Skip to main content

Summary

Water and carbon cycles are strongly coordinated and water availability is a primary limiting factor in many terrestrial ecosystems. Photosynthesis requires sufficient water supply to leaves and constraints on delivery at any point in the hydraulic continuum can lead to stomatal closure and reduced photosynthesis. Thus, maximizing water transport enhances assimilation and can provide plants with a competitive advantage. Unregulated water transport, however, can lead to excessive gradients in xylem tension that result in the development of air or vapor bubbles (i.e. embolisms) that block xylem water transport, potentially leading to permanent loss of function of the xylem. As such there can be a tradeoff between maximizing water transport and minimizing the risk of xylem embolism. This tradeoff has led to the development of a variety of hydraulic mechanisms to maximize efficiency and reduce vulnerability. Although several of these were first described centuries ago (such as stomatal control of transpiration), research in this field continues to uncover previously unrecognized processes employed by plants for maintaining hydraulic safety and/or efficiency. The hydraulic traits described in this chapter include xylem structural characteristics that enhance resistance to embolism such as pit and cell wall architecture; a continuum of strategies for constraining xylem tension to avoid embolism including isohydric and anisohydric control of leaf water potential; and safety and recovery mechanisms such as the capacitive discharge of stored water, hydraulic “circuit breakers” and the ability to repair xylem embolisms. Each of these will be discussed in terms of the variation in their use by contrasting tree types, their variability across organs and species, and their plasticity across environmental gradients. Beyond providing information about the means by which trees currently compete and survive, understanding the hydraulic mechanisms described in this chapter may provide insight into ways that trees are affected by, and the degree to which they may acclimate to rapidly changing climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Al:As :

Leaf area to sapwood area ratio

d a :

Pit aperture depth

D a :

Pit aperture diameter

D l :

Conduit lumen diameter

g s :

Stomatal conductance

HR:

Hydraulic redistribution

k :

Hydraulic conductivity

k l :

Leaf specific hydraulic conductivity

k s :

Sapwood specific hydraulic conductivity

K h :

Hydraulic conductance

K leaf :

Leaf hydraulic conductance

K plant :

Whole plant hydraulic conductance

L :

Conduit length

l a :

Pit aperture length

n pi :

Total number of pit s per conduit

P 50 :

50 % loss of hydraulic conductivity/conductance

P e :

Threshold pressure for conduit air entry

R b :

Radius of a bubble

R h :

Hydraulic resistance

R lum :

Conduit lumen resistance

R pit :

Conduit end wall pit resistance

R pit-total :

Total conduit pit resistance

R tot :

Total conduit resistance

T :

Surface tension of water

ρ:

Density of water

υ:

Viscosity of water

Ψ:

Water potential

Ψleaf :

Leaf water potential

Ψsoil :

Soil water potential

References

  • Aasamaa K, Sber A, Rahi M (2001) Leaf anatomical characteristics associated with shoot hydraulic conductance and stomatal sensitivity to changes of leaf water status in temperate and deciduous trees. Aust J Plant Physiol 28:765–774

    Google Scholar 

  • Aasamaa K, Niinemets Ü, Sõber A (2005) Leaf hydraulic conductance in relation to anatomical and functional traits during Populus tremula leaf ontogeny. Tree Physiol 25:1409–1418

    Article  PubMed  Google Scholar 

  • Addington RN, Donovan LA, Mirchell RJ, Vose JM, Pecot SD, Jack SB, Hacke UG, …, Oren R (2006) Adjustments in hydraulic architecture of Pinus palustris maintain similar stomatal conductance in xeric and mesic habitats. Plant Cell Environ 29:535–545

    Google Scholar 

  • Alder NN, Sperry JS, Pockman WT (1996) Root and stem xylem embolism, stomatal conductance, and leaf turgor in Acer grandidentatum populations along a soil moisture gradient. Oecologia 105:293–301

    Article  Google Scholar 

  • Ambrose AR, Sillett SC, Dawson TE (2009) Effects of tree height on branch hydraulics, leaf structure and gas exchange in California redwoods. Plant Cell Environ 32:743–757

    Article  PubMed  Google Scholar 

  • Andrade JL, Meinzer FC, Goldstein G, Holbrook NM, Cavelier J, Jackson P, Silvera K (1998) Regulation of water flux through trunks, branches and leaves in trees of a lowland tropical forest. Oecologia 115:463–471

    Article  Google Scholar 

  • Barnard D, Meinzer FC, Lachenbruch B, McCulloh KA, Johnson DM, Woodruff DR (2011) Climate-related trends in sapwood biophysical properties in two conifers: avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance. Plant Cell Environ 34:643–654

    Article  PubMed  Google Scholar 

  • Bauch JW, Liesea W, Schultze R (1972) The morphological variability of the bordered pit membranes in gymnosperms. Wood Sci Tech 6:165–184

    Article  Google Scholar 

  • Bauerle TL, Richards JH, Smart DR, Eissenstat DM (2008) Importance of internal hydraulic redistribution for prolonging the lifespan of roots in dry soil. Plant Cell Environ 31:177–186

    PubMed  CAS  Google Scholar 

  • Bonal D, Guehl JM (2001) Contrasting patterns of leaf water potential and gas exchange responses to drought in seedlings of tropical rainforest species. Funct Ecol 15:490–496

    Article  Google Scholar 

  • Borchert R, Pockman WT (2005) Water storage and xylem tension in isolated branches of temperate and tropical trees. Tree Physiol 25:457–466

    Article  PubMed  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, …, Meyer CW (2005) Regional vegetation die-off in response to global-change type drought. Proc Natl Acad Sci USA 102:15144–15148

    Google Scholar 

  • Brodersen CR, McElrone AJ, Choat B, Matthews MA, Shackel KA (2010) The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography. Plant Physiol 154:1088–1095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brodersen CR, Roark LC, Pittermann J (2012) The physiological implications of primary xylem organization in two ferns. Plant Cell Environ 35:1898–1911

