Skip to main content

Microarrays and Renal Cell Cancer Biomarkers

  • Reference work entry
Biomarkers in Cancer

Abstract

The incidence of renal cell carcinoma (RCC) has steadily increased during the last decades. Although technological advances for early recognition of RCC exist, many tumors are accidentally detected, and clinical decision-making is still mainly based on morphological evaluation. Being a relatively chemotherapeutic-resistant and very heterogenic disease, the biological behavior of this tumor type is difficult to predict. Histologic subtyping, tumor staging, and grading are still the pathologic parameters with most valid prognostic and diagnostic significance. Novel high-throughput methodologies have been developed to depict the molecular constitution of individual tumors at the DNA, RNA, and protein levels in order to find relevant biomarkers for optimizing cancer patient care. In this chapter we recapitulate previous published efforts with different microarray platforms which were used to identify biomarkers in RCC. As a result, a large number of such markers, including pathways and gene signatures, have been described as promising biomarkers with significant prognostic and predictive value. However, at present and in contrast to other tumor types such as breast cancer, lung cancer, or melanoma, there is no RCC biomarker that can unrestrictedly be recommended for the use in routine diagnostics. In light of the increasing demand of targeted cancer therapies, vigorous biomedical studies will be needed to translate the molecular findings into clinical applications.

Both the authors contributed equally with all other contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ccRCC:

Clear Cell Renal Cell Carcinoma

chRCC:

Chromophobe Renal Cell Carcinoma

CGH:

Comparative Genomic Hybridization

CNV:

Copy Number Variant

CNA:

Copy Number Aberration

FFPE:

Formalin-Fixed Paraffin-Embedded

(F)ISH:

(Fluorescence) In Situ Hybridization

IHC:

Immunohistochemistry

miRNA:

microRNA

pRCC:

Papillary Renal Cell Carcinoma

RCC:

Renal Cell Carcinoma

SNP:

Single Nuclear Polymorphism

ADFP:

Adipose Differentiation-Related Protein

AKT:

Serine/Threonine Protein Kinase Akt (pAKT)

AMACR:

Alpha-methylacyl-CoA Racemase

ANPEP:

Alanyl (Membrane) Aminopeptidase

AP1M2:

Adaptor-Related Protein Complex 1, mu 2 Subunit

ASCL2:

Achaete-scute Complex Homolog 2

ATP5G2:

ATP Synthase, H+ Transporting, Mitochondrial Fo Complex, Subunit C2 (Subunit 9)

B7H1:

CD274 Molecule

BC029135:

TMEM72 Transmembrane Protein 72

BCL2L2:

BCL2-like 2

BIRC5:

Baculoviral IAP Repeat-Containing 5

BNC1:

Basonuclin 1

BRAF:

v-Raf Murine Sarcoma Viral Oncogene Homolog B1

CA2:

Carbonic Anhydrase II

CA9:

Carbonic Anhydrase IX

CA12:

Carbonic Anhydrase XII

CCDC8:

Coiled-Coil Domain Containing 8

CD10:

Membrane Metallo-Endopeptidase

CD95:

Fas Cell Surface Death Receptor

CD151:

CD151 Molecule (Raph Blood Group)

CDH1:

Cadherin 1

CDKN1C:

Cyclin-Dependent Kinase Inhibitor 1C (p57, Kip2)

CDKN2A:

Cyclin-Dependent Kinase Inhibitor 2A

CK7:

Keratin 7

CKS:

CDC28 Protein Kinase

CLDN:

Claudin 7

CMET:

Met Proto-Oncogene (Hepatocyte Growth Factor Receptor)

COL14A1:

Collagen, Type XIV, Alpha 1

COL15A1:

Collagen, Type XV, Alpha 1

CORO6:

Coronin 6

CSF1R:

Colony-Stimulating Factor 1 Receptor

CST6:

Cystatin E/M

DNMT DNA:

(Cytosine-5-)-methyltransferase 1

DNMT3B DNA:

(Cytosine-5-)-methyltransferase 3 Beta

DOC2:

Dorsocross 2

EDNRB:

