Skip to main content

Optimising the Content and Composition of Dietary Fibre in Wheat Grain for End-use Quality

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

The cell wall polysaccharides of wheat affect the quality for food processing, livestock feed and distilling, and also form a major source of dietary fibre (DF) for human health. Multisite field trials of wheat genotypes show extensive variation in the content of the major types of cell wall polysaccharide in wheat, arabinoxylan and β-glucan, much of which is heritable and hence available for exploitation by plant breeders. Furthermore, contents of DF components have not declined as a result of intensive wheat breeding. The identification of candidate genes for DF synthesis using bioinformatics and RNAi suppression in transgenic wheat will allow the content and composition of DF components to be fine-tuned for specific end uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anders N, Wilkinson M, Lovegrove A et al (2012) Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proc Natl Acad Sci 109:989–993

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (2008) Final ruleon soluble fiber from certain foods and risk of coronary heart disease (73 FR 47828). US FDA

    Google Scholar 

  • Bertrais S, Castetbon K, Deheeger M et al (2005) Situation et évolution des apports alimentaires de la population en France, 1997–2003. Saint-Maurice (Fra) Institut de veille sanitaire; (http://opac.invs.sante.fr/index.php?lvl=notice_display&id=5797)

  • Burton RA, Wilson SM, Hrmova M et al (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-β-D glucans. Science 311:1940–1942

    Article  CAS  PubMed  Google Scholar 

  • Burton RA, Jobling SA, Harvey AJ et al (2008) The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. Plant Phys 146:1821–1833

    Article  CAS  Google Scholar 

  • Burton RA, Collins HM, Kibble NAJ et al (2011) Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-β-D-glucans and alters their fine structure. Plant Biotech J 9:117–135

    Article  CAS  Google Scholar 

  • Charmet G, Masood-Quraishi U, Ravel C et al (2009) Genetics of dietary fibre in bread wheat. Euphytica 170:155–168

    Article  Google Scholar 

  • Courtin CM, Delcour JA (2002) Arabinoxylans and endoxylanases in wheat flour breadmaking. J Cereal Sci 35:225–243

    Article  CAS  Google Scholar 

  • Cseh A, Kruppa K, Molnár I et al (2011) Characterization of a new 4BS.7HL wheat/barley translocation line using GISH, FISH and SSR markers and its effect on the b-glucan content of wheat. Genome 54:795–804

    Article  CAS  PubMed  Google Scholar 

  • EFSA Panel on Dietetic Products, Nutrition and Allergies (2010) Scientific opinion on dietary reference values for carbohydrates and dietary fibre. EFSA J 8:1462

    Google Scholar 

  • Gebruers K, Dornez E, Boros D et al (2008) Variation in the content of dietary fibre and components thereof in wheats in the HEALTHGRAIN diversity screen. J Agric Food Chem 56:9740–9749

    Article  CAS  PubMed  Google Scholar 

  • Goesaert H, Brijs K, Veraverbeke WS et al (2005) Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends Food Sci Technol 16:12–30

    Article  CAS  Google Scholar 

  • Izydorczyk MS, Storsley J, Labossiere D et al (2000) Variation in total and soluble β-glucan content in hulless barley: effects of thermal, physical and enzymic treatments. J Agric Food Chem 48:982–989

    Article  CAS  PubMed  Google Scholar 

  • Lazaridou A, Biliaderis CG (2007) Molecular aspects of cereal β-glucan functionality: physical properties, technological applications and physiological effects. J Cereal Sci 46:101–118

    Article  CAS  Google Scholar 

  • Lazaridou A, Biliaderis CG, Micha-Screttas M, Steele BR (2004) A comparative study on structure-function relations of mixed-linkage (1 → 3),(1→4) linear β-D-glucans. Food Hydrocolloid 18:837–855

    Article  CAS  Google Scholar 

  • Li S, Morris CF, Bettge AD (2009) Genotype and environment variation for arabinoxylans in hard winter and spring wheats of the UK Pacific Northwest. Cereal Chem 86:88–95

    Article  CAS  Google Scholar 

  • Liu W, Cui SW, Kakuda Y (2006) Extraction, fractionation, structural and physical characterization of wheat β-D-glucans. Carbohyd Polym 63:408–416

    Article  Google Scholar 

  • Lovegrove A, Wilkinson MD, Freeman J, et al (2013) RNA interference suppression of genes in glycosyl transferase families 43 and 47 in wheat starchy endosperm causes large decreases in arabinoxylan content. Plant Physiol 163:95–107

    Google Scholar 

  • MacGregor AW, Fincher GB (1993) Carbohydrates of the barley grain. In: MacGregor AW, Bhatty RS (eds) Barley: chemistry and technology. AACC, St Paul, MN

    Google Scholar 

  • Manickavelu A, Kawaura K, Imamura H et al (2011) Molecular mapping of quantitative trait loci for domestication traits and β-glucan content in a wheat recombinant inbred line population. Euphytica 177:179–190

    Article  CAS  Google Scholar 

  • Martinant JP, Cadelen T, Billot A, Chartier S (1998) Genetic analysis of water-extractable arabinoxylans in bread wheat endosperm. Theor Appl Genet 97:1069–1075

    Article  CAS  Google Scholar 

  • Mitchell RAC, Dupree P, Shewry PR (2007) A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Bioinformatics 144:43–53

    CAS  Google Scholar 

  • Morris CE, Sands DC (2003) The breeder’s dilemma—yield or nutrition? Nature Biotechnol 24:1078–1080

    Article  Google Scholar 

  • Nemeth C, Freeman J, Jones HD et al (2010) Down-regulation of the CSLF6 gene results in decreased (1,3;1,4)-β-D glucan in endosperm of wheat. Plant Physiol 152:1209–1218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • NHMRC (2006) Nutrient reference values for Australia and New Zealand. The National Health and Medical Research Council, Canberra BC 2610, Commonwealth of Australia, pp 317

    Google Scholar 

  • Nugent AP (2004) The metabolic syndrome. Nutr Bull 29:36–43

    Article  Google Scholar 

  • Pellny TK, Lovegrove A, Freeman J et al (2012) Cell walls of developing wheat (Triticum aestivum L.) endosperm: comparison of composition and RNA Seq transcriptome. Plant Phys 158:612–627

    Article  CAS  Google Scholar 

  • Pettersson D, Åman P (1989) Enzyme supplementation of a poultry diet containing rye and wheat. Br J Nutr 62:139–149

    Article  CAS  PubMed  Google Scholar 

  • Piston F, Uauy C, Fu L et al (2010) Down-regulation of four putative arabinoxylan fruloyl transferase genes from family PF02458 reduces ester-linked ferulate content in rice cell walls. Planta 231:677–691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poutanen K, Shepherd R, Shewry PR et al (2008) Beyond whole grain: the European HEALTHGRAIN project aims at healthier cereal foods. CFW 53:32–35

    Google Scholar 

  • Poutanen K, Shepherd R, Shewry PR et al (2010) More of the grain - Progress in the HEALTHGRAIN project for healthy cereal foods. CFW 55:79–84

    Google Scholar 

  • Quraishi U-M, Murat F, Abrouk M et al (2010) Combined meta-genomics analysis unravel candidate genes for the grain dietary fibre content in bread wheat (Triticum aestivum L.). Funct Integ Genom 11:71–83

    Article  Google Scholar 

  • Sands DC, Morris CE, Dratz EA, Pilgeram AL (2009) Elevating optimal human nutrition to a central goal of plant breeding and production of plant-based foods. Plant Sci 177:377–389

    Article  CAS  PubMed  Google Scholar 

  • Saulnier L, Sado P-E, Branlard G et al (2007) Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. J Cereal Sci 46:261–281

    Article  CAS  Google Scholar 

  • Shewry PR, Piironen V, Lampi A-M et al (2010a) The HEALTHGRAIN wheat diversity screen: effects of genotype and environment on phytochemicals and dietary fiber components. J Agric Food Chem 58:9291–9298

    Article  CAS  Google Scholar 

  • Shewry PR, Saulnier L, Guillon F et al (2010b) Improving the benefits of wheat as a source of dietary fibre. In: van der Kamp JW, Jones J, McCleary B, Topping D (eds) Dietary fibre: new frontiers for food and health. Wageningen Academic Publishers, Wageningen

    Google Scholar 

  • Shewry PR, Gebruers K, Andersson AAM et al (2011) Analysis of wheat lines from the HEALTHGRAIN diversity screen shows that intensive plant breeding has not resulted in decreased contents of bioactive components in grain. J Agric Food Chem 59:928–933

    Article  CAS  PubMed  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D et al (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    Article  CAS  PubMed  Google Scholar 

  • Steer T, Thane C, Stephen A, Jebb S (2008) Bread in the diet: consumption and contribution to nutrient intakes of British adults. Proc Nutr Soc 67:E363

    Article  Google Scholar 

  • Toole GA, Le Gall G, Colquhoun IJ et al (2011) Spectroscopic analysis of diversity of arabinoxylan structures in endosperm cell walls of wheat cultivars (Triticum aestivum) in the HEALTHGRAIN diversity collection. J Agric Food Chem 59:7075–7082

    Article  CAS  PubMed  Google Scholar 

  • Vitaglione P, Napolitano A, Fogliano V (2008) Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci Tech 19:451–463

    Article  CAS  Google Scholar 

  • Ward JL, Poutanen K, Gebruers K et al (2008) The HEALTHGRAIN cereal diversity screen: concept, results and prospects. J Agric Food Chem 56:9699–9700

    Article  CAS  PubMed  Google Scholar 

  • Wenzl P, Li H, Carling J et al (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This publication is financially supported by the European Commission in the Communities Sixth Framework Programme, Project HEALTHGRAIN (FOOD-CT-2005–514008). It reflects the authors’ views and the Community is not liable for any use that may be made of the information contained in this publication. Rothamsted Research and the Institute of Food research receive grant-aided support from the Biotechnology and Biological Sciences Research Council of the UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Shewry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shewry, P. et al. (2014). Optimising the Content and Composition of Dietary Fibre in Wheat Grain for End-use Quality. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7575-6_19

Download citation

Publish with us

Policies and ethics