    Article  PubMed  Google Scholar 

  • Brodribb TJ, Feild TS (2000) Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. Plant Cell Environ 23:1381–1388

    Article  Google Scholar 

  • Brodribb TJ, Holbrook NM (2003) Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiol 132:2166–2173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brodribb TJ, Holbrook NM (2004) Diurnal depression of leaf hydraulic conductance in a tropical tree species. Plant Cell Environ 27:820–827

    Article  Google Scholar 

  • Brodribb TJ, Holbrook NM, Edwards EJ, Gutierrez MV (2003) Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant Cell Environ 26:443–450

    Article  Google Scholar 

  • Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Hydrol Pap No. 3. Colorado State University, Fort Collins

    Google Scholar 

  • Brooks JR, Meinzer FC, Coulombe R, Gregg J (2002) Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests. Tree Physiol 22:1107–1117

    Google Scholar 

  • Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Sternberg LDSL (2003) Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: factors and mechanisms contributing to the refilling of embolized vessels. Plant Cell Environ 26:1633–1645

    Article  Google Scholar 

  • Bucci SJ, Goldstein G, Meinzer FC, Scholz FG, Franco AC, Bustamante M (2004) Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole-plant. Tree Physiol 24:891–899

    Article  PubMed  CAS  Google Scholar 

  • Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Franco AC, Campanello PI, Villalobos-Vega R, …, Miralles-Wilhelm F (2006) Nutrient availability constrains the hydraulic architecture and water relations of savanna trees. Plant Cell Environ 29:2153–2167

    Google Scholar 

  • Bucci SJ, Scholz FG, Goldstein G, Hoffmann WA, Meinzer FC, Franco AC, Giambelluca T, Miralles-Wilhelm F (2008) Controls on stand transpiration and soil water utilization along a tree density gradient in a neotropical savanna. Agric For Meteorol 148:839–849

    Google Scholar 

  • Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Arce ME (2009) Soil water availability and rooting depth as determinants of hydraulic architecture of Patagonian woody species. Oecologia 160:631–641

    Article  PubMed  Google Scholar 

  • Bucci SJ, Scholz FG, Campanello PI, Montti L, Jimenez-Castillo M, Rockwell FA, La Manna L, …, Goldstein G (2012) Hydraulic differences along the water transport system of South American Nothofagus species: do leaves protect the stem functionality. Tree Physiol 32:880–893

    Google Scholar 

  • Burgess SO, Pittermann J, Dawson TE (2006) Hydraulic efficiency and safety of branch xylem increases with height in Sequoia sempervirens (D.Don) crowns. Plant Cell Environ 29:229–239

    Article  PubMed  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366

    Article  PubMed  Google Scholar 

  • Chen J-W, Zhang Q, Li X-S, Cao K-F (2009) Independence of stem and leaf hydraulic traits in six Euphorbiaceae tree species with contrasting leaf phenology. Planta 230:459–468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choat B, Cobb AR, Jansen S (2008) Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytol 177:608–626

    Article  PubMed  Google Scholar 

  • Choat B, Medek DE, Stuart SA, Pasquet-Kok J, Egerton JJG, Salari H, Sack L, Ball MC (2011) Xylem traits mediate a trade-off between resistance to freeze-thaw-induced embolism and photosynthetic capacity in overwintering evergreens. New Phytol 191:996–1005

    Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, …, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755

    Google Scholar 

  • Christman MA, Sperry JS, Adler FR (2009) Testing the “rare pit” hypothesis in three species of Acer. New Phytol 182:664–674

    Article  PubMed  Google Scholar 

  • Christman MA, Sperry JS, Smith DD (2012) Rare pits, large vessels, and extreme vulnerability to cavitation in a ring-porous tree species. New Phytol 193:713–720

    Article  PubMed  Google Scholar 

  • Cochard H, Cruziat P, Tyree MT (1992) Use of positive pressures to establish vulnerability curves: further support for the air seeding hypothesis and implications for pressure-volume analysis. Plant Physiol 100:205–209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crombie DS, Hipkins MF, Milburn JA (1985) Gas penetration of pit membranes in the xylem of Rhododendron as the cause of acoustically detectable sap cavitation. Aust J Plant Physiol 12:445–454

    Article  CAS  Google Scholar 

  • Dagan Z, Weibaum S, Pfeffer R (1982) An infinite-series solution for the creeping motion through an orifice of finite length. J Fluid Mech 115:505–523

    Article  CAS  Google Scholar 

  • Davis SD, Sperry JS, Hacke UG (1999) The relationship between xylem conduit diameter and cavitation caused by freezing. Am J Bot 86:1367–1372

    Article  PubMed  CAS  Google Scholar 

  • Delzon S, Douthe C, Sala A, Cochard H (2010) Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding. Plant Cell Environ 33:2101–2111

    Article  PubMed  PubMed Central  Google Scholar 

  • Domec JC, Gartner BL (2001) Cavitation and water storage in bole xylem segments of mature and young Douglas-fir trees. Trees 15:204–214

    Article  Google Scholar 

  • Domec JC, Gartner BL (2003) Relationship between growth rates and xylem hydraulic characteristics in young, mature and old-growth ponderosa pine trees. Plant Cell Environ 26:471–483

    Article  Google Scholar 

  • Domec JC, Warren JM, Meinzer FC, Brooks JR, Coulombe R (2004) Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution. Oecologia 141:7–16

    Article  PubMed  Google Scholar 

  • Domec JC, Lachenbruch B, Meinzer FC (2006a) Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziezii; Pinaceae) trees. Am J Bot 93:1588–1600

    Article  PubMed  Google Scholar 

  • Domec JC, Scholz FG, Bucci SJ, Meinzer FC, Goldstein G, Villalobos-Vega R (2006b) Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status. Plant Cell Environ 29:26–35

    Article  PubMed  CAS  Google Scholar 

  • Domec JC, Meinzer FC, Lachenbruch B, Housset J (2007) Dynamic variation in sapwood specific conductivity in six woody species. Tree Physiol 27:1389–1400