Endothelin Receptor Type B

EGFR:

Epidermal Growth Factor Receptor

ENST00000456816:

Ensembl Gene Chr3:194014254–194030493

EPCAM:

Epithelial Cell Adhesion Molecule

ERK:

Mitogen-Activated Protein Kinase 1

EZH2:

Enhancer of Zeste Homolog 2

FAM150A:

Family with Sequence Similarity 150, Member A

FAM78A:

Family with Sequence Similarity 78, Member A

FBN2:

Fibrillin 2

FGF14:

Fibroblast Growth Factor 14

FH:

Fumarate Hydratase

FLCN:

Folliculin

FLJ20171:

Epithelial Splicing Regulatory Protein 1

FOXP1:

Forkhead Box P1

FRA2:

FOS-like Antigen 2

GNG4:

Guanine Nucleotide Binding Protein (G Protein), Gamma 4

GPR56:

G Protein-Coupled Receptor 56

GREM1:

Gremlin 1

GRM6:

Glutamate Receptor, Metabotropic 6

GSN:

Gelsolin

GSTA:

Glutathione S-Transferase Cluster

GSTA1:

Glutathione S-Transferase Alpha 1

HER2:

v-erb-b2 Erythroblastic Leukemia Viral Oncogene Homolog 2

HIF1:

Hypoxia-Inducible Factor 1

HIF2:

Endothelial PAS Domain Protein 1

HIG2:

Hypoxia-Inducible Lipid Droplet-Associated

IKBA:

Nuclear Factor Of Kappa Light Polypeptide Gene Enhancer in B-Cells Inhibitor, Alpha

KCNQ1:

Potassium Voltage-Gated Channel, KQT-like Subfamily, Member 1

KHDRBS2:

KH Domain Containing, RNA Binding, Signal Transduction-Associated 2

KI67:

Antigen KI-67

KLHL35:

Kelch-like Family Member 35

MAGEA9:

Melanoma Antigen Family A, 9

MAL2:

Mal, T-Cell Differentiation Protein 2 (Gene/Pseudogene)

MET:

Met Proto-Oncogene (Hepatocyte Growth Factor Receptor)

MLC2:

Myosin, Light Chain 2, Regulatory, Cardiac, Slow

MMP16:

Matrix Metallopeptidase 16 (Membrane-Inserted)

MTOR:

Mechanistic Target of Rapamycin (Serine/Threonine Kinase)

MYC:

v-myc Myelocytomatosis Viral Oncogene Homolog (Avian)

NKX6-2:

NK6 homeobox 2

NNMT:

Nicotinamide N-methyltransferase

NR_024418:

Uncharacterized LOC389332 Homo sapiens

NRG1:

Neuregulin 1

P27:

Proteasome (Prosome, Macropain) 26S Subunit, Non-ATPase, 9

P53:

Tumor Protein p53

PACRG:

PARK2 Co-regulated

PARK2:

Parkinson protein 2, E3 Ubiquitin Protein Ligase (Parkin)

PAX2:

Paired Box 2

PAX8:

Paired Box 8

PBRM1:

Polybromo 1

PCDH8:

Protocadherin 8

PCDHAC1:

Protocadherin Alpha Subfamily C, 1

PDGFR:

Platelet-Derived Growth Factor Receptor

PDLIM4:

PDZ and LIM Domain 4

PI3K:

Phosphatidylinositol-4,5-bisphosphate 3-Kinase, Catalytic Subunit Alpha

POSTN:

Periostin, Osteoblast Specific Factor

PRAC:

Prostate Cancer Susceptibility Candidate

PROM2:

Prominin 2

PRSS8:

Protease, Serine, 8

PS6:

Taste Receptor, Type 2, Member 63 Pseudogene

PTEN:

Phosphatase and Tensin Homolog

PTPRJ:

Protein Tyrosine Phosphatase, Receptor Type, J

PTTG1:

Pituitary Tumor-Transforming 1

QPCT:

Glutaminyl-Peptide Cyclotransferase

RGS5:

Regulator of G-Protein Signaling 5

RIMS4:

