  • Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerprints. European Patent Application. Pub, 1993.

    Google Scholar 

  • Zou F, Gelfond JAL, Airey DC, Lu L, Manly KF, Williams RW, Threadgill DW. Quantitative trait locus analysis using ecombinant inbred intercross (RIX): theoretical and empirical onsiderations. Genetics. 2005;170:1299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jichun Tian .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Science Press, Beijing and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tian, J., Deng, Z., Zhang, K., Yu, H., Jiang, X., Li, C. (2015). Genetic Analysis Methods of Quantitative Traits in Wheat. In: Genetic Analyses of Wheat and Molecular Marker-Assisted Breeding, Volume 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7390-4_2

Download citation

Publish with us

Policies and ethics