Skip to main content

Overview of Biochemical Markers of Bone Metabolism

  • Reference work entry
  • First Online:
Biomarkers in Bone Disease

Abstract

The bone has the function of supporting the body; the bone is a tissue characterized by its rigidity, hardness, and power of regeneration and repair. The bone has several functions including protection of the vital organs, environment for marrow, mineral reservoir for calcium homeostasis, reservoir of growth factors and cytokines, and taking part in acid–base balance. Bone metabolism is a dynamic and continuous remodeling process that is normally maintained in a tightly coupled balance between resorption of old or injured bone and formation of new bone. Several hormones and factors are involved in bone metabolism, which regulation depends from the complex interaction among them. Considering the various phases of the bone cycle, markers of bone metabolism may be classified either as markers of bone formation, markers of bone resorption, and markers of bone metabolism regulation. The aim of this chapter will be to examine biochemical markers in bone metabolism in order to give readers a guide about the normal physiological process to better understand the mechanisms underlying bone diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

D-Pyr:

Deoxypyridinoline

FGF:

Fibroblast growth factors

IGF:

Insulin-like growth factors

IL-1:

Interleukin-1

IL-6:

Interleukin-6

PG:

Prostaglandins

PTH:

Parathyroid hormone

Pyr:

Pyridinoline

TGF-β:

Transforming growth factor-β

TNF-α:

Tumor necrosis factor-α

References

  • Canalis E. Effect of cortisol on periosteal and nonperiosteal collagen and DNA synthesis in cultured rat calvariae. Calcif Tissue Int. 1984;36(2):158–66.

    Article  CAS  PubMed  Google Scholar 

  • Clarke BL, Khosla S. Androgens and bone. Steroids. 2009;74(3):296–305.

    Article  CAS  PubMed  Google Scholar 

  • Corathers SD. Focus on diagnosis: the alkaline phosphatase level: nuances of a familiar test. Pediatr Rev. 2006;27:382–4.

    Article  PubMed  Google Scholar 

  • Delmas PD, Eastell R, Garnero P, Seibel MJ, Stepan J. The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos Int. 2000;11(6):S2–17.

    Article  PubMed  Google Scholar 

  • Derynck R, Akhurst RJ. Differentiation plasticity regulated by TGF-beta family proteins in development and disease. Nat Cell Biol. 2007;9:1000–4.

    Article  CAS  PubMed  Google Scholar 

  • Donangelo I, Braunstein GD. Update on subclinical hyperthyroidism. Am Fam Physician. 2011;83:933–8.

    PubMed  Google Scholar 

  • Foley KF. Urine calcium: laboratory measurement and clinical utility. Lab Med. 2010;41:683–6.

    Article  Google Scholar 

  • Fottrell PF, Power MJ. Osteocalcin: diagnostic methods and clinical applications. Crit Rev Clin Lab Sci. 1991;28:287–335.

    Article  PubMed  Google Scholar 

  • FromiguĂ© O, Modrowski D, Marie PJ. Growth factors and bone formation in osteoporosis: roles for fibroblast growth factor and transforming growth factor beta. Curr Pharm Des. 2004;10(21):2593–603.

    Article  PubMed  Google Scholar 

  • Gimenex-Gallego G, Conn G, Hatcher VB, Thomas KA. Human brain-derived acidic and basic fibroblast growth factors: amino terminal sequences and specific mitogenic activities. Biochem Biophys Res Commun. 1986;135:541–8.

    Article  Google Scholar 

  • Garabedian M, Tanaka Y, Holick MF, DeLuca HF. Response of intestinal calcium transport and bone calcium mobilization to 1,25-dihydroxyvitamin D3 in thyroparathyroidectomized rats. Endocrinology. 1974;94:1022–7.

    Article  CAS  PubMed  Google Scholar 

  • Harris SS, Soteriades E, Dawson-Hughes B. Secondary hyperparathyroidism and bone turnover in elderly blacks and whites. J Clin Endocrinol Metab. 2001;86(8):3801–4.

    Article  CAS  PubMed  Google Scholar 

  • Hatayama K, Ichikawa Y, Nishihara Y, Goto K, Nakamura D, Wakita A, et al. Serum alkaline phosphatase isoenzymes in SD rats detected by polyacrylamide-gel disk electrophoresis. Toxicol Mech Methods. 2012;22:289–95.

    Article  CAS  PubMed  Google Scholar 

  • HernĂ¡ndez-SĂ¡nchez C, Blakesley V, Kalebic T, Helman L, LeRoith D. The role of the tyrosine kinase domain of the insulin-like growth factor-I receptor in intracellular signaling, cellular proliferation, and tumorigenesis. J Biol Chem. 1995;270:29176–81.

    Article  PubMed  Google Scholar 

  • Holick MF. Vitamin D, deficiency. N Engl J Med. 2007;357(3):266–8.

    Article  CAS  PubMed  Google Scholar 

  • Hu CA, Khalil S, Zhaorigetu S, Liu Z, Tyler M, Wan G, et al. Human D1-pyrroline-5-carboxylate synthase: function and regulation. Amino Acids. 2008;35:665–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson JA, Riggs MW, Spiekerman AM. Testosterone deficiency as a risk factor for hip fractures in men: a case–control study. Am J Med Sci. 1992;304:4–8.

    Article  CAS  PubMed  Google Scholar 

  • Kapustin AN, Shanahan CM. Osteocalcin. A novel vascular metabolic and osteoinductive factor? Arterioscler Thromb Vasc Biol. 2011;31:2169–71.

    Article  CAS  PubMed  Google Scholar 

  • Kaul S, Sharma SS, Mehta IK. Free radical scavenging potential of L-proline: evidence from in vitro assays. Amino Acids. 2008;34:315–20.