Regulating Synaptic Membrane Exocytosis 4

RPRM:

Reprimo, TP53 Dependent G2 Arrest Mediator Candidate

SAV1:

Salvador Homolog 1

SCUBE3:

Signal Peptide, CUB Domain, EGF-like 3

SFRP1:

Secreted Frizzled-Related Protein 1

SKP2:

S-phase Kinase-Associated Protein 2, E3 Ubiquitin Protein Ligase

SLC13A5:

Solute Carrier Family 13 (Sodium-Dependent Citrate Transporter), Member 5

SPARC:

Secreted Protein, Acidic, Cysteine-Rich (Osteonectin)

STC2:

Stanniocalcin 2

TFE3:

Transcription Factor Binding to IGHM Enhancer 3

TGF:

Transforming Growth Factor

TP2A:

Topoisomerase (DNA) II Alpha 170 kDa

TRAIL(R):

Tumor Necrosis Factor (Ligand) Superfamily, Member 10 (Receptor)

TRH:

Thyrotropin-Releasing Hormone

TRIM63:

Tripartite Motif Containing 63, E3 Ubiquitin Protein Ligase

VCAM:

Vascular Cell Adhesion Molecule

VCAM1:

Vascular Cell Adhesion Molecule 1

VCAN:

Versican

VEGFR:

Kinase Insert Domain Receptor (a Type III Receptor Tyrosine Kinase)

VEZF1:

Vascular Endothelial Zinc Finger 1

VHL:

von Hippel-Lindau Tumor Suppressor, E3 Ubiquitin Protein Ligase

VIM:

Vimentin

WNT3A:

Wingless-Type MMTV Integration Site Family, Member 3A

X91348:

Homo sapiens mRNA for KIAA1647 Protein

YAP1:

Yes-Associated Protein 1

ZFHX1B:

Zinc Finger E-Box Binding Homeobox 2

ZFP42 ZFP42:

Zinc Finger Protein

ZNF154:

Zinc Finger Protein 154

ZNF540:

Zinc Finger Protein 540

ZNF671:

Zinc finger protein 671

ZSCAN18:

Zinc Finger and SCAN Domain Containing 18

References

  • Albertson DG, Ylstra B, Segraves R, et al. Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat Genet. 2000;25:144–6.

    Article  CAS  PubMed  Google Scholar 

  • Arai E, Chiku S, Mori T, et al. Single-CpG-resolution methylome analysis identifies clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas. Carcinogenesis. 2012;33:1487–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avissar-Whiting M, Koestler DC, Houseman EA, et al. Polycomb group genes are targets of aberrant DNA methylation in renal cell carcinoma. Epigenetics. 2011;6:703–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker F, Junker K, Parr M, et al. Collecting duct carcinomas represent a unique tumor entity based on genetic alterations. PLoS One. 2013;8:e78137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beleut M, Zimmermann P, Baudis M, et al. Integrative genome-wide expression profiling identifies three distinct molecular subgroups of renal cell carcinoma with different patient outcome. BMC Cancer. 2012;12:310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beroukhim R, Brunet JP, Di Napoli A, et al. Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res. 2009;69:4674–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boer JM, Huber WK, Sultmann H, et al. Identification and classification of differentially expressed genes in renal cell carcinoma by expression profiling on a global human 31,500-element cDNA array. Genome Res. 2001;11:1861–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brannon AR, Reddy A, Seiler M, et al. Molecular stratification of clear cell renal cell carcinoma by consensus clustering reveals distinct subtypes and survival patterns. Genes Cancer. 2010;1:152–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camparo P, Vasiliu V, Molinie V, et al. Renal translocation carcinomas: clinicopathologic, immunohistochemical, and gene expression profiling analysis of 31 cases with a review of the literature. Am J Surg Pathol. 2008;32:656–70.

    Article  PubMed  Google Scholar 

  • Casagrande S, Ruf M, Rechsteiner M, et al. The protein tyrosine phosphatase receptor type J is regulated by the pVHL-HIF axis in clear cell renal cell carcinoma. J Pathol. 2013;229:525–34.

