Skip to main content

Children with Solid Tumors: Identification of Hematopoietic and Endothelial Progenitor Cells as Biomarkers

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 11

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 11))

  • 1248 Accesses

Abstract

Pediatric brain tumors are the second most common form of childhood cancer behind hematological malignancies, with close to 3,400 new cases diagnosed each year. Pediatric solid tumors, including brain tumors, have high angiogenic potential, thus increasing their ability for growth and metastases. Blood vessels are a key element to the growth of a tumor, making the endothelial and hematopoietic cells that support angiogenesis ideal for use as a biomarker, potentially able to diagnosis and monitor the progression of disease. In this chapter, data from pediatric solid tumor studies will be analyzed and reviewed to determine which current biomarkers have the most potential for influencing treatment and/or outcome. Flow cytometry has advanced significantly over the past decade, thus allowing for enhanced characterization of these circulating cell subsets, with the most recent clinical studies incorporating these newer sophisticated techniques. Moreover, utilizing multiparameter flow cytometry, a new frontier of pediatric solid tumor diagnosis and monitoring is now being explored to better understand the role of circulating cells in malignancies and the incorporation of successful biomarkers into the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner J (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967

    Article  PubMed  CAS  Google Scholar 

  • Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228

    Article  PubMed  CAS  Google Scholar 

  • Bertolini F, Shaked Y, Mancuso P, Kerbel RS (2006) The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat Rev Cancer 6(11):835–845

    Article  PubMed  CAS  Google Scholar 

  • Dimmeler S, Zeiher AM (2000) Endothelial cell apoptosis in angiogenesis and vessel regression. Circ Res 87(6):434–439

    Article  PubMed  CAS  Google Scholar 

  • DuBois SG, Stempak D, Wu B, Mokhtari RB, Nayar R, Janeway KA, Goldsby R, Grier HE, Baruchel S (2012) Circulating endothelial cells and circulating endothelial precursor cells in patients with osteosarcoma. Pediatr Blood Cancer 58(2):181–184

    Article  PubMed  Google Scholar 

  • Duda DG, Cohen KS, Scadden DT, Jain RK (2007) A protocol for phenotypic detection and enumeration of circulating endothelial cells and circulating progenitor cells in human blood. Nat Protoc 2(4):805–810

    Article  PubMed  CAS  Google Scholar 

  • Estes ML, Mund JA, Ingram DA, Case J (2010a) Identification of endothelial cells and progenitor cell subsets in human peripheral blood. Curr Protoc Cytom, Chapter 9, Unit 9.33. 1–11

    Google Scholar 

  • Estes ML, Mund JA, Mead LE, Prater DN, Cai S, Wang H, Pollok KE, Murphy MP, An CST, Srour EF, Ingram DA, Case J (2010b) Application of polychromatic flow cytometry to identify novel subsets of circulating cells with angiogenic potential. Cytometry A 77(9):831–839

    PubMed  Google Scholar 

  • Hur J, Yang HM, Yoon CH, Lee CS, Park KW, Kim JH, Kim TY, Kim JY, Kang HJ, Chae IH, Oh BH, Park YB, Kim HS (2007) Identification of a novel role of T cells in postnatal vasculogenesis: characterization of endothelial progenitor cell colonies. Circulation 116(15):1671–1682

    Article  PubMed  Google Scholar 

  • Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104(9):2752–2760

    Article  PubMed  CAS  Google Scholar 

  • Jain RK, Duda DG, Clark JW, Loeffler JS (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3(1):24–40

    Article  PubMed  CAS  Google Scholar 

  • Kaya M, Wada T, Akatsuka T, Kawaguchi S, Nagoya S, Shindoh M, Higashino F, Mezawa F, Okada F, Ishii S (2000) Vascular endothelial growth factor expression in untreated osteosarcoma is predictive of pulmonary metastasis and poor prognosis. Clin Cancer Res 6(2):572–577

    PubMed  CAS  Google Scholar 

  • Kaya M, Wada T, Kawaguchi S, Nagoya S, Yamashita T, Abe Y, Hiraga H, Isu K, Shindoh M, Higashino F, Okada F, Tada M, Yamawaki S, Ishii S (2002) Increased pre-therapeutic serum vascular endothelial growth factor in patients with early clinical relapse of osteosarcoma. Br J Cancer 86(6):864–869

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Zheng SE, Shen Z, Tang LN, Chen P, Sun YJ, Zhao H, Yao Y (2011) Relationships between levels of CXCR4 and VEGF and blood-borne metastasis and survival in patients with osteosarcoma. Med Oncol 28(2):649–653

    Article  PubMed  CAS  Google Scholar 

  • Mancuso P, Bertolini F (2010) Circulating endothelial cells as biomarkers in clinical oncology. Microvasc Res 79(3):224–228

