Skip to main content

Magnetic Dichroism Studies of Spintronic Structures

  • Living reference work entry
  • First Online:
Handbook of Spintronics
  • 376 Accesses

Abstract

The rise of spintronics has been closely linked with the development of instrumentation in nano-characterization over the past 20 years. The experimental side of spintronic research today has moved to a point where the paramount urgency is to use materials of the highest perfection and homogeneity as well as analysis tools with atomic sensitivity. Such criteria require usually exclusive techniques, dedicated equipment, and extreme physical conditions, such as ultrahigh vacuum, low temperatures, high fields, etc. This chapter presents some of the most advanced experimental tools, i.e., synchrotron-based magnetic dichroism techniques, which have facilitated the studies of many cutting-edge subjects of spintronics, such as the heterojunction interfacial magnetism, magnetic proximity effect, magnetism in diluted magnetic semiconductors (DMSs), doped topological insulators, half-metallic alloys, magnetic domain structures, and spin transfer torque (STT) effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BCC:

Body-centered cubic

BSE:

Back-scattered electrons

CCD:

Charge-coupled device

CIP:

Current in plane

CPP:

Current perpendicular to plane

DMS:

Diluted magnetic semiconductor

DOS:

Density of state

DRAM:

Dynamic random-access memory

EDX:

Energy dispersive X-ray

EM:

Electron microscope

FET:

Field-effect transistor

FM:

Ferro- or ferrimagnetic material

GMR:

Giant magnetoresistance

HCP:

Hexagonal close packing

HM:

Half metal

I:

Insulator

IT:

Information technology

LCP:

Left circularly polarized

LED:

Light emission diode

ML:

Monolayer

MOKE:

Magneto-optical Kerr effect

MRAM:

Magnetoresistive random-access memory

NM:

Nonmagnetic

RCP:

Right circularly polarized

RE:

Rare earth

RT:

Room temperature

SC:

Semiconductor or Spin Correction factor

SRAM:

Static random-access memory

SV:

Spin valve

TEY:

Total electron yield

TFY:

Total florescence yield

TRS:

Time reversal symmetry

UHV:

Ultrahigh vacuum

XAS:

X-ray absorption spectroscopy

XMCD:

X-ray magnetic circular dichroism

XPEEM:

X-ray photoemission electron microscopy

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

References

  1. van der Laan G, Figueroa AI (2014) X-ray magnetic circular dichroism – a versatile tool to study magnetism. Coord Chem Rev 277–278:95–129. doi:10.1016/j.ccr.2014.03.018

    Google Scholar 

  2. Sette F, Chen CT, Ma Y, Modesti S, Smith NV (1991) In Hasnain SS (ed) X-ray absorption fine structure, Ellis Horwood, Chichester, p 96

    Google Scholar 

  3. Lee J, Lauhoff G, Fermon C, Hope S, Bland JAC, Schillé JP, van der Laan G, Chappert C, Beauvillain P (1997) A direct test of x-ray magnetic circular dichroism sum rules for strained Ni films using polarized neutron reflection. J Phys Condens Matter 9:L137–L143

    ADS  Google Scholar 

  4. Erskine JL, Stern EA (1975) Phys Rev B 12:5016

    ADS  Google Scholar 

  5. Thole BT, van der Laan G, Sawatzky GA (1985) Strong magnetic dichroism predicted in the M4, 5 X-ray absorption spectra of magnetic rare earth materials. Phys Rev Lett 55:2086

    ADS  Google Scholar 

  6. van der Laan G, Thole BT, Sawatzky GA, Goedkoop JB, Fuggle JC, Esteva JM, Karnatak RC, Remeika JP, Dabkowska HA (1986) Experimental proof of magnetic X-ray dichroism. Phys Rev B 34:6529

    ADS  Google Scholar 

  7. Schutz G, Wagner W, Wilhelm W, Kienle P, Zeller R, Frahm R, Materlik G (1987) Absorption of circularly polarized X-rays in iron. Phys Rev Lett 58:737

    ADS  Google Scholar 

  8. Schutz G, Frahm R, Mautner P, Wienke R, Wagner W, Wilhelm W, Kienle P (1989) Spin-dependent extended X-ray-absorption fine-structure – probing magnetic short-range order. Phys Rev Lett 62:2620

