Skip to main content

Rethinking Plant Breeding

  • Chapter
  • First Online:
Cultivating Biodiversity to Transform Agriculture

Abstract

Plant breeding is the activity of developing diverse plant varieties that can contribute usefully to cropping and production systems. These breeding efforts are directed at plant improvement. But ‘improvement’ is a subjective and relative goal and it becomes necessary to regularly break up plant breeding objectives and procedures into clearly defined and manageable units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Agropolis Resource Centre for Crop Conservation, Adaptation and Diversity, http://www.arcad-project.org/about_arcad (retrieved: 6 May 2013).

  2. 2.

    http://www.agropolis-fondation.fr/ (retrieved: 6 May 2013).

  3. 3.

    http://media.enseignementsup-recherche.gouv.fr/file/Fiches_biotech_bioressources_2/93/4/GENIUS_208934.pdf (retrieved: 6 May 2013).

References

  • Akrich, M., Callon, M., & Latour, B. (1988). À quoi tient le succès des innovations? L’art de l’intéressement, gérer et comprendre. Annales des Mines, 11, 4–17.

    Google Scholar 

  • Anthony, F., Combes, M. C., Astorga, C., Bertrand, B., Graziosi, G., & Lashermes, P. (2002). The origin of cultivated Coffea arabica L. varieties revealed by AFLP and SSR markers. Theoretical and Applied Genetics, 104, 894–900.

    Article  PubMed  CAS  Google Scholar 

  • Ba, M., Schilling, R., N’doye. O., N’diaye M., & Kan A. (2005). L’arachide. In ISRA-Cirad (Ed.), Bilan de la recherche agricole et agroalimentaire au Sénégal (pp. 163–188). ISRA-ITA-Cirad.

    Google Scholar 

  • Berthet, E. (2010). La conception innovante à l’appui d’une gestion collective des services écosystémiques. Étude d’un cas de mise en œuvre de Natura 2000 en plaine céréalière. Mémoire de master II, Paris West University Nanterre La Défense, Mines ParisTech, ESCP.

    Google Scholar 

  • Bertrand, B., Peña-Duran, M. X., Anzueto, F., Cilas, C., Etienne, H., Anthony, F., et al. (2000). Genetic study of Coffea canephora coffee tree resistance to Meloidogyne incognita nematodes in Guatemala and Meloidogyne sp. nematodes in El Salvador for selection of rootstock varieties in Central America. Euphytica, 113(2), 79–86.

    Article  Google Scholar 

  • Bertrand, B., Vaast, P., Alpizar, E., Etienne, H., Davrieux, F., & Charmetant, P. (2006). Comparison of bean biochemical composition and beverage quality of Arabica hybrids involving Sudanese–Ethiopian origins with traditional varieties at various elevations in Central America. Tree Physiology, 26, 1239–1248.

    Article  PubMed  CAS  Google Scholar 

  • Bertrand, B., Alpizar, E., Lara, L., SantaCreo, R., Hidalgo, M., Quijano, J. M., et al. (2011). Performance of Coffea arabica F1 hybrids in agroforestry and full-sun cropping systems in comparison with American pure line cultivars. Euphytica,. doi:10.1007/s10681-011-0372-7.

    Google Scholar 

  • Billot, C., Ramu, P., Bouchet, S., Chantereau, J., Deu, M., Gardes, L., et al. (2013). Massive sorghum collection genotyped with SSR markers to enhance use of global genetic resources. PLoS One (sous presse).

    Google Scholar 

  • Bocco, R., Lorieux, M., Seck, P. A., Futakuchi, K., Manneh, B., Baimey, H., et al. (2012). Agro-morphological characterization of a population of introgression lines derived from crosses between IR 64 (Oryza sativa indica) and TOG 5681 (Oryza glaberrima) for drought tolerance. Plant Science, 183, 65–76.