    Article  PubMed  CAS  Google Scholar 

  • Mancuso P, Burlini A, Pruneri G, Goldhirsch A, Martinelli G, Bertolini F (2001) Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 97(11):3658–3661

    Article  PubMed  CAS  Google Scholar 

  • Mancuso P, Colleoni M, Calleri A, Orlando L, Maisonneuve P, Pruneri G, Agliano A, Goldhirsch A, Shaked Y, Kerbel RS, Bertolini F (2006) Circulating endothelial-cell kinetics and viability predict survival in breast cancer patients receiving metronomic chemotherapy. Blood 108(2):452–459

    Article  PubMed  CAS  Google Scholar 

  • McGregor LM, Metzger ML, Sanders R, Santana VM (2007) Pediatric cancers in the new millennium: dramatic progress, new challenges. Oncology 21(7):809–820, discussion 820, 823–804

    PubMed  Google Scholar 

  • Mulrooney DA, Blaes AH, Duprez D (2012) Vascular injury in cancer survivors. J Cardiovasc Transl Res 5(3):287–295

    Article  PubMed  Google Scholar 

  • Mund JA, Case J (2011) The ontogeny of endothelial progenitor cells through flow cytometry. Curr Opin Hematol 18(3):166–170

    Article  PubMed  Google Scholar 

  • Mund JA, Estes ML, Yoder MC, Ingram DA, Case J (2012) Flow cytometric identification and functional characterization of immature and mature circulating endothelial cells. Arterioscler Thromb Vasc Biol 32(4):1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Pollack IF, Jakacki RI (2011) Childhood brain tumors: epidemiology, current management and future directions. Nat Rev Neurol 7(9):495–506

    Article  PubMed  Google Scholar 

  • Pradhan KR, Mund JA, Johnson C, Vik TA, Ingram DA, Case J (2011) Polychromatic flow cytometry identifies novel subsets of circulating cells with angiogenic potential in pediatric solid tumors. Cytometry B Clin Cytom 80(5):335–338

    PubMed  Google Scholar 

  • Prater DN, Case J, Ingram DA, Yoder MC (2007) Working hypothesis to redefine endothelial progenitor cells. Leukemia 21(6):1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Shaked Y, Henke E, Roodhart JM, Mancuso P, Langenberg MH, Colleoni M, Daenen LG, Man S, Xu P, Emmenegger U, Tang T, Zhu Z, Witte L, Strieter RM, Bertolini F, Voest EE, Benezra R, Kerbel RS (2008) Rapid chemotherapy-induced acute endothelial progenitor cell mobilization: implications for antiangiogenic drugs as chemosensitizing agents. Cancer Cell 14(3):263–273

    Article  PubMed  CAS  Google Scholar 

  • Shimoni A, Korbling M (2002) Tumor cell contamination in re-infused stem cell autografts: does it have clinical significance? Crit Rev Oncol Hematol 41(2):241–250

    Article  PubMed  Google Scholar 

  • Taylor M, Rossler J, Geoerger B, Laplanche A, Hartmann O, Vassal G, Farace F (2009) High levels of circulating VEGFR2+ Bone marrow-derived progenitor cells correlate with metastatic disease in patients with pediatric solid malignancies. Clin Cancer Res 15(14):4561–4571

    Article  PubMed  CAS  Google Scholar 

  • Timmermans F, Plum J, Yoder MC, Ingram DA, Vandekerckhove B, Case J (2009) Endothelial progenitor cells: identity defined? J Cell Mol Med 13(1):87–102

    Article  PubMed  Google Scholar 

  • Vogel W, Scheding S, Kanz L, Brugger W (2000) Clinical applications of CD34(+) peripheral blood progenitor cells (PBPC). Stem Cells 18(2):87–92

    Article  PubMed  CAS  Google Scholar 

  • Willett CG, Duda DG, di Tomaso E, Boucher Y, Ancukiewicz M, Sahani DV, Lahdenranta J, Chung DC, Fischman AJ, Lauwers GY, Shellito P, Czito BG, Wong TZ, Paulson E, Poleski M, Vujaskovic Z, Bentley R, Chen HX, Clark JW, Jain RK (2009) Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J Clin Oncol 27(18):3020–3026

    Article  PubMed  CAS  Google Scholar 

  • Yaniv I, Stein J, Luria D, Cohen IJ, Liberzon E, Manor S, Grunshpan A, Sverdlov Y, Kodman Y, Issakov J, Feinmesser M, Zaizov R, Avigad S (2007) Ewing Sarcoma tumor cells express CD34: implications for autologous stem cell transplantation. Bone Marrow Transplant 39(10):589–594

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie Case .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mund, J., Case, J. (2014). Children with Solid Tumors: Identification of Hematopoietic and Endothelial Progenitor Cells as Biomarkers. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 11. Stem Cells and Cancer Stem Cells, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7329-5_17

Download citation

Publish with us

Policies and ethics