    ADS  Google Scholar 

  9. Ebert H, Strange P, Gyorffy BL (1988) Theory of circularly polarized X-ray absorption by ferromagnetic Fe. J Appl Phys 63:3055

    ADS  Google Scholar 

  10. Ebert H (1996) Magneto-optical effects in transition metal systems. Rep Prog Phys 59:1665

    ADS  Google Scholar 

  11. Chen CT, Sette F, Ma Y, Modesti S (1990) Soft-X-ray magnetic circular-dichroism at the L 2,3 edges of nickel. Phys Rev B 42:7262

    ADS  Google Scholar 

  12. van der Laan G, Thole BT (1991) Strong magnetic X-ray dichroism in 2p absorption spectra of 3d transition metal ions. Phys Rev B 43:13401–13411

    ADS  Google Scholar 

  13. Thole BT, Carra P, Sette F, van der Laan G (1992) X-ray circular dichroism as a probe of orbital magnetization. Phys Rev Lett 68:1943–1946

    ADS  Google Scholar 

  14. Carra P, Thole BT, Altarelli M, Wang X (1993) X-ray circular dichroism and local magnetic fields. Phys Rev Lett 69:2307

    Google Scholar 

  15. van der Laan G (1998) Angular momentum sum rules for X-ray absorption. Phys Rev B 57:112

    ADS  Google Scholar 

  16. Stöhr J (1999) Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy. J Magn Magn Mater 200:470–497. doi:10.1016/S0304-8853(99)00407-2

    ADS  Google Scholar 

  17. Funk T, Deb A, George SJ, Wang H, Cramer SP (2005) X-ray magnetic circular dichroism—a high energy probe of magnetic properties. Coord Chem Rev 249:3–30. doi:10.1016/j.ccr.2004.05.017

    Google Scholar 

  18. Lovesey SW, Collins SP (1996) X-ray Scattering and Absorption by Magnetic Materials. Clarendon Press/Oxford University Press, Oxford/New York, p 377

    Google Scholar 

  19. Siegmann Stohr J, Siegmann HC (2006) Magnetism from fundamentals to nanoscale dynamics. Springer, Berlin

    Google Scholar 

  20. Groot F de, Kotani A (2008) Core level spectroscopy of solids. Adv Condens matter Sci xx, 490 p. doi: 10.1201/9781420008425

    Google Scholar 

  21. Clarke JA (2004) The science and technology of undulators and wigglers. Oxford science publications, Oxford

    Google Scholar 

  22. Duke PJ (2000) Synchrotron radiation: production and properties. Oxford science publications, Oxford

    Google Scholar 

  23. Wang H, Bencok P, Steadman P, Longhi E, Zhu J, Wang Z (2012) Complete polarization analysis of an APPLE II undulator using a soft X-ray polarimeter. J Synchrotron Radiat 19:944–948

    Google Scholar 

  24. Cooper M (2004) X-ray Compton scattering, Oxford series on synchrotron radiation. Oxford University Press, Oxford

    Google Scholar 

  25. Stöhr J, Siegmann HC (2006) Magnetism. Springer, New York

    Google Scholar 

  26. Stöhr J, Siegmann HC (2006) Magnetism from fundamentals to nanoscale dynamics. Springer, Berlin

    Google Scholar 

  27. van der Laan G (2006) Hitchhiker’s guide to multiplet calculations. Lecture notes in physics vol 697. Springer, Berlin, pp 143–200

    Google Scholar 

  28. van der Laan G, Thole BT (1990) Magnetic dichroism in the x-ray-absorption branching ratio. Phys Rev B 42:6670–6674

    ADS  Google Scholar 

  29. van der Laan G, Thole BT (1988) Angular dependent photoelectric yield. Measurement of the La 3d Auger and autoionization life time widths. J Electron Spectrosc Relat Phenomenon 46:123–129

    Google Scholar 

  30. Shelford LR, Hesjedal T, Collins-McIntyre L, Dhesi SS, Maccherozzi F, van der Laan G (2012) Electronic structure of Fe and Co magnetic adatoms on Bi2Te3 surfaces. Phys Rev B86:081304