    Article  PubMed  Google Scholar 

  • Domec JC, Lachenbruch B, Meinzer FC, Woodruff DR, Warren JM, McCulloh KA (2008) Maximum height in a conifer is associated with conflicting requirements for xylem design. Proc Natl Acad Sci U S A 105:12069–12074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Domec JC, Noormets A, King JS, Sun G, McNulty SG, Gavazzi MJ, Boggs JL, Treasure EA (2009) Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation. Plant Cell Environ 32:980–991

    Google Scholar 

  • Ewers BE, Oren R, Sperry JS (2000) Influence of nutrient versus water supply on hydraulic architecture and water balance in Pinus taeda. Plant Cell Environ 23:1055–1066

    Article  Google Scholar 

  • Ewers B, Mackay DS, Samanta S (2007a) Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species. Tree Physiol 27:11–24

    Article  PubMed  CAS  Google Scholar 

  • Ewers FW, Ewers JM, Jacobsen AL, Lopez-Portillo J (2007b) Vessel redundancy: modeling safety in numbers. IAWA J 28:373–388

    Article  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Feild TS, Brodribb TJ (2001) Stem water transport and freeze-thaw xylem embolism in conifers and angiosperms in a Tasmanian treeline heath. Oecologia 127:314–320

    Article  Google Scholar 

  • Feild TS, Brodribb TJ, Holbrook NM (2002) Hardly a relict: freezing and the evolution of vesselless wood in Winteraceae. Evolution 56:464–478

    Article  PubMed  Google Scholar 

  • Fisher RA, Williams M, Do Vale RL, Da Costa AL, Meir P (2006) Evidence from Amazonian forests is consistent with isohydric control of leaf water potential. Plant Cell Environ 29:151–165

    Google Scholar 

  • Franks PJ, Drake PL, Froend RH (2007) Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant Cell Environ 30:19–30

    Article  PubMed  Google Scholar 

  • Gascò A, Nardini A, Gortan E, Salleo S (2006) Ion-mediated increase in the hydraulic conductivity of Laurel stems: role of pits and consequences for the impact of cavitation on water transport. Plant Cell Environ 29:1946–1955

    Article  PubMed  CAS  Google Scholar 

  • Goldstein G, Meinzer F, Monasterio M (1984) The role of capacitance in the water balance of Andean giant rosette species. Plant Cell Environ 7:179–186

    Google Scholar 

  • Goldstein G, Andrade JL, Meinzer FC, Holbrook NM, Cavelier J, Jackson P, Celis A (1998) Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant Cell Environ 21:397–406

    Article  Google Scholar 

  • Gortan E, Nardini A, Salleo S, Jansen S (2011) Pit membrane chemistry influences the magnitude of ion-mediated enhancement of xylem hydraulic conductance in four Lauraceae species. Tree Physiol 31:48–58

    Article  PubMed  CAS  Google Scholar 

  • Hacke UG, Jansen S (2009) Embolism resistance of three boreal conifer species varies with pit structure. New Phytol 182:675–686

    Article  PubMed  Google Scholar 

  • Hacke UG, Sperry JS (2003) Limits to xylem refilling under negative pressure in Laurus nobilis and Acer negundo. Plant Cell Environ 26:303–311

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Ewers BE, Ellsworth DS, Schafer KVR, Oren R (2000) Influence of soil porosity on water use in Pinus taeda. Oecologia 124:495–505

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Pittermann J (2004) Analysis of circular bordered pit function. II. Gymnosperm tracheids with torus-margo pit membranes. Am J Bot 91:386–400

    Article  PubMed  Google Scholar 

  • Hao G, Hoffmann WA, Scholz FG, Bucci SJ, Meinzer FC, Franco AC, Cao K, Goldstein G (2008) Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems. Oecologia 155:405–415

    Google Scholar 

  • Hargrave KR, Kolb KJ, Ewers FW, Davis SD (1994) Conduit diameter and drought-induced embolism in Salvia mellifera greene (labiatae). New Phytol 126:695–705

    Article  Google Scholar 

  • Hoffmann WA, Marchin RM, Abit P, Lau OL (2011) Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Glob Change Biol 17:2731–2742

    Article  Google Scholar 

  • Holbrook NM, Sinclair TR (1992) Water balance in the arborescent palm, Sabal palmetto. I. Stem structure, tissue water release properties and leaf epidermal conductance. Plant Cell Environ 15:393–399

    Article  Google Scholar 

  • Holbrook NM, Ahrens ET, Burns MJ, Zwieniecki MA (2001) In vivo observation of cavitation and embolism repair using magnetic resonance imaging. Plant Physiol 126:27–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hölttä T, Cochard H, Nikinmaa E, Mencuccini M (2009) Capacitive effect of cavitation in xylem conduits: results from a dynamic model. Plant Cell Environ 32:10–21

    Article  PubMed  Google Scholar 

  • Howard AR, Van Iersel MW, Richards JH, Donovan LA (2009) Night-time transpiration can decrease hydraulic redistribution. Plant Cell Environ 32:1060–1070

    Article  PubMed  Google Scholar 

  • Ishii HT, Jennings GM, Sillett SC, Koch GW (2008) Hydrostatic constraints on morphological exploitation of light in tall Sequoia sempervirens trees. Oecologia 156:751–763

    Article  PubMed  Google Scholar 

  • Jansen S, Gortan E, Lens F, Lo Gullo MA, Salleo S, Scholz A, Stein A, …, Nardini A (2011) Do quantitative vessel and pit characters account for ion-mediated changes in the hydraulic conductance of angiosperm xylem? New Phytol 189:218–228

    Google Scholar 

  • Johnson DM, Woodruff DR, McCulloh KA, Meinzer FC (2009) Leaf hydraulic conductance, measured in situ, declines and recovers daily: leaf hydraulics, water potential and stomatal conductance in four temperate and three tropical tree species. Tree Physiol 29:879–887