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Ye Y, Yang H, et al. Genome-wide profiling of chromosomal alterations in renal cell carcinoma using high-density single nucleotide polymorphism arrays. Int J Cancer. 2009;125:2342–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Li Y, Zhang H, et al. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene. 2010;29:4362–8.

    Article  CAS  PubMed  Google Scholar 

  • Cohen HT, McGovern FJ. Renal-cell carcinoma. N Engl J Med. 2005;353:2477–90.

    Article  CAS  PubMed  Google Scholar 

  • Creighton CJ, Morgan M, Gunaratne PH, et al. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–9.

    Article  CAS  Google Scholar 

  • Dahinden C, Ingold B, Wild P, et al. Mining tissue microarray data to uncover combinations of biomarker expression patterns that improve intermediate staging and grading of clear cell renal cell cancer. Clin Cancer Res. 2010;16:88–98.

    Article  CAS  PubMed  Google Scholar 

  • Darwish OM, Kapur P, Youssef RF, et al. Cumulative number of altered biomarkers in mammalian target of rapamycin pathway is an independent predictor of outcome in patients with clear cell renal cell carcinoma. Urology. 2013;81:581–6.

    Article  PubMed  Google Scholar 

  • Dondeti VR, Wubbenhorst B, Lal P, et al. Integrative genomic analyses of sporadic clear cell renal cell carcinoma define disease subtypes and potential new therapeutic targets. Cancer Res. 2012;72:112–21.

    Article  CAS  PubMed  Google Scholar 

  • Duns G, van den Berg A, van Dijk MC, et al. The entire miR-200 seed family is strongly deregulated in clear cell renal cell cancer compared to the proximal tubular epithelial cells of the kidney. Genes Chromosomes Cancer. 2013;52:165–73.

    Article  CAS  PubMed  Google Scholar 

  • Eble JN, Sauter G, Epstein JI, et al. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of the Urinary System and Male Genital Organs. Lyon: IARC Press; 2004.

    Google Scholar 

  • Eichelberg C, Chun FK, Bedke J, et al. Epithelial cell adhesion molecule is an independent prognostic marker in clear cell renal carcinoma. Int J Cancer. 2013;132:2948–55.

    Article  CAS  PubMed  Google Scholar 

  • Fiegler H, Geigl JB, Langer S, et al. High resolution array-CGH analysis of single cells. Nucleic Acids Res. 2007;35:e15.

    Article  PubMed  Google Scholar 

  • Frew IJ, Krek W. pVHL: a multipurpose adaptor protein. Sci Signal. 2008;1:pe30.

    Article  PubMed  Google Scholar 

  • Fritzsche FR, Oelrich B, Johannsen M, et al. Claudin-1 protein expression is a prognostic marker of patient survival in renal cell carcinomas. Clin Cancer Res. 2008;14:7035–42.

    Article  CAS  PubMed  Google Scholar 

  • Gibney GT, Aziz SA, Camp RL, et al. c-Met is a prognostic marker and potential therapeutic target in clear cell renal cell carcinoma. Ann Oncol. 2013;24:343–9.

    Article  CAS  PubMed  Google Scholar 

  • Gottardo F, Liu CG, Ferracin M, et al. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol. 2007;25:387–92.

    Article  CAS  PubMed  Google Scholar 

  • Hager M, Haufe H, Kemmerling R, et al. Increased activated Akt expression in renal cell carcinomas and prognosis. J Cell Mol Med. 2009;13:2181–8.

    Article  PubMed  Google Scholar 

  • Hatiboglu G, Pritsch M, Macher-Goeppinger S, et al. Prognostic value of melanoma-associated antigen A9 in renal cell carcinoma. Scand J Urol. 2012;47(4):311–22.

    Article  PubMed  Google Scholar 

  • Herman JG, Latif F, Weng Y, et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A. 1994;91:9700–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins JP, Shinghal R, Gill H, et al. Gene expression patterns in renal cell carcinoma assessed by complementary DNA microarray. Am J Pathol. 2003;162:925–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones J, Otu H, Spentzos D, et al. Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res. 2005;11:5730–9.