    ADS  Google Scholar 

  31. Thole BT, van der Laan G, Fuggle JC, Sawatzky GA, Karnatak RC and JM Esteva (1985), 3d X-ray absorption lines and the 3d 94f n+1 multiplets of the lanthanides. Phys Rev B 32:5107–5118

    Google Scholar 

  32. Pattrick RAD, Van Der Laan G, Henderson CMB, Kuiper P, Dudzik E, Vaughan DJ (2002) Cation site occupancy in spinel ferrites studied by X-ray magnetic circular dichroism: developing a method for mineralogists. Eur J Mineral 14:1095–1102

    Google Scholar 

  33. Wu R, Wang D, Freeman AJ (1993) First principles investigation of the validity and range of applicability of the X-ray magnetic circular-dichroism sum-rule. Phys Rev Lett 71:3581

    ADS  Google Scholar 

  34. Stöhr J, König H (1995) Phys Rev Lett 75:3748

    ADS  Google Scholar 

  35. Dürr HA, van der Laan G (1996) Magnetic circular x-ray dichroism in transverse geometry: importance of noncollinear ground state moments. Phys Rev B 54:R760

    ADS  Google Scholar 

  36. Collins SP, Laundy D, Tang CC, van der Laan G (1995) An investigation of uranium M 4,5 edge magnetic x-ray circular dichroism in US. J Phys Condens Matter 7:9325–9341

    ADS  Google Scholar 

  37. van der Laan G, Thole BT (1996) X-ray absorption sum rules in jj-coupled operators and ground state moments of actinide ions. Phys Rev B 53:14458–14469

    ADS  Google Scholar 

  38. van der Laan G (1999) Sum rule practice. J Synchrotron Rad 6:694

    Google Scholar 

  39. Wende H, Li Z, Scherz A, Ceballos G, Baberschke K, Ankudinov A, Rehr JJ, Wilhelm F, Rogalev A, Schlagel DL, Lograsso TA (2002) Quadrupolar and dipolar contributions to XMCD at the Tb L3,2-edges: experiment versus theory. J Appl Phys 91:7361

    ADS  Google Scholar 

  40. Filipe A, Schuhl A, Galtier P (1997) Structure and magnetism of the Fe/GaAs interface. Appl Phys Lett 70:129

    ADS  Google Scholar 

  41. Kneedler EM, Jonker BT, Thibado PM, Wagner RJ, Shanabrook BV, Whitman LJ (1997) Influence of substrate surface reconstruction on the growth and magnetic properties of Fe on GaAs(001). Phys Rev B 56:8163

    ADS  Google Scholar 

  42. Prinz GA (1982) Magnetic properties of single-crystal (110) iron films grown on GaAs by molecular beam epitaxy (invited). J Appl Phys 53:2087

    ADS  Google Scholar 

  43. Xu YB, Kernohan ETM, Freeland DJ, Ercole A, Tselepi M, Bland JAC et al (1998) Evolution of the ferromagnetic phase of ultrathin Fe films grown on GaAs(100)-4x6. Phys Rev B58:890–896

    ADS  Google Scholar 

  44. Claydon JS, Xu YB, Tselepi M, et al (2004) Direct observation of a bulklike spin moment at the Fe/GaAs(100)-4 x 6 interface. Phys Rev Lett 93:037206–1. doi:10.1103/PhysRevLett.93.037206

    Google Scholar 

  45. Giovanelli L, Panaccione G, Rossi G et al (2005) Layer-selective spectroscopy of Fe/GaAs(001): influence of the interface on the magnetic properties. Phys Rev B 72:045221. doi:10.1103/PhysRevB.72.045221

    ADS  Google Scholar 

  46. Xu YB, Tselepi M, Guertler CM et al (2001) Giant enhancement of orbital moments and perpendicular anisotropy in epitaxial Fe/GaAs(100). J Appl Phys 89:7156. doi:10.1063/1.1359473

    ADS  Google Scholar 

  47. Krumme B, Weis C, Herper HC et al (2009) Local atomic order and element-specific magnetic moments of Fe3 Si thin films on MgO(001) and GaAs(001) substrates. Phys Rev B - Condens Matter Mater Phys 80:2–9. doi:10.1103/PhysRevB.80.144403