    Article  PubMed  CAS  Google Scholar 

  • Johnson DM, McCulloh KA, Meinzer FC, Woodruff DR, Eissenstat DM (2011) Hydraulic patterns and safety margins from stem to stomata, in three eastern US tree species. Tree Physiol 31:659–668

    Article  PubMed  CAS  Google Scholar 

  • Johnson DM, McCulloh KA, Woodruff DR, Meinzer FC (2012) Hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different? Plant Sci 195:48–53

    Article  PubMed  CAS  Google Scholar 

  • Jones HG, Sutherland RA (1991) Stomatal control of xylem embolism. Plant Cell Environ 14:607–612

    Google Scholar 

  • Kavanagh KL, Bond BJ, Aitken SN, Gartner BL, Knowe S (1999) Shoot and root vulnerability to xylem cavitation in four populations of Douglas-fir seedlings. Tree Physiol 19:31–37

    Article  PubMed  Google Scholar 

  • Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428:851–854

    Article  PubMed  CAS  Google Scholar 

  • Kolb KJ, Sperry JS (1999) Transport constraints on water use by the Great Basin shrub, Artemisia tridentata. Plant Cell Environ 22:925–935

    Article  Google Scholar 

  • Lemoine D, Granier A, Cochard H (1999) Mechanism of freeze-induced embolism in Fagus sylvatica L. Trees 13:206–210

    Google Scholar 

  • Lens F, Sperry JS, Christman MA, Choate B, Rabaey D, Jansen S (2011) Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol 190:709–723

    Article  PubMed  Google Scholar 

  • Linton MJ, Sperry JS, Williams DG (1998) Limits to water transport in Juniperus osteosperma and Pinus edulis: implications for drought tolerance and regulation of transpiration. Funct Ecol 12:906–911

    Article  Google Scholar 

  • Loepfe L, Martinez-Vilalta J, Piñol J, Mencuccini M (2007) The relevance of xylem network structure for plant hydraulic efficiency and safety. J Theor Biol 247:788–803

    Article  PubMed  Google Scholar 

  • Loewenstein NJ, Pallardy SG (1998a) Drought tolerance, xylem sap abscisic acid and stomatal conductance during soil drying: a comparison of young plants of four temperate deciduous angiosperms. Tree Physiol 18:421–430

    Article  PubMed  CAS  Google Scholar 

  • Loewenstein NJ, Pallardy SG (1998b) Drought tolerance, xylem sap abscisic acid and stomatal conductance during soil drying: a comparison of canopy trees of three temperate deciduous angiosperms. Tree Physiol 18:431–439

    Article  PubMed  CAS  Google Scholar 

  • Lovelock CE, Feller IC, McKee KL, Engelbrecht BMJ, Ball MC (2004) The effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panama. Funct Ecol 18:25–33

    Article  Google Scholar 

  • Lovisolo C, Perrone I, Hartung W, Schubert A (2008) An abscisic acid-related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought. New Phytol 180:642–651

    Article  PubMed  CAS  Google Scholar 

  • Maherali H, DeLucia EH (2001) Influence of climate-driven shifts in biomass allocation on water transport and storage in ponderosa pine. Oecologia 129:481–491

    Article  PubMed  CAS  Google Scholar 

  • Maherali H, Pockman WT, Jackson RB (2004) Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85:2184–2199

    Article  Google Scholar 

  • Markesteijn L, Poorter L, Paz H, Sack L, Bongers F (2011) Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ 34:137–148

    Article  PubMed  Google Scholar 

  • Martínez-Vilalta JJ, Prat E, Oliveras I, Piñol J (2002) Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia 133:19–29

    Article  PubMed  Google Scholar 

  • Martinez-Vilalta J, Vanderklein D, Mencuccini M (2007) Tree height and age-related decline in growth in Scots pine (Pinus sylvestris L.). Oecologia 150:529–544

    Article  PubMed  Google Scholar 

  • Martinez-Vilalta J, Cochard H, Mencuccini M, Sterck F, Herrero A, Korhonen JFJ, Llorens P, …, Zweifel R (2009) Hydraulic adjustment of Scots pine across Europe. New Phytol 184:353–364

    Google Scholar 

  • Martínez-Vilalta JJ, Mencuccini M, Alvarez X, Camacho J, Loepfe L, Piñol L (2012) Spatial distribution and packing of xylem conduits. Am J Bot 99:1189–1196

    Article  PubMed  Google Scholar 

  • Mayr S, Wolfschwenger M, Bauer H (2002) Winter-drought induced embolism in Norway spruce (Picea abies) at the Alpine timberline. Physiol Plant 115:74–80

    Article  PubMed  CAS  Google Scholar 

  • Mayr S, Gruber A, Bauer H (2003) Repeated freeze-thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine). Planta 217:436–441

    Article  PubMed  CAS  Google Scholar 

  • Mayr S, Hacke U, Schmid P, Schwienbacher F, Gruber A (2006) Frost drought in conifers at the alpine timberline: xylem dysfunction and adaptations. Ecology 87:3175–3185

    Article  PubMed  Google Scholar 

  • McCree KJ, Richardson SG (1987) Stomatal closure vs. osmotic adjustment: a comparison of stress response. Crop Sci 27:539–543

    Article  Google Scholar 

  • McCulloh KA, Johnson DM, Meinzer FC, Lachenbruch B (2011a) An annual pattern of native embolism in upper branches of four tall conifer species. Am J Bot 98:1007–1015

    Article  PubMed  Google Scholar 

  • McCulloh KA, Meinzer FC, Sperry JS, Lachenbruch B, Voelker SL, Woodruff DR, Domec JC (2011b) Comparative hydraulic architecture of tropical tree species representing a range of successional stages and wood density. Oecologia 167:27–37

    Article  PubMed  Google Scholar 

  • McCulloh KA, Johnson DM, Meinzer FC, Voelker SL, Lachenbruch B, Domec JC (2012) Hydraulic architecture of two species differing in wood density: opposing strategies in co-occurring tropical pioneer trees. Plant Cell Environ 35:116–125