    Article  CAS  PubMed  Google Scholar 

  • Jung M, Mollenkopf HJ, Grimm C, et al. MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J Cell Mol Med. 2009;13:3918–28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Shen SS, Ayala AG, et al. Virtual-karyotyping with SNP microarrays in morphologically challenging renal cell neoplasms: a practical and useful diagnostic modality. Am J Surg Pathol. 2009;33:1276–86.

    Article  PubMed  Google Scholar 

  • Klatte T, Seligson DB, Riggs SB, et al. Hypoxia-inducible factor 1 alpha in clear cell renal cell carcinoma. Clin Cancer Res. 2007;13:7388–93.

    Article  CAS  PubMed  Google Scholar 

  • Kononen J, Bubendorf L, Kallioniemi A, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med. 1998;4:844–7.

    Article  CAS  PubMed  Google Scholar 

  • Kosari F, Parker AS, Kube DM, et al. Clear cell renal cell carcinoma: gene expression analyses identify a potential signature for tumor aggressiveness. Clin Cancer Res. 2005;11:5128–39.

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Fu Q, Lv J, et al. Prognostic implication of p27Kip1, Skp2 and Cks1 expression in renal cell carcinoma: a tissue microarray study. J Exp Clin Cancer Res. 2008;27:51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Macher-Goeppinger S, Aulmann S, Tagscherer KE, et al. Prognostic value of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL receptors in renal cell cancer. Clin Cancer Res. 2009;15:650–9.

    Article  CAS  PubMed  Google Scholar 

  • Macher-Goeppinger S, Bermejo JL, Wagener N, et al. Expression and prognostic relevance of the death receptor CD95 (Fas/APO1) in renal cell carcinomas. Cancer Lett. 2011;301:203–11.

    Article  CAS  PubMed  Google Scholar 

  • Maina EN, Morris MR, Zatyka M, et al. Identification of novel VHL target genes and relationship to hypoxic response pathways. Oncogene. 2005;24:4549–58.

    Article  CAS  PubMed  Google Scholar 

  • Maruschke M, Koczan D, Reuter D, et al. Putative biomarker genes for grading clear cell renal cell carcinoma. Urol Int. 2011;87:205–17.

    Article  CAS  PubMed  Google Scholar 

  • Matsuura K, Nakada C, Mashio M, et al. Downregulation of SAV1 plays a role in pathogenesis of high-grade clear cell renal cell carcinoma. BMC Cancer. 2011;11:523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McRonald FE, Morris MR, Gentle D, et al. CpG methylation profiling in VHL related and VHL unrelated renal cell carcinoma. Mol Cancer. 2009;8:31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Minner S, Rump D, Tennstedt P, et al. Epidermal growth factor receptor protein expression and genomic alterations in renal cell carcinoma. Cancer. 2012;118:1268–75.

    Article  CAS  PubMed  Google Scholar 

  • Moch H. An overview of renal cell cancer: pathology and genetics. Semin Cancer Biol. 2013;23:3–9.

    Article  CAS  PubMed  Google Scholar 

  • Moch H, Mihatsch MJ. Genetic progression of renal cell carcinoma. Virchows Arch. 2002;441:320–7.

    Article  CAS  PubMed  Google Scholar 

  • Moch H, Schraml P, Bubendorf L, et al. High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma. Am J Pathol. 1999;154:981–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monzon FA, Hagenkord JM, Lyons-Weiler MA, et al. Whole genome SNP arrays as a potential diagnostic tool for the detection of characteristic chromosomal aberrations in renal epithelial tumors. Mod Pathol. 2008;21:599–608.

    Article  CAS  PubMed  Google Scholar 

  • Monzon FA, Alvarez K, Peterson L, et al. Chromosome 14q loss defines a molecular subtype of clear-cell renal cell carcinoma associated with poor prognosis. Mod Pathol. 2011;24:1470–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morra L, Rechsteiner M, Casagrande S, et al. Relevance of periostin splice variants in renal cell carcinoma. Am J Pathol. 2011;179:1513–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris MR, Ricketts C, Gentle D, et al. Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma. Oncogene. 2010;29:2104–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris MR, Ricketts CJ, Gentle D, et al. Genome-wide methylation analysis identifies epigenetically inactivated candidate tumour suppressor genes in renal cell carcinoma. Oncogene. 2011;30:1390–401.

    Article  CAS  PubMed  Google Scholar 

  • Nakada C, Matsuura K, Tsukamoto Y, et al. Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c. J Pathol. 2008;216:418–27.

    Article  CAS  PubMed  Google Scholar 

  • Neal CS, Michael MZ, Rawlings LH, et al. The VHL-dependent regulation of microRNAs in renal cancer. BMC Med. 2010;8:64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neumann HP, Bender BU, Berger DP, et al. Prevalence, morphology and biology of renal cell carcinoma in von Hippel-Lindau disease compared to sporadic renal cell carcinoma. J Urol. 1998;160:1248–54.

    Article  CAS  PubMed  Google Scholar 

  • Pantuck AJ, Seligson DB, Klatte T, et al. Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer. 2007;109:2257–67.

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski R, Muhl SM, Sulser T, et al. Loss of PBRM1 expression is associated with renal cell carcinoma progression. Int J Cancer. 2013;132:E11–7.

    Article  CAS  PubMed  Google Scholar 

  • Redova M, Poprach A, Nekvindova J, et al. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med. 2012;10:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohan S, Tu JJ, Kao J, et al. Gene expression profiling separates chromophobe renal cell carcinoma from oncocytoma and identifies vesicular transport and cell junction proteins as differentially expressed genes. Clin Cancer Res. 2006;12:6937–45.

    Article  CAS  PubMed  Google Scholar 

  • Sanjmyatav J, Steiner T, Wunderlich H, et al. A specific gene expression signature characterizes metastatic potential in clear cell renal cell carcinoma. J Urol. 2011;186:289–94.

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Yoshizato T, Shiraishi Y, et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet. 2013;45:860–7.

    Article  CAS  PubMed  Google Scholar 

  • Schuetz AN, Yin-Goen Q, Amin MB, et al. Molecular classification of renal tumors by gene expression profiling. J Mol Diagn. 2005;7:206–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seligson DB, Pantuck AJ, Liu X, et al. Epithelial cell adhesion molecule (KSA) expression: pathobiology and its role as an independent predictor of survival in renal cell carcinoma. Clin Cancer Res. 2004;10:2659–69.

    Article  CAS  PubMed  Google Scholar 

  • Seligson DB, Rajasekaran SA, Yu H, et al. Na, K-adenosine triphosphatase alpha1-subunit predicts survival of renal clear cell carcinoma. J Urol. 2008;179:338–45.

    Article  CAS  PubMed  Google Scholar 

  • Shi T, Seligson D, Belldegrun AS, et al. Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma. Mod Pathol. 2005;18:547–57.

    Article  CAS  PubMed  Google Scholar 

  • Skubitz KM, Zimmermann W, Kammerer R, et al. Differential gene expression identifies subgroups of renal cell carcinoma. J Lab Clin Med. 2006;147:250–67.

    Article  CAS  PubMed  Google Scholar 

  • Szponar A, Zubakov D, Pawlak J, et al. Three genetic developmental stages of papillary renal cell tumors: duplication of chromosome 1q marks fatal progression. Int J Cancer. 2009;124:2071–6.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Rhodes DR, Furge KA, et al. Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification. Proc Natl Acad Sci U S A. 2001;98:9754–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi M, Sugimura J, Yang X, et al. Gene expression profiling of renal cell carcinoma and its implications in diagnosis, prognosis, and therapeutics. Adv Cancer Res. 2003;89:157–81.

    Article  CAS  PubMed  Google Scholar 

  • Toffoli S, Michiels C. Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours. FEBS J. 2008;275:2991–3002.

    Article  CAS  PubMed  Google Scholar 

  • Togashi A, Katagiri T, Ashida S, et al. Hypoxia-inducible protein 2 (HIG2), a novel diagnostic marker for renal cell carcinoma and potential target for molecular therapy. Cancer Res. 2005;65:4817–26.

    Article  CAS  PubMed  Google Scholar 

  • Truong LD, Shen SS. Immunohistochemical diagnosis of renal neoplasms. Arch Pathol Lab Med. 2011;135:92–109.

    PubMed  Google Scholar 

  • Valera VA, Walter BA, Linehan WM, et al. Regulatory effects of microRNA-92 (miR-92) on VHL gene expression and the hypoxic activation of miR-210 in clear cell renal cell carcinoma. J Cancer Educ. 2011;2:515–26.

    Article  CAS  Google Scholar 

  • Vasselli JR, Shih JH, Iyengar SR, et al. Predicting survival in patients with metastatic kidney cancer by gene-expression profiling in the primary tumor. Proc Natl Acad Sci U S A. 2003;100:6958–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagener N, Macher-Goeppinger S, Pritsch M, et al. Enhancer of zeste homolog 2 (EZH2) expression is an independent prognostic factor in renal cell carcinoma. BMC Cancer. 2010;10:524.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilhelm M, Veltman JA, Olshen AB, et al. Array-based comparative genomic hybridization for the differential diagnosis of renal cell cancer. Cancer Res. 2002;62:957–60.

    CAS  PubMed  Google Scholar 

  • Wondergem B, Zhang Z, Huang D, et al. Expression of the PTTG1 oncogene is associated with aggressive clear cell renal cell carcinoma. Cancer Res. 2012;72:4361–71.

    Article  CAS  PubMed  Google Scholar 

  • Wotschofsky Z, Liep J, Meyer HA, et al. Identification of metastamirs as metastasis-associated microRNAs in clear cell renal cell carcinomas. Int J Biol Sci. 2012;8:1363–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wozniak MB, Le Calvez-Kelm F, Abedi-Ardekani B, et al. Integrative genome-wide gene expression profiling of clear cell renal cell carcinoma in Czech Republic and in the United States. PLoS One. 2013;8:e57886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wulfken LM, Moritz R, Ohlmann C, et al. MicroRNAs in renal cell carcinoma: diagnostic implications of serum miR-1233 levels. PLoS One. 2011;6:e25787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XJ, Sugimura J, Tretiakova MS, et al. Gene expression profiling of renal medullary carcinoma: potential clinical relevance. Cancer. 2004;100:976–85.

    Article  PubMed  Google Scholar 

  • Yang XJ, Tan MH, Kim HL, et al. A molecular classification of papillary renal cell carcinoma. Cancer Res. 2005;65:5628–37.

    Article  CAS  PubMed  Google Scholar 

  • Yao M, Tabuchi H, Nagashima Y, et al. Gene expression analysis of renal carcinoma: adipose differentiation-related protein as a potential diagnostic and prognostic biomarker for clear-cell renal carcinoma. J Pathol. 2005;205:377–87.

    Article  CAS  PubMed  Google Scholar 

  • Yao M, Huang Y, Shioi K, et al. A three-gene expression signature model to predict clinical outcome of clear cell renal carcinoma. Int J Cancer. 2008;123:1126–32.

    Article  CAS  PubMed  Google Scholar 

  • Yi Z, Fu Y, Zhao S, et al. Differential expression of miRNA patterns in renal cell carcinoma and nontumorous tissues. J Cancer Res Clin Oncol. 2010;136:855–62.

    Article  CAS  PubMed  Google Scholar 

  • Youssef YM, White NM, Grigull J, et al. Accurate molecular classification of kidney cancer subtypes using microRNA signature. Eur Urol. 2011;59:721–30.

    Article  CAS  PubMed  Google Scholar 

  • Yu G, Yao W, Wang J, et al. LncRNAs expression signatures of renal clear cell carcinoma revealed by microarray. PLoS One. 2012;7:e42377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Schraml or Manfred Beleut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Schraml, P., Beleut, M. (2015). Microarrays and Renal Cell Cancer Biomarkers. In: Preedy, V., Patel, V. (eds) Biomarkers in Cancer. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7681-4_9

Download citation

Publish with us

Policies and ethics