    Article  PubMed  CAS  Google Scholar 

  • Bouffaud, M. L., Kyselkova, M., Gouesnard, B., Grundmann, G., Muller, D., & Moenne-Loccoz, Y. (2012). Is diversification history of maize influencing selection of soil bacteria by roots? Molecular Ecology, 21, 195–206.

    Article  PubMed  Google Scholar 

  • Cavanagh, C., Morell, M., Mackay, I., & Powell, W. (2008). From mutations to MAGIC: Resources for gene discovery, validation and delivery in crop plants. Current Opinion in Plant Biology, 11, 215–221.

    Article  PubMed  Google Scholar 

  • Chambers, R. (1983). Rural development: Putting the last first. Harlow: Longman. 246 p.

    Google Scholar 

  • Chantereau, J., Trouche, G., Luce, C., Deu, M., & Hamon, P. (1997). Le sorgho. In A. Charrier, M. Jacquot, S. Hamon, & D. Nicolas (Eds.), L’amélioration des plantes tropicales (pp. 565–590). Orstom, Repères: Cirad.

    Google Scholar 

  • Charrier, A., & Eskes, A. B. (1997). Les caféiers. In A. Charrier, M. Jacquot, S. Hamon, & D. Nicolas (Eds.), L’amélioration des plantes tropicales (pp. 171–196). Orstom, Repères: Cirad.

    Google Scholar 

  • Charrier, A., Boemare, N., Bouchez, D., Glaszmann, J. C., Joyard, J., & Lemaire, G. (2005). La biologie intégrative végétale. Rapport au Conseil scientifique de l’Inra, 43 p.

    Google Scholar 

  • Chenu, K., Chapman, S. C., Hammer, G. L., Mclean, G., & Ben Haj Salah H. (2008a). Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: An integrated modeling approach in maize. Plant Cell Environment, 31, 378–391.

    Google Scholar 

  • Chenu, K., Chapman, S. C., Tardieu, F., McLean, G., Welcker, C., & Hammer, G. L. (2009). Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize—a “gene-to-phenotype” modeling approach. Genetics, 183, 1507–1523.

    Article  PubMed  Google Scholar 

  • Choudhury, A., & Kennedy, I. R. (2004). Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biology and Fertility of Soils, 39, 219–227.

    Article  Google Scholar 

  • Clavel, D., & Annerose, D. J. M. (1995). Genetic improvement of groundnut adaptation to drought. In S. Risopoulos (Ed.), Research projects (pp. 33–35). Summaries of the Final Reports STD2, UE-DG12, Wageningen, The Netherlands.

    Google Scholar 

  • Clavel, D., & N’doye, O. (1997). La carte variétale de l’arachide au Sénégal. Agriculture et développement, 14, 41–46.

    Google Scholar 

  • Clavel, D., Drame, N. K., Diop, N. D., & Zuily-Fodil, Y. (2005). Adaptation à la sécheresse et création variétale: le cas de l’arachide en zone sahélienne. Première partie: revue bibliographique. OCL, 13(3), 246–260.

    Google Scholar 

  • Collectif. (1991). Le coton en Afrique de l’Ouest et du Centre, Editions du ministère de la Coopération et du Développement, 354 p.

    Google Scholar 

  • Cook, J. P., McMullen, M. D., Holland, J. B., Tian, F., Bradbury, P. J., Ross-Ibarra, J., et al. (2012). Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiology, 158(2), 824–834.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, M., Van Eeuwijk, F. A., Hammer, G., Podlich, D., & Messina, C. (2009). Modeling QTL for complex traits: Detection and context for plant breeding. Current Opinion in Plant Biology, 12, 231–240.

    Article  PubMed  CAS  Google Scholar 

  • D’Hont, A., Denoeud, F., Aury, J. M., Baurens, F. C., Carreel, F., Garsmeur, O., et al. (2012). The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 488(7410), 213–219.

    Google Scholar 

  • Dawson, J. C., & Goldringer, I. (2012). Breeding for genetically diverse populations: Variety mixtures and evolutionary populations. In E. T. Lammerts Van Bueren & J. R. Myers (Eds.), Organic crop breeding (pp. 77–98). Chichester: Wiley-Blackwell.