    Article  CAS  PubMed  Google Scholar 

  • Kenny AM, Prestwood KM, Gruman CA, Marcello KM, Raisz LG. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels.J Gerontol A Biol Sci Med Sci. 2001;56:M266–72.

    Article  CAS  PubMed  Google Scholar 

  • Kivrikko K. Excretion of urinary hydroxyproline peptide in the assessment of bone collagen deposition and resorption. In: Frame B, Potts Jr JT, editors. Clinical disorders of bone and mineral metabolism. Amsterdam: Excerpta Medica; 1983. p. 105–7.

    Google Scholar 

  • Klein GL. Insulin and bone: recent developments. World J Diab. 2014;5(1):14–6.

    Article  Google Scholar 

  • Kress BC. Bone alkaline phosphatase: methods of quantitation and clinical utility. J Clin Ligand Assay. 1998;21(2):139–48.

    Google Scholar 

  • Kwan Tat S, Padrines M, ThĂ©oleyre S, Heymann D, Fortun Y. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 2004;15(1):49–60.

    Article  PubMed  Google Scholar 

  • Kubo K, Yuki K, Ikebukuro T. Changes in bone alkaline phosphatase and procollagen type-1 C-peptide after static and dynamic exercises. Res Q Exerc Sport. 2012;83:49–54.

    Article  PubMed  Google Scholar 

  • Laitinen O, Nikkila EA, Kivirikko KI. Hydroxyproline in the serum and urine. Normal values and clinical significance. Acta Med Scand. 1966;179(3):275–84.

    Article  CAS  PubMed  Google Scholar 

  • Lee YM, Fujikado N, Manaka H, Yasuda H, Iwakura Y. IL-1 plays an important role in the bone metabolism under physiological conditions. Int Immunol. 2010;22(10):805–16.

    Article  CAS  PubMed  Google Scholar 

  • Mancini T, Doga M, Mazziotti G, Giustina A. Cushing’s syndrome and bone. Pituitary. 2004;7:249–52.

    Article  PubMed  Google Scholar 

  • Mohan S, Kesavan C. Role of insulin-like growth factor-1 in the regulation of skeletal growth. Curr Osteoporos Rep. 2012;10(2):178–86.

    Article  PubMed  Google Scholar 

  • Moss DW, Henderson AR. Enzymes. In: Burtis CA, Ashwood ER, editors. Tietz textbook of clinical chemistry. 2nd ed. Philadelphia: W.B. Saunders Co; 1994. p. 882–90.

    Google Scholar 

  • Nelson DL, Cox MM. Lehninger’s principles of biochemistry. 4th ed. New York: W. H. Freeman and Company; 2005.

    Google Scholar 

  • Nicoll DC. Appendix: therapeutic drug monitoring and laboratory reference ranges. In: Stephen JM, Maxine AP, editors. Current medical diagnosis and treatment. 46th ed. New York: Mc Graw Hill; 2007. p. 1767–75.

    Google Scholar 

  • Risteli L, Risteli J. Biochemical markers of bone metabolism. Ann Med. 1993;25:385–93.

    Article  CAS  PubMed  Google Scholar 

  • Roodman GD. Interleukin-6: an osteotropic factor? J Bone Miner Res. 1992;7:475–8.

    Article  CAS  PubMed  Google Scholar 

  • Ross PD, Knowlton W. Rapid bone loss is associated with increased levels of biochemical markers. J Bone Miner Res. 1998;13:297–302.

    Article  CAS  PubMed  Google Scholar 

  • Simko V. Alkaline phosphatase in biology and medicine. Dig Dis. 1991;9:189–209.

    Article  CAS  PubMed  Google Scholar 

  • Stevenson JC. Regulation of calcitonin and parathyroid hormone secretion by oestrogens. Maturitas. 1982;4(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  • Suda T, Ueno Y, Fujii K, Shinki T. Vitamin D and bone. J Cell Biochem. 2002;88:259–66.

    Article  Google Scholar 

  • Taichman RS. Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem cell niche. Blood. 2005;105:2631–9.

    Article  CAS  PubMed  Google Scholar 

  • Tarantino G, Savastano S, Colao A. Hepatic steatosis, low-grade chronic inflammation and hormone/growth factor/adipokine imbalance. World J Gastroenterol. 2010;16:4773–83.

    Article  PubMed  PubMed Central  Google Scholar 

  • TĂ³th M, Grossman A. Glucocorticoid-induced osteoporosis: lessons from Cushing’s syndrome. Clin Endocrinol (Oxf). 2013;79(1):1–11.

    Article  Google Scholar 

  • Underwood JL, DeLuca HF. Vitamin D is not directly necessary for bone growth and mineralization. Am J Physiol. 1984;246:E493–8.

    CAS  PubMed  Google Scholar 

  • Väänänen HK, Härkönen PL. Estrogen and bone metabolism. Maturitas. 1996;23:S65–9.

    Article  PubMed  Google Scholar 

  • Von Domarus C, Brown J, Barvencik F, Amling M, Pogoda P. How much vitamin D do we need for skeletal health? Clin Orthop Relat Res. 2011;469(11):3127–33.

    Article  Google Scholar 

  • Yamamoto M, Kawanobe Y, Takahashi H, Shimazawa E, Kimura S, Ogata E. Vitamin D deficiency and renal calcium transport in the rat. J Clin Invest. 1984;74:507–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watts NB. Clinical utility of biochemical markers of bone remodeling. Clin Chem. 1999;45(8 Pt 2):1359–68.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Maffioli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Maffioli, P., Derosa, G. (2017). Overview of Biochemical Markers of Bone Metabolism. In: Patel, V., Preedy, V. (eds) Biomarkers in Bone Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7693-7_24

Download citation

Publish with us

Policies and ethics