    Google Scholar 

  48. Telling ND, van der Laan G, Ladak S, Hicken RJ (2004) Spin polarization and barrier-oxidation effects at the Co/alumina interface in magnetic tunnel junctions. Appl Phys Lett 85:3803

    ADS  Google Scholar 

  49. Tsunegi S, Sakuraba Y, Amemiya K, et al (2012) Observation of magnetic moments at the interface region in magnetic tunnel junctions using depth-resolved x-ray magnetic circular dichroism. Phys Rev B. doi:10.1103/PhysRevB.85.180408

    Google Scholar 

  50. Ohno H (1998) Making nonmagnetic semiconductors ferromagnetic science. Science 281:951–956

    ADS  Google Scholar 

  51. Esaki L, Stiles P, Molnar S (1967) Magnetointernal field emission in junctions of magnetic insulators. Phys Rev Lett 19:852–854

    ADS  Google Scholar 

  52. Munekata H, Ohno H, von Molnar S, Segmüller A, Chang L, Esaki L (1989) Diluted magnetic III-V semiconductors. Phys Rev Lett 63:1849–1852

    ADS  Google Scholar 

  53. Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y (1996) Ga,Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl Phys Lett 69:363

    ADS  Google Scholar 

  54. Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K (2000) Electric-field control of ferromagnetism. Nature 408:944–946

    ADS  Google Scholar 

  55. Chiba D, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K, Ohno H (2002) Control of ferromagnetism in field-effect transistor of a magnetic semiconductor. Phys E Low-dimensional Syst Nanostructures 12:351–355

    ADS  Google Scholar 

  56. Furdyna JK, Kossut J (1988) Semiconductor and semimetals. Academic, New York

    Google Scholar 

  57. Adhikari T, Basu S (1994) Electrical properties of gallium manganese antimonide: a new diluted magnetic semiconductor. Jpn J Appl Phys 33:4581

    ADS  Google Scholar 

  58. Edmonds KW, van der Laan G, Farley NRS, Campion RP, Gallagher BL, Foxon CT, Cowie BCC, Warren S, Johal TK (2011) Magnetic linear dichroism in the angular dependence of core-level photoemission from (Ga, Mn)As using hard X rays. Phys Rev Lett 107:197601

    ADS  Google Scholar 

  59. Wang M, Campion RP, Rushforth AW, Edmonds KW, Foxon CT, Gallagher BL (2008) Achieving high Curie temperature in (Ga, Mn)As. Appl Phys Lett 93:132103

    ADS  Google Scholar 

  60. Edmonds KW, Wang KY, Campion RP, Neumann AC, Farley NRS, Gallagher BL, Foxon CT (2002) High-Curie-temperature Ga[sub 1−x]Mn[sub x]As obtained by resistance-monitored annealing. Appl Phys Lett 81:4991

    ADS  Google Scholar 

  61. MacDonald AH, Schiffer P, Samarth N (2005) Ferromagnetic semiconductors: moving beyond (Ga, Mn)As. Nat Mater 4:195–202

    ADS  Google Scholar 

  62. Song C, Sperl M, Utz M, et al (2011) Proximity Induced Enhancement of the Curie Temperature in Hybrid Spin Injection Devices. 056601:1–4. doi:10.1103/PhysRevLett.107.056601

    Google Scholar 

  63. Maccherozzi F, Sperl M, Panaccione G, Minár J, Polesya S, Ebert H, Wurstbauer U, Hochstrasser M, Rossi G, Woltersdorf G, Wegscheider W, Back C (2008) Evidence for a magnetic proximity effect up to room temperature at Fe/(Ga, Mn)As interfaces. Phys Rev Lett 101:267201

    ADS  Google Scholar 

  64. Sperl M, Maccherozzi F, Borgatti F, Verna A, Rossi G, Soda M, Schuh D, Bayreuther G, Wegscheider W, Cezar JC, Yakhou F, Brookes NB, Back CH, Panaccione G (2010) Identifying the character of ferromagnetic Mn in epitaxial Fe/(Ga, Mn)As heterostructures. Phys Rev B 81:035211