    Google Scholar 

  • Déchanet, R., Razafindrakoto, J., & Valès, M. (1997). Résultats de l’amélioration variétale du riz d’altitude Malgache. In: C. Poisson, & J. Rakotoarisoa (Eds.), Rice for highlands (pp. 43–48). Proceeding of the International Conference on Rice for Highlands, March 29–April 5, 1996, Antananarivo, Madagascar/Cirad, Montpellier, France.

    Google Scholar 

  • Dekkers, J. C. M., & Hospital, F. (2002). The use of molecular genetics in the improvement of agricultural populations. Nature Reviews Genetics, 3, 22–32.

    Article  PubMed  CAS  Google Scholar 

  • Dingkuhn, M., Baron, C., Bonnal, V., Maraux, F., Sarr, B., Sultan, B., et al. (2003). Decision support tools for rainfed crops in the Sahel at the plot and regional scales. In TESBaMCS Wopereis (Ed.), Decision support tools for smallholder agriculture in Sub-Saharian Africa (pp. 127–139). A practical Guide, IFDC-CTA, Wageningen, The Netherlands.

    Google Scholar 

  • Döring, T. F., Knapp, S., Kovacs, G., Murphy, K., & Wolfe, M. S. (2011). Evolutionary plant breeding in cereals: Into a new era. Sustainability, 3, 1944–1971.

    Article  Google Scholar 

  • Durand, E., Bouchet, S., Bertin, P., Ressayre, A., Jamin, P., Charcosset, A., et al. (2012). Epistasis, pleiotropy and maintenance of polymorphism at a locus associated with flowering time variation in maize inbred lines. Genetics, 190, 1547–1562.

    Article  PubMed  CAS  Google Scholar 

  • Dzido, J. L., Vales, M., Rakotoarisoa, J., Chabanne A., & Ahmadi, N. (2004). Upland rice for highlands: New varieties and sustainable cropping systems for food security. Promising prospects for the global challenges of rice production. FAO Rice Conference, February 12–13, 2004, Rome, Italy, 11 p.

    Google Scholar 

  • Etienne, H., Bertrand, B., Montagnon, C., Dechamp, E., Jourdan, I., Alpizar, E., et al. (2012). Un exemple de transfert technologique réussi en micropropagation: la multiplication de Coffea arabica par embryogenèse somatique. Cahiers Agriculture, 21, 115–125.

    Google Scholar 

  • Evenson, R., & Rosegran, M. (2003). The economic consequences of crop genetic improvement programs. In R. E. Evenson, & D. Gollin (Eds.), Crop variety improvement and its effect on productivity: The impact of International Agricultural Research. CABI.

    Google Scholar 

  • Eyzaguirre, P., & wanaga, M. (1996). Participatory plant breeding. Proceedings of a Workshop on Participatory Plant Breeding, July 26–29, 1995, Wageningen, The Netherlands, IPGRI, Rome, Italy.

    Google Scholar 

  • Faraji, J. (2011). Wheat cultivar blends: A step forward to sustainable agriculture. African Journal of Agricultural Research, 6(33), 6780–6789.

    Google Scholar 

  • Finckh, M. R., Gacek, E. S., Goyeau, H., Lannou C., Merz, U., Mundt, C. C., et al. (2000). Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie, 20, 813–837.

    Google Scholar 

  • Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society, Edinburgh, 52, 399-433.

    Google Scholar 

  • Fliedel, G., 1995. Appraisal of sorghum quality for making tô. Agriculture et développement, Special Issue, 35–45.

    Google Scholar 

  • Fonceka, D., Hodo-Abalo, T., Rivallan, R., Faye, I., Sall, M. N., Ndoye, O., et al. (2009). Genetic mapping of wild introgressions into cultived peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biology, 9, 103.