    Article  PubMed  Google Scholar 

  • McCulloh KA, Johnson DM, Meinzer FC, Woodruff DR (2014) The dynamic pipeline: hydraulic capacitance and xylem hydraulic safety in four tall conifer species. Plant Cell Environ 37:1171–1183

    Article  PubMed  Google Scholar 

  • McCully ME (1999) Root xylem embolisms and refilling in relation to water potentials of soil, roots and leaves and osmotic potentials of xylem sap. Plant Physiol 119:1001–1008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCully ME, Huang CX, Ling LE (1998) Daily embolism and refilling of xylem vessels in the roots of field-grown maize. New Phytol 138:327–342

    Article  Google Scholar 

  • McDowell NG, Phillips N, Lunch CK, Bond BJ, Ryan MG (2002) Hydraulic limitation and compensation in large, old Douglas-fir trees. Tree Physiol 22:763–774

    Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, …, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739

    Google Scholar 

  • McElrone AJ, Pockman WT, Martinez-Vilalta J, Jackson RB (2004) Variation in xylem structure and function in stems and roots of trees to 20 m depth. New Phytol 163:507–51

    Article  Google Scholar 

  • Medeiros JS, Pockman WT (2011) Drought increases freezing tolerance of both leaves and xylem of Larrea tridentata. Plant Cell Environ 34:43–51

    Article  PubMed  CAS  Google Scholar 

  • Meinzer FC, Grantz DA (1990) Stomatal and hydraulic conductance in growing sugarcane: Stomatal adjustment to water transport capacity. Plant Cell Environ 13:383–388

    Article  Google Scholar 

  • Meinzer FC, James SA, Goldstein G, Woodruff DR (2003) Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees. Plant Cell Environ 26:1147–1155

    Article  Google Scholar 

  • Meinzer FC, James SA, Goldstein G (2004a) Dynamics of transpiration, sap flow and use of stored water in tropical forest canopy trees. Tree Physiol 24:901–909

    Article  PubMed  Google Scholar 

  • Meinzer FC, Brooks JR, Bucci S, Goldstein G, Scholz FG, Warren JM (2004b) Converging patterns of uptake and hydraulic redistribution of soil water in contrasting vegetation types. Tree Physiol 24:919–928

    Article  PubMed  CAS  Google Scholar 

  • Meinzer FC, Woodruff DR, Domce J-C, Goldstein G, Campanello P, Gatti MG, Villalobos-Vega R (2008a) Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia 156:31–41

    Article  PubMed  Google Scholar 

  • Meinzer FC, Campanello PI, Domec J-C, Gatti MG, Goldstein G, Villalobos-Vega R, Woodruff DR (2008b) Constraints on physiological function associated with branch architecture and wood density in tropical forest trees. Tree Physiol 28:1609–1617

    Article  PubMed  Google Scholar 

  • Meinzer F, Goldstein G, Jackson P, Holbrook N, Gutierrez M, Cavelier J (1995) Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic properties. Oecologia 101:514–522

    Google Scholar 

  • Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR (2009) Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct Ecol 23:922–930

    Article  Google Scholar 

  • Meinzer FC, McCulloh KA, Lachenbruch B, Woodruff DR, Johnson DM (2010) The blind men and the elephant: the impact of context and scale in evaluating conflicts between plant hydraulic safety and efficiency. Oecologia 164:287–296

    Article  PubMed  Google Scholar 

  • Melcher PJ, Goldstein G, Meinzer FC, Yount DE, Jones TJ, Holbrook NM, Huang CX (2001) Water relations of coastal and estuarine Rhizophora mangle: xylem pressure potential and dynamics of embolism formation and repair. Oecologia 126:182–192

    Article  Google Scholar 

  • Mencuccini M (2003) The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant Cell Environ 26:163–182

    Article  Google Scholar 

  • Mitchell PJ, O’Grady AP, Tissue DT, White DA, Ottenschlaeger ML, Pinkard E (2012) Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytol 197:862–872

    Article  PubMed  CAS  Google Scholar 

  • Murai-Hatano M, Kuwagata T, Sakurai J, Nonami H, Ahamed A, Nagasuga K, Matsunami T, …, Okada M (2008) Effect of low root temperature on hydraulic conductivity of rice plants and the possible role of aquaporins. Plant Cell Physiol 49:1294–1305

    Google Scholar 

  • Nardini A, Tyree MT, Salleo S (2001) Xylem cavitation in the leaf of Prunus laurocerasus and its impact on leaf hydraulics. Plant Physiol 125:1700–1709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nardini A, Ramani M, Gortan E, Salleo S (2008) Vein recovery from embolism occurs under negative pressure in leaves of sunflower (Helianthus annuus). Physiol Plant 133:755–764

    Article  PubMed  CAS  Google Scholar 

  • Nardini A, Grego F, Trifilo P, Salleo S (2010) Changes of xylem sap ionic content and stem hydraulics in response to irradiance in Laurus nobilis. Tree Physiol 30:628–635

    Article  PubMed  CAS  Google Scholar 

  • Nardini A, Lo Gullo MA, Salleo S (2011a) Refilling embolized xylem conduits: is it a matter of phloem unloading? Plant Sci 180:604–611

    Article  PubMed  CAS  Google Scholar 

  • Nardini A, Salleo S, Jansen S (2011b) More than just a vulnerable pipeline: xylem physiology in the light of ion-mediated regulation of plant water transport. J Exp Bot 62:4701–4718

    Article  PubMed  CAS  Google Scholar 

  • Nardini A, Dimasi F, Klepsch M, Jansen S (2012) Ion-mediated enhancement of xylem hydraulic conductivity in four Acer species: relationships with ecological and anatomical features. Tree Physiol 32:1434–1441

    Article  PubMed  CAS  Google Scholar 

  • Neumann RB, Cardon ZG (2012) The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies. New Phytol 194:337–352

    Article  PubMed  Google Scholar 

  • Niinemets Ü (2002) Stomatal conductance alone does not explain the decline in foliar photosynthetic rates with increasing tree age and size in Picea abies and Pinus sylvestris. Tree Physiol 22:515–535

    Article  PubMed  Google Scholar 

  • Ogasa M, Miki N, Murakami Y, Yoshikawa K (2013) Recovery performance in xylem hydraulic conductivity is correlated with cavitation resistance for temperate deciduous tree species. Tree Physiol 33:335–344

    Article  PubMed  Google Scholar 

  • Pataki DE, Oren R, Phillips N (1998) Responses of sap flux and stomatal conductance of Pinus taeda L. trees to stepwise reductions in leaf area. J Exp Bot 49:871–878

    Article  CAS  Google Scholar 

  • Phillips NG, Nagchaudhuri A, Oren R, Katul G (1997) Time constant for water transport in loblolly pine trees estimated from time series of evaporative demand and sap flow. Trees 11:412–419

    Article  Google Scholar 

  • Phillips NG, Oren R, Licata J, Linder S (2004) Time series diagnosis of tree hydraulic characteristics. Tree Physiol 24:879–890

    Article  PubMed  Google Scholar 

  • Pittermann J, Sperry JS (2003) Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers. Tree Physiol 23:907–914

    Article  PubMed  Google Scholar 

  • Pittermann J, Sperry JS (2006) Analysis of freeze-thaw embolism in conifers. The interaction between cavitation pressure and tracheid size. Plant Physiol 140:374–382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pittermann J, Sperry JS, Wheeler JK, Hacke UG, Sikkema EH (2006) Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant Cell Environ 29:1618–1628

    Article  PubMed  Google Scholar 

  • Plamboek AH, Dawson TE, Egerton-Warburton LM, North M, Bruns TD, Querejeta JI (2007) Water transfer via ectomycorrhizal fungal hyphae to conifer seedlings. Mycorrhiza 17:439–447

    Article  Google Scholar 

  • Pockman WT, Sperry JS (1997) Freezing-induced xylem cavitation and the northern limit of Larrea tridentata. Oecologia 109:19–27

    Article  Google Scholar 

  • Pockman WT, Sperry JS (2000) Vulnerability to cavitation and the distribution of Sonoran Desert vegetation. Am J Bot 87:1287–1299

    Article  PubMed  CAS  Google Scholar 

  • Pou A, Medrano H, Tomàs M, Martorell S, Ribas-Carbó M, Flexas J (2012) Anisohydric behaviour in grapevines results in better performance under moderate water stress and recovery than isohydric behavior. Plant Soil 359:335–349

    Article  CAS  Google Scholar 

  • Pratt RB, Jacobsen AL, Ewers FW, Davis SD (2007) Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol 174:787–798

    Article  PubMed  CAS  Google Scholar 

  • Pregitzer KS, King JS (2005) Effects of soil temperature on nutrient uptake. In: BassiriRad H (ed) Nutrient Acquisition by Plants: an Ecological Perspective. Springer, Berlin, pp 277–310

    Chapter  Google Scholar 

  • Querejeta, J.I., Egerton-Warburton, L.M., Allen, M.F., (2003). Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia 134:55–64

    Google Scholar 

  • Robson DJ, McHardy WJ, Petty JA (1988) Freezing in conifer xylem. II. Pit aspiration and bubble formation. J Exp Bot 39:1617–1621

    Article  Google Scholar 

  • Ryan MG, Bond BJ, Law BE, Hubbard RM, Woodruff D, Cienciala E, Kucera J (2000) Transpiration and whole-tree conductance in ponderosa pine trees of different heights. Oecologia 124:553–560

    Article  Google Scholar 

  • Sack L, Frole K (2006) Leaf structural diversity is related to hydraulic capacity in tropical rainforest trees. Ecology 87:483–491

    Article  PubMed  Google Scholar 

  • Sack L, Tyree MT (2005) Leaf hydraulics and its implications in plant structure and function. In: Holbrook NM, Zwieniecki MA (eds) Vascular Transport in Plants. Elsevier/Academic Press, Oxford, pp 93–114

    Chapter  Google Scholar 

  • Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003) The ‘hydrology’ of leaves: co-ordination of structure and function in temperate woody species. Plant Cell Environ 26:1343–1356

    Article  Google Scholar 

  • Salleo S, LoGullo MA, DePaoli D, Zippo M (1996) Xylem recovery from cavitation induced embolism in young plants of Laurus nobilis: a possible mechanism. New Phytol 132:47–56

    Article  Google Scholar 

  • Salleo S, Nardini A, Pitt F, Lo Gullo MA (2000) Xylem cavitation and hydraulic control of stomatal conductance in Laurel (Laurus nobilis L.). Plant Cell Environ 23:71–79

    Article  Google Scholar 

  • Salleo S, Lo Gullo MA, Trifilo P, Nardini A (2004) New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis L. Plant Cell Environ 27:1065–1076

    Article  Google Scholar 

  • Salleo S, Trifilo P, Lo Gullo MA (2006) Phloem as a possible major determinant of rapid cavitation reversal in stems of Laurus nobilis (laurel). Funct Plant Biol 33:1063–1074

    Article  Google Scholar 

  • Salleo S, Trifilo P, Esposito S, Nardini A, Lo Gullo MA (2009) Starch-to-sugar conversion in wood parenchyma of field-growing Laurus nobilis plants: a component of the signal pathway for embolism repair? Funct Plant Biol 36:815–825

    Article  Google Scholar 

  • Santiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, Woodruff DR, Jones T (2004) Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia 140:543–550

    Article  PubMed  CAS  Google Scholar 

  • Schenk HJ, Espino S, Goedhart CM, Nordenstahl M, Martinez Cabrera HI, Jones CS (2008) Hydraulic integration and shrub growth form linked across continental aridity gradients. Proc Natl Acad Sci U S A 105:11248–11253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scholz FG, Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Miralles-Wilhelm F (2007) Biophysical properties and functional significance of stem water storage tissues in neotropical savanna trees. Plant Cell Environ 30:236–248