    ADS  Google Scholar 

  65. Olejnik K, Wadley P, Haigh JA, et al (2010) Exchange bias in a ferromagnetic semiconductor induced by a ferromagnetic metal: Fe/(Ga,Mn)As bilayer films studied by XMCD measurements and SQUID magnetometry. Phys Rev B 81:104402. doi:10.1103/PhysRevB.81.104402

    Google Scholar 

  66. Nie SH, Chin YY, Liu WQ, Tung JC, Lu J, Lin HJ, Gu GY, Meng KK, Chen L, Zhu LJ, Pan D, Chen CT, Xu YB, Yan WS, Zhao JH (2013) Phys Rev Lett 111:027203

    ADS  Google Scholar 

  67. Meng KK, Wang SL, Xu PF, Chen L, Yan WS, Zhao JH (2012) Magnetic properties of full-Heusler alloy Co2Fe1 − xMnxAl films grown by molecular-beam epitaxy. Appl Phys Lett 97(23):232506

    ADS  Google Scholar 

  68. Chen L, Yan S, Xu PF, Lu J, Wang WZ, Deng JJ, Qian X, Ji Y, Zhao JH (2012) Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga, Mn)As films with high ferromagnetic transition temperature. Appl Phys Lett 182505:1–4

    Google Scholar 

  69. Luo W, Qi X-L (2013) Massive Dirac surface states in topological insulator/magnetic insulator heterostructures. Phys Rev B 87:085431

    ADS  Google Scholar 

  70. Eremeev SV, Men’shov VN, Tugushev VV, Echenique PM, Chulkov EV (2013) Magnetic proximity effect at the three-dimensional topological insulator/magnetic insulator interface. Phys Rev B 88:144430

    ADS  Google Scholar 

  71. Men’shov V, Tugushev V, Eremeev S, Echenique P, Chulkov E (2013) Magnetic proximity effect in the three-dimensional topological insulator/ferromagnetic insulator heterostructure. Phys Rev B 88:224401

    ADS  Google Scholar 

  72. Semenov YG, Duan X, Kim KW (2012) Electrically controlled magnetization in ferromagnet-topological insulator heterostructures. Phys Rev B 86:161406

    ADS  Google Scholar 

  73. Kandala A, Richardella A, Rench DW, Zhang DM, Flanagan TC, Samarth N (2013) Growth and characterization of hybrid insulating ferromagnet-topological insulator heterostructure devices. Appl Phys Lett 103:202409

    ADS  Google Scholar 

  74. Yang QI, Dolev M, Zhang L, Zhao J, Fried AD, Schemm E, Liu M, Palevski A, Marshall AF, Risbud SH, Kapitulnik A (2013) Emerging weak localization effects on a topological insulator–insulating ferromagnet (Bi2Se3-EuS) interface. Phys Rev B88:081407

    ADS  Google Scholar 

  75. Honolka J et al (2012) In-plane magnetic anisotropy of Fe atoms on Bi2Se3(111). Phys Rev Lett 108:256811

    ADS  Google Scholar 

  76. Wray LA et al (2010) A topological insulator surface under strong Coulomb, magnetic and disorder perturbations. Nat Phys 7:32–37

    Google Scholar 

  77. West D et al (2012) Identification of magnetic dopants on the surfaces of topological insulators: Experiment and theory for Fe on Bi2Te3(111). Phys Rev B 85:081305

    ADS  Google Scholar 

  78. Li J et al (2012) Magnetic dead layer at the interface between a Co film and the topological insulator Bi2Se3. Phys Rev B 86:054430

    ADS  Google Scholar 

  79. Zhao X, Dai X-Q, Zhao B, Wang N, Ji Y-Y (2014) Cr adsorption induced magnetism in Bi2Se3 film by proximity effects. Phys E Low-Dimensional Syst Nanostructures 55:9–12

    ADS  Google Scholar 

  80. Ivana Vobornik, Unnikrishnan Manju, Jun Fujii, Francesco Borgatti, Piero Torelli, Damjan Krizmancic, Yew San Hor, Robert J. Cava, Giancarlo Panaccione (2011) Nano Lett 11:4079