    Article  PubMed  Google Scholar 

  • Fonceka, D., Tossim, H.-A., Rivallan, R., Vignes, H., Faye, I., Ndoye, O., et al. (2012a). Fostered and left behind alleles in peanut: Interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biology, 12, 26.

    Article  PubMed  Google Scholar 

  • Fonceka, D., Tossim, H.-A., Rivallan, R., Vignes, H., Lacut, E., & De Bellis, F. (2012b). Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L.) using a wild synthetic and QTL mapping for plant morphology. PLoS One, 7(11), e48642, 11 p.

    Google Scholar 

  • Gallais, A. (2009). Hétérosis et variétés hybrides en amélioration des plantes. Versailles, coll. Synthèses, Éditions Quae, 356 p.

    Google Scholar 

  • Gamuyao, R., Chin, J. H., Pariasca-Tanaka, J., Pesaresi, P., Catausan, S., Dalid, C., et al. (2012). The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature, 488, 535–541.

    Article  PubMed  CAS  Google Scholar 

  • Gibert, O., Dufour, D., Giraldo, A., Sánchez, T., Reynes, M., Pain, J. P., et al. (2009). Differentiation between cooking bananas and dessert bananas. 1. Morphological and compositional characterization of cultivated Colombian Musaceae (Musa sp.) in relation to consumer preferences. Journal of Agricultural and Food Chemistry, 57(17), 7857–7869.

    Article  PubMed  CAS  Google Scholar 

  • Glaszmann, J. C., Kilian, B., Upadhyaya, H. D., & Varshney, R. K. (2010). Assessing genetic diversity for crop improvement. Current Opinion in Plant Biology, 13, 167–173.

    Article  PubMed  CAS  Google Scholar 

  • Griffon, M., 2007. Pour des agricultures écologiquement intensives. In Les défis de l’agriculture au xxie siècle, Leçons inaugurales du Groupe ESA, Angers.

    Google Scholar 

  • Grimanelli, D., Leblanc, O., Perotti, E., & Grossniklaus, U. (2001). Developmental genetics of gametophytic apomixis. Trends in Genetics, 17(10), 597–604.

    Article  PubMed  CAS  Google Scholar 

  • Gunn, B. F., Baudouin, L., & Olsen, K. M. (2011). Independent origins of cultivated coconut (Cocos nucifera L.) in the old world tropics. PLoS One, 6(6), e21143.

    Article  PubMed  CAS  Google Scholar 

  • Gur, A., & Zamir, D. (2004). Unused natural variation can lift yield barriers in plant breeding. PLoS Biology, 2(10), 1610–1615.

    Article  CAS  Google Scholar 

  • Haling, R. E., Simpson, R. J., McKay, A. C., Hartley, D., Lambers, H., Ophel-Keller, K., et al. (2011). Direct measurement of roots in soil for single and mixed species using a quantitative DNA-based method. Plant and Soil, 348, 123–137.

    Article  CAS  Google Scholar 

  • Hammer, G. L., Cooper, M., Tardieu, F., Welch, S., Walsh, B., Eeuwijk, F., et al. (2006). Models for navigating biological complexity in breeding improved crop plants. Trends in Plant Science, 11, 587–593.

    Article  PubMed  CAS  Google Scholar 

  • Hammer, G. L., van Oosterom, E., McLean, G., Chapman, S. C., Broad, I., Harland, P., et al. (2010). Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. Journal of Experimental Botany, 61(8), 2185–2202.

    Article  PubMed  CAS  Google Scholar 

  • Hardon, J. (1995). Participatory plant breeding. The outcome of a workshop on participatory plant breeding. Issues in Genetics Resources, 3, IPGRI, Rome, Italy.

    Google Scholar 

  • Hau, B., Lançon, J., & Dessauw, D. (1997). Les cotonniers. In A. Charrier, M. Jacquot, S. Hamon, & D. Nicolas (Eds.), L’amélioration des plantes tropicales (pp. 241–266). Orstom: Cirad.

    Google Scholar 

  • He, L., & Hannon, G. J. (2004). MicroRNAs: Small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5, 522–531.

