Skip to main content

Limit Cycle Gaits

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Humanoid Robotics: A Reference
  • 509 Accesses

Abstract

Limit cycle walking is an approach to control of legged locomotion robots not as a robot arm fixed on the floor but as a limit cycle with impulse effects and is known as the most useful way to achieve energy-efficient robotic dynamic walking. This chapter mainly describes the mathematical basis for modeling of planar walkers, and introduces several major approaches to generation of limit cycle gaits on level ground. First, a model of a planar fully actuated compass-like biped robot with flat feet is introduced. The 2-DOF equation of motion for the single-support phase is developed according to the Lagrange’s method. The 6-DOF collision equation corresponding to the extended generalized coordinates is also developed on the assumption that the rear leg leaves the ground immediately after landing of the fore leg. Second, several methods for generating energy-efficient limit cycle gaits are introduced. Different biped models are considered depending on the methods, but the idea of restoring the lost kinetic energy at impact efficiently is common to all. With the introduction of these methods, energy efficiency calculation method and output-following control law are also explained. Third, the principles and analysis methods of limit cycle stability recently developed are described using passive and underactuated rimless wheel models. The limit cycle gait is treated as a linear time-invariant system with instantaneous state jumps, and the gait stability can be analytically determined without conducting numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. M. Vukobratović, On the stability of anthropomorphic systems. Math. Biosci. 5(1–2), 1–37 (1972)

    Article  Google Scholar 

  2. T. McGeer, Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–82 (1990)

    Article  Google Scholar 

  3. T. McGeer, Passive walking with knees, in Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3, 1990, pp. 1640–1645

    Google Scholar 

  4. E.R. Westervelt, J.W. Grizzle, C. Chevallereau, J.H. Choi, B. Morris, Feedback Control of Dynamic Bipedal Robot Locomotion (CRC Press, New York, 2007)

    Book  Google Scholar 

  5. M. Wisse, R.Q. van der Linde, Delft Pneumatic Bipeds (Springer, Berlin, 2007)

    Book  Google Scholar 

  6. F. Asano, Z.-W. Luo, Energy-efficient and high-speed dynamic biped locomotion based on principle of parametric excitation. IEEE Trans. Robot. 24(6), 1289–1301 (2008)

    Article  Google Scholar 

  7. F. Asano, Z.-W. Luo, Efficient dynamic bipedal walking using effects of semicircular feet. Robotica 29(3), 351–365 (2011)

    Article  Google Scholar 

  8. A. Goswami, B. Espiau, A. Keramane, Limit cycles in a passive compass gait biped and passivity-mimicking control laws. Auton. Robot. 4(3), 273–286 (1997)

    Article  Google Scholar 

  9. F. Asano, M. Yamakita, N. Kamamichi, Z.-W. Luo, A novel gait generation for biped walking robots based on mechanical energy constraint. IEEE Trans. Robot. Autom. 20(3), 565–573 (2004)

    Article  Google Scholar 

  10. F. Asano, Z.-W. Luo, M. Yamakita, Biped gait generation and control based on a unified property of passive dynamic walking. IEEE Trans. Robot. 21(4), 754–762 (2005)

    Article  Google Scholar 

  11. M.W. Spong, F. Bullo, Controlled symmetries and passive walking. IEEE Trans. Autom. Control 50(7), 1025–1031 (2005)

    Article  MathSciNet  Google Scholar 

  12. A. Goswami, B. Thuilot, B. Espiau, A study of the passive gait of a compass-like biped robot: symmetry and chaos. Int. J. Robot. Res. 17(12), 1282–1301 (1998)

    Article  Google Scholar 

  13. F. Asano, T. Hayashi, Z.-W. Luo, S. Hirano, A. Kato, Parametric excitation approaches to efficient dynamic biped locomotion, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, pp. 2210–2216

    Google Scholar 

  14. T. Hayashi, K. Kaneko, F. Asano, Z.-W. Luo, Experimental study of dynamic bipedal walking based on the principle of parametric excitation with counterweights. Adv. Robot. 25(1–2), 273–287 (2011)

    Article  Google Scholar 

  15. F. Asano, Z.-W. Luo, The effect of semicircular feet on energy dissipation by heel-strike in dynamic biped locomotion, in Proceedings of the IEEE International Conference on Robotics and Automation, 2007, pp. 3976–3981

    Google Scholar 

  16. F. Asano, Z.-W. Luo, Dynamic analyses of underactuated virtual passive dynamic walking, in Proceedings of the IEEE International Conference on Robotics and Automation, 2007, pp. 3210–3217

    Google Scholar 

  17. D.G.E. Hobbelen, M. Wisse, Swing-leg retraction for limit cycle walkers improves disturbance rejection. IEEE Trans. Robot. 24(2), 377–389 (2008)

    Article  Google Scholar 

  18. M.J. Coleman, A. Chatterjee, A. Ruina, Motions of a rimless spoked wheel: a simple three-dimensional system with impacts. Dyn. Stab. Syst. 12(3), 139–159 (1997)

    Article  MathSciNet  Google Scholar 

  19. M.J. Coleman, Dynamics and stability of a rimless spoked wheel: a simple 2D system with impacts. Dyn. Syst. 25(2), 215–238 (2010)

    Article  MathSciNet  Google Scholar 

  20. F. Asano, High-speed dynamic gait generation for limit cycle walkers based on forward-tilting impact posture. Multibody Syst. Dyn. 30(3), 287–310 (2013)

    Article  MathSciNet  Google Scholar 

  21. J.W. Grizzle, G. Abba, F. Plestan, Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Trans. Autom. Control 46(1), 51–64 (2001)

    Article  MathSciNet  Google Scholar 

  22. E.R. Westervelt, J.W. Grizzle, D.E. Koditschek, Hybrid zero dynamics of planar biped walkers. IEEE Trans. Autom. Control 48(1), 42–56 (2003)

    Article  MathSciNet  Google Scholar 

  23. F. Asano, Fully analytical solution to discrete behavior of hybrid zero dynamics in limit cycle walking with constraint on impact posture. Multibody Syst. Dyn. 35(2), 191–213 (2015)

    Article  MathSciNet  Google Scholar 

  24. F. Asano, M. Suguro, Limit cycle walking, running, and skipping of telescopic-legged rimless wheel. Robotica 30(6), 989–1003 (2012)

    Article  Google Scholar 

  25. M. Garcia, A. Chatterjee, A. Ruina, Efficiency, speed, and scaling of two-dimensional passive-dynamic walking. Dyn. Stab. Syst. 15(2), 75–99 (2000)

    Article  MathSciNet  Google Scholar 

  26. J.-S. Moon, M.W. Spong, Classification of periodic and chaotic passive limit cycles for a compass-gait biped with gait asymmetries. Robotica 29(7), 967–974 (2011)

    Article  Google Scholar 

  27. S. Iqbal, X. Zang, Y. Zhu, J. Zhao, Bifurcations and chaos in passive dynamic walking: a review. Robot. Auton. Syst. 62(6), 889–909 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihiko Asano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Asano, F. (2018). Limit Cycle Gaits. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7194-9_44-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7194-9_44-2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7194-9

  • Online ISBN: 978-94-007-7194-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Limit Cycle Gaits
    Published:
    17 April 2018

    DOI: https://doi.org/10.1007/978-94-007-7194-9_44-2

  2. Original

    Limit Cycle Gaits
    Published:
    11 September 2017

    DOI: https://doi.org/10.1007/978-94-007-7194-9_44-1