    Google Scholar 

  81. Liu W (2014) Enhancing magnetic ordering in Cr-doped Bi2Se3 using high-TC ferrimagnetic insulator. Nano Lett 15(1):764–769. doi:10.1021/nl504480g

    ADS  Google Scholar 

  82. Webster PJ, Ziebeck KRA (1988) In: Wijn HRJ (ed) Alloys and compounds of d-elements with main group elements. Part 2, vol 19c, Landolt- Börnstein, New Series, Group III. Springer, Berlin, pp 75–184

    Google Scholar 

  83. de Groot RA, Mueller FM (1983) New class of materials: half-metallic ferromagnets. Phys Rev Lett 50:2024–2027

    ADS  Google Scholar 

  84. Holmes SN, Pepper M (2002) Magnetic and electrical properties of Co2MnGa grown on GaAs (001). Appl Phys Lett 81:1651–1653

    Google Scholar 

  85. Chen CT, Idzerda YU, Lin H-J et al (1995) Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys Rev Lett 75:152–155. doi:10.1103/PhysRevLett.75.152

    Google Scholar 

  86. Xu YB, Hassan S, Wong P et al (2008) Hybrid spintronic structures with magnetic oxides and Heusler alloys. IEEE Trans Magn 44:2959–2965. doi:10.1109/TMAG.2008.2002188

    ADS  Google Scholar 

  87. Beaurepaire E, Herve Bulou, Fabrice Scheurer, and Jean-Paul Kappler (1997) Magnetism and synchrotron radiation, Mittelwihr, 1996. Les Editions de Physique, Les Ulis

    Google Scholar 

  88. Erwin SC, Lee S-H, Scheffler M (2002) Surface physics, low-dimensional systems, and related topics – first-principles study of nucleation, growth, and interface structure of Fe/GaAs. Phys Rev B 65:205–422

    Google Scholar 

  89. Mirbt S, Sanyal B, Isheden C, Johansson B (2003) Surface physics, low-dimensional systems, and related topics – First-principles calculations of Fe on GaAs(100). Phys Rev B 67:155–421

    Google Scholar 

  90. Elmers HJ, Wurmehl S, Fecher GH, et al (2004) Field dependence of orbital magnetic moments in the Heusler compounds Co 2 FeAl and Co 2 Cr 0.6 Fe 0.4 Al. Appl Phys A Mater Sci Process 79:557–563. doi:10.1007/s00339-003-2366-3

    Google Scholar 

  91. Wang WH, Przybylski M, Kuch W, Chelaru LI, Wang J, Lu YF, Barthel J, Meyerheim HL, Kirschner J (2005) Phys Rev B 71:144416

    ADS  Google Scholar 

  92. Dedkov Y, Rüdiger U, Güntherodt G (2002) Evidence for the half-metallic ferromagnetic state of Fe3O4 by spin-resolved photoelectron spectroscopy. Phys Rev B65:064417

    ADS  Google Scholar 

  93. Ramos R, Kikkawa T, Uchida K, Adachi H, Lucas I, Aguirre MH, Algarabel P, Morellón L, Maekawa S, Saitoh E, Ibarra MR (2013) Observation of the spin Seebeck effect in epitaxial Fe3O4 thin films. Appl Phys Lett 102:072413

    ADS  Google Scholar 

  94. Liao Z-M, Li Y-D, Xu J, Zhang J-M, Xia K, Yu D-P (2006) Spin-filter effect in magnetite nanowire. Nano Lett 6:1087–91

    ADS  Google Scholar 

  95. Gooth J, Zierold R, Gluschke JG, Boehnert T, Edinger S, Barth S, Nielsch K (2013) Gate voltage induced phase transition in magnetite nanowires. Appl Phys Lett 102:073112

    ADS  Google Scholar 

  96. Hu G, Suzuki Y (2002) Negative spin polarization of Fe3O4 in magnetite/manganite-based junctions. Phys Rev Lett 89:276601

    ADS  Google Scholar 

  97. Arora S, Wu H-C, Choudhary R, Shvets I, Mryasov O, Yao H, Ching W (2008) Giant magnetic moment in epitaxial Fe3O4 thin films on MgO(100). Phys Rev B77:134443