    Article  PubMed  CAS  Google Scholar 

  • Heffner, H. L., Sorrells, R. E., & Jannink, J. L. (2009). Genomic selection for crop improvement. Crop Science, 49, 1–12.

    Article  CAS  Google Scholar 

  • Heinemann, H. B., Dingkuhn, D., Luquet, D., Combres, J.-C., & Chapman, S. (2008). Characterization of drought stress environments for upland rice and maize in central Brazil. Euphytica, 162, 395–410.

    Article  Google Scholar 

  • Henry, A., Rosas, J. C., Beaver, J. S., & Lynch, J. P. (2010). Multiple stress response and belowground competition in multilines of common bean (Phaseolus vulgaris L.). Field Crops Research, 117(2–3), 209–218.

    Article  Google Scholar 

  • Hoisington, D., Khairallah, M., Reeves, T., Ribout, J. M., Skovmand, B., Taba, S., et al. (1999). Plant genetic resources: What can they contribute toward increased crop productivity. The Proceedings of the National Academy of Sciences (USA), 96, 5937–5943.

    Article  CAS  Google Scholar 

  • Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., et al. (2010). Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 42(11), 961–969.

    Article  PubMed  CAS  Google Scholar 

  • Huang, X., Kurata, N., Wei, X., Wang, Z., Wang, A., Zhao, Q., et al. (2012). A map of rice genome variation reveals the origin of cultivated rice. Nature, 490, 497–501.

    Article  PubMed  CAS  Google Scholar 

  • Hung, H.-Y., Shannon, L. M., Tian, F., Bradbury, P. J., Chen, C., Flint Garcia S. et al. (2012). ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. PNAS, DOI: 10.1073/pnas.1203189109.

  • Jannink, J. L., & Walsh, B. (2002). Association mapping in plant populations. In M. S. Kang (Ed.), Quantitative genetics, genomics and plant breeding (pp. 59–68). CAB International.

    Google Scholar 

  • Khalfaoui, J. L. B. (1991). Determination of potential lengths of the crop growing period in semi-arid regions of Senegal. Agricultural and Forest Meteorology, 55, 251–263.

    Article  Google Scholar 

  • Kiaer, L., Skovgaard, I., & Ostergard, H. (2009). Grain yield increase in cereal variety mixtures: a meta-analysis of field trials. Field Crops Research, 114, 361–373.

    Article  Google Scholar 

  • Kiaer, L. P., Skovgaard, I. M., & Ostergard, H. (2012). Effects of inter-varietal diversity, biotic stresses and environmental productivity on grain yield of spring barley variety mixtures. Euphytica, 185, 123–138.

    Article  Google Scholar 

  • Kidwell, M. G. (2005). Transposable elements. In T. R. Gregory (Ed.), The evolution of the genome (pp. 165–221). San Diego: Elsevier.

    Chapter  Google Scholar 

  • Klerkx, L., Hall, A., & Leeuwis, C. (2009). Strengthening agricultural innovation capacity: Are innovation brokers the answer? UNU-MERIT Working Paper Series #2009-019, United Nations University-Maastricht, Economic and social Research and training centre on Innovation and Technology, Maastricht, The Netherlands.

    Google Scholar 

  • Lebot, V., Ivancic, A., & Abraham, K. (2005). The geographical distribution of allelic diversity, a practical means of preserving and using minor root crops genetic resources. Experimental Agriculture, 41, 475–489.

    Article  Google Scholar 

  • Leclerc, C., & Coppens d’Eeckenbrugge G. (2011). Social organization of crop genetic diversity. The G × E × S interaction model. Diversity, 4(1), 1–32 (2012).

    Google Scholar 

  • Levrat, R. (2009). Le coton dans la zone franc depuis 1950. Un succès remis en cause. L’Harmattan, 256 p.