    Article  PubMed  Google Scholar 

  • Scholz FG, Bucci SJ, Goldstein G, Moreira MZ, Meinzer FC, Domec J-C, Villalobos-Vega R, Franco AC, Miralles-Wilhelm F (2008) Biophysical and life-history determinants of hydraulic lift in Neotropical savanna trees. Funct Ecol 22:773–786

    Article  Google Scholar 

  • Schulte PJ, Gibson AC (1988) Hydraulic conductance and tracheid anatomy in six species of extant seed plants. Can J Bot 66:1073–1079

    Article  Google Scholar 

  • Siau JF, Davidson RW, Meyer JA, Skaar C (1984) Transport Processes in Wood. Springer, Berlin

    Book  Google Scholar 

  • Sparks JP, Black RA (1999) Regulation of water loss in populations of Populus trichocarpa: the role of stomatal control in preventing xylem cavitation. Tree Physiol 19:453–459

    Google Scholar 

  • Sparks JP, Black RA (2000) Winter hydraulic conductivity and xylem cavitation in coniferous trees from upper and lower treeline. Arct Antarct Alp Res 32:397–403

    Article  Google Scholar 

  • Sparks JP, Campbell GS, Black RA (2001) Water content, hydraulic conductivity, and ice formation in winter stems of Pinus contorta: a TDR case study. Oecologia 127:468–475

    Article  Google Scholar 

  • Sperry JS, Robson DJ (2001) Xylem cavitation and freezing in conifers. In: Bigras FJ, Colombo SJ (eds) Conifer Cold Hardiness. Kluwer, Dordrecht, pp 121–136

    Chapter  Google Scholar 

  • Sperry JS, Saliendra NZ (1994) Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant Cell Environ 17:1233–1241

    Article  Google Scholar 

  • Sperry JS, Holbrook NM, Zimmermann MH, Tyree MT (1987) Spring filling of xylem vessels in wild grapevine. Plant Physiol 83:414–417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sperry JS, Adler FR, Campbell GS, Comstock JP (1998) Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ 21:347–359

    Article  Google Scholar 

  • Sperry JS, Hacke UG, Oren R, Comstock JP (2002) Water deficits and hydraulic limits to leaf water supply. Plant Cell Environ 25:251–263

    Article  PubMed  Google Scholar 

  • Sperry JS, Hacke UG, Wheeler JK (2005) Comparative analysis of end wall resistivity in xylem conduits. Plant Cell Environ 28:456–465

    Article  Google Scholar 

  • Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93:1490–1500

    Article  PubMed  Google Scholar 

  • Sperry JS, Meinzer FC, McCulloh KA (2008) Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant Cell Environ 31:632–645

    Article  PubMed  Google Scholar 

  • Stiller V, Sperry JS, Lafitte R (2005) Embolized conduits of rice (Oryza sativa, Poaceae) refill despite negative xylem pressure. Am J Bot 92:1970–1974

    Article  PubMed  Google Scholar 

  • Sucoff E (1969) Freezing of conifer xylem and the cohesion – tension theory. Physiol Plant 22:424–431

    Article  Google Scholar 

  • Taneda H, Sperry JS (2008) A case-study of water transport in co-occurring ring versus diffuse-porous trees: contrasts in water-status, conducting capacity, cavitation and vessel refillings. Tree Physiol 28:1641–1651

    Article  PubMed  Google Scholar 

  • Tardieu F, Davies WJ (1992) Stomatal response to abscisic acid is a function of current plant water status. Plant Physiol 98:540–545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tardieu F, Simonneau T (1998) Variability of species among stomatal control under fluctuating soil water status and evaporative demand: modeling isohydric and anisohydric behaviours. J Exp Bot 49:419–432

    Article  Google Scholar 

  • Trifilò P, Gascò A, Raimondo F, Nardini A, Salleo S (2003) Kinetics of recovery of leaf hydraulic conductance and vein functionality from cavitation-induced embolism in sunflower. J Exp Bot 54:2323–2330

    Article  PubMed  CAS  Google Scholar 

  • Trifilo P, Lo Gullo MA, Salleo S, Callea K, Nardini A (2008) Xylem embolism alleviated by ion-mediated increase in hydraulic conductivity of functional xylem: insights from field measurements. Tree Physiol 28:1505–1512

    Article  PubMed  CAS  Google Scholar 

  • Trifilo P, Nardini A, Raimondo F, Lo Gullo MA, Salleo S (2011) Ion-mediated compensation for drought-induced loss of xylem hydraulic conductivity in field-growing plants of Laurus nobilis L. Funct Plant Biol 38:606–613

    Article  Google Scholar 

  • Tschaplinski TJ, Blake TJ (1989) Photosynthetic reinvigoration of leaves following shoot decapitation and accelerated growth of coppice shoots. Physiol Plant 75:157–165

    Article  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem Structure and the Ascent of Sap. Springer, Berlin

    Book  Google Scholar 

  • Tyree M, Davis S, Cochard H (1994) Biophysical perspectives of xylem evolution – is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA J 15:335–360

    Article  Google Scholar 

  • Tyree MT, Salleo S, Nardini A, Lo Gullo MA, Mosca R (1999) Refilling of embolized vessels in young stems of Laurel. Do we need a new paradigm? Plant Physiol 120:11–21

    Article  PubMed Central  CAS  Google Scholar 

  • Van Ieperen W, Van Meeteren U, Van Gelder H (2000) Fluid ionic composition influences hydraulic conductance of xylem conduits. J Exp Bot 51:769–776

    Article  PubMed  Google Scholar 

  • Wan X, Zwiazek JJ, Lieffers VJ, Landhausser M (2001) Hydraulic conductance in aspen (Populus tremuloides) seedlings exposed to low root temperatures. Tree Physiol 21:691–696

    Article  PubMed  CAS  Google Scholar 

  • Ward EJ, Bell DM, Clark JS, Oren R (2013) Hydraulic time constants for transpiration of loblolly pine at a free-air carbon dioxide enrichment site. Tree Physiol 33:123–134

    Article  PubMed  CAS  Google Scholar 

  • Warren JM, Meinzer FC, Brooks JR, Domec J-C (2005) Vertical stratification of soil water storage and release dynamics in Pacific Northwest coniferous forests. Agric For Meteorol 130:39–58

    Article  Google Scholar 

  • Warren JM, Meinzer FC, Brooks JR, Domec JC, Coulombe R (2007) Hydraulic redistribution of soil water in two old-growth coniferous forests: quantifying patterns and controls. New Phytol 173:753–765

    Google Scholar 

  • Warren JM, Brooks JR, Meinzer FC, Eberhart JL (2008) Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytol 178:382–394

    Google Scholar 

  • West AG, Hultine KR, Sperry JS, Bush SE, Ehleringer JR (2008) Transpiration and hydraulic strategies in a piñon–juniper woodland. Ecol Appl 18:911–927

    Article  PubMed  CAS  Google Scholar 

  • Wheeler JK, Sperry JS, Hacke UG, Hoang N (2005) Inter-vessel pitting and cavitation in wood Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant Cell Environ 28:800–812

    Article  Google Scholar 

  • Wheeler EA, Baas P, Rodgers S (2007) Variations in dicot wood anatomy: a global analysis based on the Insidewood database. IAWA J 28:229–258

    Article  Google Scholar 

  • Whitehead D, Jarvis PG, Waring RH (1984) Stomatal conductance, transpiration, and resistance to water uptake in a Pinus sylvestris spacing experiment. Can J For Res 14:692–700

    Article  Google Scholar 

  • Whitehead D, Livingston NJ, Kelliher FM, Hogan KP, Pepin S, McSeveny TM, Byers JN (1996) Response of transpiration and photosynthesis to a transient change in illuminated foliage area for a Pinus radiata D. Don tree. Plant Cell Environ 19:949–957

    Article  Google Scholar 

  • Wilkinson S, Davies WJ (2002) ABA-based chemical signaling: the coordination of responses to plants in stress. Plant Cell Environ 25:195–210

    Article  PubMed  CAS  Google Scholar 

  • Woodruff DR, McCulloh KA, Warren JM, Meinzer FC, Lachenbruch B (2007) Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir. Plant Cell Environ 30:559–569

    Article  PubMed  Google Scholar 

  • Woodruff DR, Meinzer FC, Lachenbruch B (2008) Height related trends in leaf xylem anatomy and hydraulic characteristics in a tall conifer: safety versus efficiency in foliar water transport. New Phytol 180:90–99

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Tyree MT (1992) A theoretical model of hydraulic conductivity recovery from embolism with comparison to experimental data on Acer saccharum. Plant Cell Environ 15:633–643

    Article  Google Scholar 

  • Yu X, Peng YH, Zhang MH, Shao YJ, Su WA, Tang ZC (2006) Water relations and an expression analysis of plasma membrane intrinsic proteins in sensitive and tolerant rice during chilling and recovery. Cell Res 16:599–608

    Article  PubMed  CAS  Google Scholar 

  • Zanne AE, Sweeney K, Sharma M, Orians CM (2006) Patterns and consequences of differential vascular sectoriality in 18 temperate tree and shrub species. Funct Ecol 20:200–206

    Article  Google Scholar 

  • Zhang Y-J, Meinzer FC, Hao G-Y, Scholz FG, Bucci SJ, Takahashi FSC, Villalobos-Vega R, …, Goldstein G (2009) Size-dependent mortality in a Neotropical savanna tree: the role of height-related adjustments in hydraulic architecture and carbon allocation. Plant Cell Environ 32:1456–1466

    Google Scholar 

  • Zhang Y, Oren R, Kang S (2012) Spatiotemporal variation of crown-scale stomatal conductance in an arid Vitis vinifera L. cv. Merlot vineyard: direct effects of hydraulic properties and indirect effects of canopy leaf area. Tree Physiol 32:262–279

    Article  PubMed  Google Scholar 

  • Zhang YJ, Meinzer FC, Qi JH, Goldstein G, Cao KF (2013) Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees. Plant Cell Environ 36:149–158

    Article  PubMed  Google Scholar 

  • Zimmermann MH (1978) Hydraulic architecture of some diffuse-porous trees. Can J Bot 56:2286–2295

    Article  Google Scholar 

  • Zimmermann MH (1983) Xylem Structure and the Ascent of Sap. Springer, Berlin

    Book  Google Scholar 

  • Zwieniecki MA, Holbrook NM (1998) Short term changes in xylem water conductivity in white ash, red maple and Sitka spruce. Plant Cell Environ 21:1173–1180

    Article  Google Scholar 

  • Zwieniecki MA, Holbrook NM (2009) Confronting Maxwell’s demon: biophysics of xylem embolism repair. Trends Plant Sci 14:530–534

    Article  PubMed  CAS  Google Scholar 

  • Zwieniecki MA, Hutyra L, Thompson MV, Holbrook NM (2000) Dynamic changes in petiole specific conductivity in red maple (Acer rubrum L.), tulip tree (Liriodendron tulipifera L.) and northern fox grape (Vitis labrusca L.). Plant Cell Environ 23:407–414

    Article  Google Scholar 

  • Zwieniecki MA, Melcher PJ, Holbrook NM (2001) Hydrogel control of xylem hydraulic resistance in plants. Science 291:1059–1062

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSF grant IBN 09-19871.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Woodruff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Woodruff, D.R., Meinzer, F.C., McCulloh, K.A. (2016). Forest Canopy Hydraulics. In: Hikosaka, K., Niinemets, Ü., Anten, N. (eds) Canopy Photosynthesis: From Basics to Applications. Advances in Photosynthesis and Respiration, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7291-4_7

Download citation

Publish with us

Policies and ethics