    ADS  Google Scholar 

  98. Goering E, Gold S, Lafkioti M, Schütz G (2006) Vanishing Fe 3d orbital moments in single-crystalline magnetite. Europhys Lett 73:97–103. doi:10.1209/epl/i2005-10359-8

    ADS  Google Scholar 

  99. Wang W-G, Li M, Hageman S, Chien CL (2012) Electric-field-assisted switching in magnetic tunnel junctions. Nat Mater 11:64–8

    ADS  Google Scholar 

  100. McQueeney RJ, Yethiraj M, Montfrooij W, Gardner JS, Metcalf P, Honig JM (2006) Possible large spin–phonon coupling in magnetite. Phys B Condens Matter 385–386:75–78

    Google Scholar 

  101. Huang DJ, Chang CF, Jeng H-T, Guo GY, Lin H-J, Wu WB, Ku HC, Fujimori A, Takahashi Y, Chen CT (2004) Spin and orbital magnetic moments of Fe3O4. Phys Rev Lett 93:077204

    ADS  Google Scholar 

  102. Kang J-S, Kim G, Lee H, Kim D, Kim H, Shim J, Lee S, Lee H, Kim J-Y, Kim B, Min B (2008) Soft x-ray absorption spectroscopy and magnetic circular dichroism study of the valence and spin states in spinel MnFe2O4. Phys Rev B77:035121

    ADS  Google Scholar 

  103. Hari Babu V, Govind RK, Schindler K-M, Welke M, Denecke R (2013) Epitaxial growth and magnetic properties of ultrathin iron oxide films on BaTiO3(001). J Appl Phys 114:113901

    ADS  Google Scholar 

  104. Li Y, Montano PA, Barbiellini B, Mijnarends PE, Kaprzyk S, Bansil A (2007) Spin moment over 10–300K and delocalization of magnetic electrons above the Verwey transition in magnetite. J Phys Chem Solids 68:1556–1560

    ADS  Google Scholar 

  105. Duffy JA, Taylor JW, Dugdale SB, Shenton-Taylor C, Butchers MW, Giblin SR, Cooper MJ, Sakurai Y, Itou M (2010) Spin and orbital moments in Fe3O4. Phys Rev B 81:134424

    ADS  Google Scholar 

  106. Goering E (2011) Large hidden orbital moments in magnetite. Phys Status Solidi 248:2345–2351

    Google Scholar 

  107. Liu WQ, Xu YB, Wong PKJ et al (2014) Spin and orbital moments of nanoscale Fe3O4 epitaxial thin film on MgO/GaAs(100). Appl Phys Lett 104:142407. doi:10.1063/1.4871001

    ADS  Google Scholar 

  108. Orna J, Algarabel PA, Morellón L, Pardo JA, de Teresa JM, López Antón R, Bartolomé F, García LM, Bartolomé J, Cezar JC, Wildes A (2010) Origin of the giant magnetic moment in epitaxial Fe3O4 thin films. Phys Rev B 81:144420

    ADS  Google Scholar 

  109. Antonov V, Harmon B, Yaresko A (2003) Electronic structure and x-ray magnetic circular dichroism in Fe3O4 and Mn-, Co-, or Ni-substituted Fe3O4. Phys Rev B67:024417

    ADS  Google Scholar 

  110. Fischer P, Eimuller T, Schütz G, Guttmann P, Schmahl G, Pruegl K, Bayreuther G (1998) Imaging of magnetic domains by transmission X-ray microscopy. J Phys D Appl Phys 31:649

    ADS  Google Scholar 

  111. Parkin SS, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science 320:190

    ADS  Google Scholar 

  112. Allwood DA, Xiong G, Faulkner CC, Atkinson D, Petit D, Cowburn RP (2005) Magnetic domain-wall logic. Science 309:1688

    ADS  Google Scholar 

  113. Berger L (1984) Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films. J Appl Phys 55:1954

    ADS  Google Scholar 

  114. Berger L (1996) Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B 54:9353

    ADS  Google Scholar 

  115. Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159:L1

    ADS  Google Scholar 

  116. Lepadatu S, Xu YB (2004) Direct observation of domain wall scattering in patterned Ni80Fe20 and Ni nanowires by current–voltage measurements. Phys Rev Lett 92(12):127201