    Google Scholar 

  • Loor Solorzano, R. G., Fouet, O., Lemainque, A., Pavek, S., Boccara, M., & Argout, X. (2012). Insight into the wild origin, migration and domestication history of the fine flavour national Theobroma cacao L. variety from Ecuador. PLoS One, 7(11), e48438.

    Google Scholar 

  • Luquet, D., Rebolledo, M. C., & Soulié J. C. (2012a). Functional-structural plant modeling to support complex trait phenotyping: Case of rice early vigor and drought tolerance using Ecomeristem model. In IEEE (Ed.), PMA Shanghai, China.

    Google Scholar 

  • Luquet, D., Dingkuhn, M., Kim, H. K., Tambour, L., & Clément-Vidal, A. (2006). Ecomeristem, a model of morphogenesis and competition among sinks in rice. 1. Concept, validation and sensitivity analysis. Functional Plant Biology, 33, 309–323.

    Article  Google Scholar 

  • Luquet, D., Soulié, J. C., Rebolledo, M. C., Rouan, L., Clément-Vidal, A., & Dingkuhn, M. (2012b). Developmental dynamics and early growth vigour in rice. 2. Modelling genetic diversity using Ecomeristem. Journal of Agronomy and Crop Science, 198(5). 385 p.

    Google Scholar 

  • Mayeux, A., & Da Sylva, A. (2008). Guide pratique de production de semences d’arachide de bonne qualité semencière. Document de l’Association sénégalaise pour la promotion du développement à la base (Asprodeb), 46 p.

    Google Scholar 

  • Messina, C., Hammer, G., Dong, Z., Podlich, D., & Cooper, M. (2009). Modelling crop improvement in a G × E × M framework via gene-trait-phenotype relationships. In V. O. Sadras & D. Calderini (Eds.), Crop physiology: Applications for genetic improvement and agronomy (pp. 235–265). The Netherlands: Academic Press, Elsevier.

    Google Scholar 

  • Naudin, K., Scopel, E., Rakotosolofo, M., Solomalala, A. R. N. R., Andriamalala, H., Domas, R., et al. (2010). Trade-offs between different functions of biomass in conservation agriculture: Examples from smallholders fields of rainfed rice in Madagascar. In 11th congress of the European Society for Agronomy (ESA), August 29–September 3, Montpellier, France.

    Google Scholar 

  • Newton, A. C., Begg, G. S., & Swanston, J. S. (2009). Deployment of diversity for enhanced crop function. Annals of Applied Biology, 154(3), 309–322.

    Article  Google Scholar 

  • Nuzhdin, S. V., Friesen, M. L., & McIntyre, L. M. (2012). Genotype-phenotype mapping in a post-GWAS world. Trends in Genetics, 28(9), 421–426.

    Article  PubMed  CAS  Google Scholar 

  • Ostergard, H., & Fontaine, L. (2006). Cereal crop diversity: Implications for production and product. In Proceedings of the COST SUSVAR workshop, June 13–14, La Besse, France, Institut technique de l’agriculture biologique.

    Google Scholar 

  • Ostergard, H., Finckh, M. R., Fontaine, L., Goldringer, I., Hoad, S. P., Kristensen, J. K., et al. (2009). Time for a shift in crop production: Embracing complexity through diversity at all levels. Journal of the Science of Food and Agriculture, 89(9), 1439–1445.

    Article  Google Scholar 

  • Ouédraogo, S. (2005). Intensification de l’agriculture dans le plateau central du Burkina Faso: une analyse des possibilités à partir des nouvelles technologies. Thèse, Groningen University, 322 p.

    Google Scholar 

  • Parent, B., & Tardieu, F. (2012). Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species. New Phytologist, 194(3), 760–774.

    Article  PubMed  Google Scholar 

  • Passioura, J. B. (2012). Scaling up: The essence of effective agricultural research. Functional Plant Biology, 37(7), 585–591.

    Article  Google Scholar 

  • Paszkowski, J., & Grossniklaus, U. (2011). Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Current Opinion in Plant Biology, 14, 195–203.

    Article  PubMed  CAS  Google Scholar 

  • Paterson, A. H., Lander, E. S., Hewitt, J. D., Peterson, S., Lincoln, S. E., & Tanksley, S. D. (1988). Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 335, 721–726.

    Article  PubMed  CAS  Google Scholar 

  • Pautasso, M., Aistara, G., Barnaud, A., Caillon, S., Clouvel, P., Coomes, O. T., et al. (2013). Seed exchange networks for agrobiodiversity conservation. A review. Agronomy for Sustainable Development, 33, 151–175.

    Google Scholar 

  • Peng, S., & Bouman, B. (2007). Prospects for genetic improvement to increase lowland rice yields with less water and nitrogen. In J. H. J. Spiertz, P. C. Struik, H. H. van Laar (Eds.), Scale and complexity in plant systems research: Gene-plant-crop relations (pp. 251–266). Springer.

    Google Scholar 

  • Perrier, X., De Langhe, E., Donohue, M., Lentfer, C., Vrydaghs, L., Bakry, F., et al. (2011). Multidisciplinary perspectives on banana (Musa spp.) domestication. Proceedings of the National Academy of Sciences of the United States of America, 108, 11311–11318.

    Article  PubMed  CAS  Google Scholar 

  • Raboin, L. M., Ramanantsoanirina, A., Dusserre, J., Razasolofonanahary, F., Tharreau, D., & Lannou, C. (2012). Two-components cultivar mixtures reduce rice blast epidemics in an upland agrosystem. Plant Pathology,. doi:10.1111/j.1365-3059.2012.02602.x.

    Google Scholar 

  • Radanielina, T. (2010). Diversité génétique du riz (Oryza sativa L.) dans la région de Vakinankaratra, Madagascar. Structuration, distribution écogéographique et gestion in situ. Thèse de doctorat, AgroParisTech, Paris, no. 2010/AGPT/0093.

    Google Scholar 

  • Reymond, M., Muller, B., Leonardi, A., Charcosset, A., & Tardieu, F. (2003). Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiology, 131, 664–675.

    Article  PubMed  CAS  Google Scholar 

  • Roubaud, E. (1918). L’état actuel et l’avenir du commerce des arachides au Sénégal. Annales de géographie, 27, 357–371.

    Article  Google Scholar 

  • Sax, K. (1923). The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics, 8, 552–560.

    PubMed  CAS  Google Scholar 

  • Schultz, T. (1945). Food for the world. Chicago: University of Chicago Press. 353 p.

    Google Scholar 

  • Schultz, T. (1964). Transforming traditional agriculture. New Haven: Yale University Press. 206 p.

    Google Scholar 

  • Sester, M., Raboin, L. M., Ramanantsoanirina, A., & Tharreau, D. (2008). Toward an integrated strategy to limit blast disease in upland rice. In Diversifying crop protection, Endure international conference, 2008, La Grande Motte, France.

    Google Scholar 

  • Sheehy, J. E., Mitchell, P. L., & Hardy, B. (2007). Charting new pathways to C4 Rice, Los Baños (Philippines): International Rice Research Institute, 422 p.

    Google Scholar 

  • Soulié, J. C., Pradal, C., Fournier, X., & Luquet, D. (2010). Modelling the feedbacks between rice plant microclimate and morphogenesis. First results of Ecomeristem integration into OpenAlea. In FSPM, Functional Structural Plant Modelling, University of California, Davis, California, USA.

    Google Scholar 

  • Stamp, P., & Visser, R. (2012). The twenty-first century, the century of plant breeding. Euphytica, 186, 585–591.

    Article  Google Scholar 

  • Tardieu, F. (2003). Virtual plants: Modelling as a tool for the genomics of tolerance to water deficit. Trends in Plant Science, 8, 1360–1385.

    Article  Google Scholar 

  • Tardieu, F. (2012). Any trait or trait-related allele can confer drought tolerance: Just design the right drought scenario. Journal of Experimental Botany, 63(1), 25–31.

    Article  PubMed  CAS  Google Scholar 

  • Thalapati, S., Batchu, A. K., Neelamraju, S., & Ramanan, R. (2012). Os11Gsk gene from a wild rice, Oryza rufipogon, improves yield in rice. Functional and Integrative Genomics, 12(2), 277–289.

    Article  PubMed  CAS  Google Scholar 

  • Tidd, J., & Bessant, J. (2011). Managing innovation: Integrating technological, market and organizational change. John Wiley & Sons, West Sussex, England. 638 p.

    Google Scholar 

  • Tomekpe, K., Jenny, C., & Escalant, J. (2004) Revue des stratégies d’amélioration conventionnelle de Musa. Infomusa (FRA), 13(2), 2–6.

    Google Scholar 

  • Tsaftaris, A. S., Polidoros, A. N., Kapazoglou, A., Tani, E., & Kovačević, N. M. (2008). Epigenetics and plant breeding. Plant Breeding Reviews, 30, 49–177.

    CAS  Google Scholar 

  • Vaksmann, M., Traoré, S. B., & Niangado, O. (1996). Le photopériodisme des sorghos africains. Agriculture et développement, 9, 13–18.

    Google Scholar 

  • Vaksmann, M., Kouressy, M., Chantereau, J., Bazile, D., Sangnard, F., Touré, A., et al. (2008). Utilisation de la diversité génétique des sorghos locaux du Mali. Cahiers Agricultures, 17(2), 140–145.

    Google Scholar 

  • Varshney, R. K., Glaszmann, J. C., Leung, H., & Ribaut, J. M. (2010). More genomic resources for less-studied crops. Trends in Biotechnology, 28, 452–460.

    Article  PubMed  CAS  Google Scholar 

  • Vodouhè, S. R., & Achigan‐Dako, E. G. (2006). Digitaria exilis (Kippist) Stapf. In MBaG Belay (Ed.), Plant resources of Tropical Africa (Vol. 1, pp. 59–63). Wageningen: PROTA Foundation, CTA, Backhuys Publishers.

    Google Scholar 

  • Vom Brocke, K., Trouche, G., Zongo, S., Abdramane, B., Barro Kondombo, C. P., Weltzien, E., et al. (2008). Création et amélioration de populations de sorgho à base large avec les agriculteurs au Burkina Faso. Cahiers Agricultures, 17 (2), 146–153.

    Google Scholar 

  • Vom Brocke, K., Trouche, G., Weltzien, E., Barro Kondombo, C. P., Gozé, & E., Chantereau, J. (2010). Participatory variety development for sorghum in Burkina Faso: Farmers’ selection and farmers’ criteria. Field Crops Research, 119, 183–194.

    Google Scholar 

  • Vom, Brocke K., Trouche, G., Hocdé, H., & Bonzi, N. (2011). Sélection variétale au Burkina Faso: un nouveau type de partenariat entre chercheurs et agriculteurs. Grain de sel, 52–53, 20–21.

    Google Scholar 

  • Welcker, C., Boussuge, B., Bencivenni, C., Ribaut, J. M., & Tardieu, F. (2007). Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of anthesis-silking interval to water deficit. Journal of Experimental Botany, 58: 339–349.

    Google Scholar 

  • Wolfe, M. S., Baresel, J. P., Desclaux, D., Goldringer, I., Hoad, S., Kovacs, G. et al. (2008). Developments in breeding cereals for organic agriculture. Euphytica, 163, 323–346.

    Google Scholar 

  • Yu, J., Holland, J. B., McMullen, M. D., & Buckler, E. D. (2008). Genetic design and statistical power of nested association mapping in maize. Genetics, 178, 539–551.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nourollah Ahmadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Éditions Quæ, 2013

About this chapter

Cite this chapter

Ahmadi, N., Bertrand, B., Glaszmann, JC. (2013). Rethinking Plant Breeding. In: Hainzelin, É. (eds) Cultivating Biodiversity to Transform Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7984-6_4

Download citation

Publish with us

Policies and ethics