    ADS  Google Scholar 

  117. Kläui M, Vaz CAF, Bland V, Wernsdorfer W, Faini G, Cambril E, Heyderman LJ, Nolting F, Ru¨diger U (2005) Controlled and reproducible domain wall displacement by current pulses injected into ferromagnetic ring structures. Phys Rev Lett 94:106601

    ADS  Google Scholar 

  118. Hayashi M, Thomas L, Rettner C, Moriya R, Bazaliy YB, Parkin SSP (2007) Current driven domain wall velocities exceeding the spin angular momentum transfer rate in permalloy nanowires. Phys Rev Lett 98:037204

    ADS  Google Scholar 

  119. Moore TA, Miron IM, Gaudin G, Serret G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Bonfim M (2008) High domain wall velocities induced by current in ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy. Appl Phys Lett 93:262504

    ADS  Google Scholar 

  120. Uhlíř V, Pizzini S, Rougemaille N, Novotný J, Cros V, Jiménez E, Faini G, Heyne L, Sirotti F, Tieg C, Bendounan A, Maccherozzi F, Belkhou R, Grollier J, Anane A, Vogel J (2010) Current-induced motion and pinning of domain walls in spin-valve nanowires studied by XMCD-PEEM. Phys Rev B 81:224418

    ADS  Google Scholar 

  121. Thiaville A, Nakatani Y, Miltat J, Suzuki Y (2005) Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys Lett 69:990

    ADS  Google Scholar 

  122. Bocklage L, Krüger B, Matsuyama T, Bolte M, Merkt U, Pfannkuche D, Meier G (2009) Dependence of magnetic domain-wall motion on a fast changing current. Phys Rev Lett 103:197204

    ADS  Google Scholar 

  123. Thomas L, Hayashi M, Jiang X, Moriya R, Rettner C, Parkin SP (2006) Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length. Nature 443:197

    ADS  Google Scholar 

  124. Meier G, Bolte M, Eiselt R, Krüger B, Kim DH, Fischer P (2007) Direct imaging of stochastic domain-wall motion driven by nanosecond current pulses. Phys Rev Lett 98:187202

    ADS  Google Scholar 

  125. Im M-Y, Bocklage L, Fischer P, Meier G (2009) Direct observation of stochastic domain-wall depinning in magnetic nanowires. Phys Rev Lett 102:147204

    ADS  Google Scholar 

  126. Hu XF, Wu J, Niu DX, Chen L, Morton SA, Scholl A, Huang ZC, Zhai Y, Zhang W, Will I, Xu YB, Zhang R, van der Laan G (2013) Discontinuous properties of current-induced magnetic domain wall depinning. Sci Rep 3:3080. doi:10.1038/srep03080

    Google Scholar 

  127. Barkhausen H (1919) Z Phys 20:401

    Google Scholar 

  128. Cizeau P, Zapperi S, Durin G, Stanley HE (1997) Dynamics of a ferromagnetic domain wall and the Barkhausen effect. Phys Rev Lett 79:4669

    ADS  Google Scholar 

  129. Beach GSD et al (2005) Nat Mater 4:741

    ADS  Google Scholar 

  130. Heyne L, Klðui M, Backes D, et al (2008) Relationship between Nonadiabaticity and Damping in Permalloy Studied by Current Induced Spin Structure Transformations. Phys Rev Lett 100:066603. doi:10.1103/PhysRevLett.100.066603

    Google Scholar 

  131. Yang J, Nistor C, Beach GSD, Erskine JL (2008) Magnetic domain-wall velocity oscillations in permalloy nanowires. Phys Rev B 77:014413. doi:10.1103/PhysRevB.77.014413

    Google Scholar 

  132. Zhang W, Wong PKJ, Yan P, Wu J, Morton SA, Wang XR, Hu XF, Xu YB, Scholl A, Young A, Barsukov I, Farle M, van der Laan G (2013) Observation of current-driven oscillatory domain wall motion in Ni80Fe20/Co bilayer nanowire. Appl Phys Lett 103:42403

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqing Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Liu, W., Xu, Y., Hassan, S., Weaver, J., van der Laan, G. (2015). Magnetic Dichroism Studies of Spintronic Structures. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7604-3_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7604-3_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7604-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics