Skip to main content

Diffusion Limitation and CO2 Concentrating Mechanisms in Bryophytes

  • Chapter
  • First Online:
Photosynthesis in Bryophytes and Early Land Plants

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 37))

Summary

This chapter explores how the diffusion of CO2 into photosynthetic tissues is affected by the morphology and biochemistry of bryophytes from the sub-cellular level to that of leaf-like structures, with an emphasis on the most ancient form of a land plant CO2 concentrating mechanism, the hornwort pyrenoid. Interest in the control of CO2 diffusion has increased dramatically over the past 5–10 years due to the discovery of CO2 transporting aquaporins in chloroplast membranes and the ever-increasing interest in photosynthetic carbon fixation as a source of food and biologically generated fuels. The diffusion of CO2 is of critical importance to our understanding of photosynthesis in land plants because it is inextricably linked to water loss. Photosynthetic tissues need to be well hydrated to function properly, but must lose water in order to capture CO2 since water vapor can diffuse out of photosynthetic tissues through any pore large enough to allow CO2 in. At the same time, too much water also limits photosynthesis because even thin films of liquid water present significant barriers to CO2 diffusion. Furthermore, the partial pressure of CO2 reaching the sites of carboxylation in the chloroplast is what inherently controls the efficiency of photosynthetic carbon assimilation. The amazing variation in bryophyte morphology provides a broad palette for sampling how plants have balanced these structural and biochemical trade-offs. Here we discuss how studying this variability can generate invaluable insight into both the limitations and opportunities for enhancing land plant photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CA:

Carbonic anhydrase;

CCM:

CO2 concentrating mechanism;

δ13C:

Isotopic composition of carbon 13C and 12C;

Δ:

Isotopic discrimination;

Rubisco:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

References

  • Badger MR, Price GD (1992) The CO2 concentrating mechanism in cyanobacteria and microalgae. Physiol Plant 84:606–615

    Article  CAS  Google Scholar 

  • Badger MR, Kaplan A, Berry JA (1980) The internal inorganic C pool of Chlamydomonas reinhardtii: evidence for a CO2 concentrating mechanism. Plant Physiol (Rockv) 66:407–413

    Article  CAS  Google Scholar 

  • Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, Price GD (1998) The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot 76:1052–1071

    CAS  Google Scholar 

  • Badger MR, Hanson DT, Price GD (2002) Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 29:161–173

    Article  CAS  Google Scholar 

  • Barbour MM, McDowell NG, Tcherkez G, Bickford CP, Hanson DT (2007) A new measurement technique reveals rapid post-illumination changes in the carbon isotope composition of leaf-respired CO2. Plant Cell Environ 30:469–482

    Article  PubMed  CAS  Google Scholar 

  • Beardall J, Raven JA (1981) Transport of inorganic carbon and the “CO2 concentrating mechanism” in Chlorella emersonii (Chlorophyceae). J Phycol 92:1–20

    Google Scholar 

  • Beardall J, Griffiths H, Raven JA (1982) Carbon isotope discrimination and the CO2 accumulating mechanism in Chlorella emersonii. J Exp Bot 33:729–737

    Article  CAS  Google Scholar 

  • Beerling DJ, Osborne CP, Chaloner WG (2001) Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature 410:352–354

    Article  PubMed  CAS  Google Scholar 

  • Bickford CP, McDowell NG, Erhardt EB, Hanson DT (2009) High-frequency field measurements of diurnal carbon isotope discrimination and internal conductance in a semi-arid species, Juniperus monosperma. Plant Cell Environ 32:796–810

    Article  PubMed  CAS  Google Scholar 

  • Borkhsenious ON, Mason CB, Moroney JV (1998) The intracellular localization of ribulose-1,5-bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. Plant Physiol (Rockv) 116:1585–1591

    Article  CAS  Google Scholar 

  • Brueggeman AJ, Gangadharaiah DS, Cserhati MF, Casero D, Weeks DP, Ladunga I (2012) Activation of the carbon concentrating mechanism by CO2 deprivation coincides with massive transcriptional restructuring in Chlamydomonas reinhardtii. Plant Cell 24:1860–1875

    Article  PubMed  CAS  Google Scholar 

  • Brugnoli E, Farquhar GD (2000) Photosynthetic fractionation of carbon isotopes. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Photosynthesis: physiology and metabolism. Kluwer, Norwell, pp 399–434

    Google Scholar 

  • Burnell JN (2011) Hurdles to engineering greater photosynthetic rates in crop plants: C4 rice. In: Raghavendra AS, Sage RF (eds) C4 Photosynthesis and related CO2 concentrating mechanisms. Springer, Dordrecht, pp 361–378

    Google Scholar 

  • Campbell EL, Meeks JC (1992) Evidence for plant-mediated regulation of nitrogenase expression in the Anthoceros-Nostoc symbiotic association. Microbiology 138:473–480

    CAS  Google Scholar 

  • Cardon ZG, Gray DW, Lewis LA (2008) The green algal underground: evolutionary secrets of desert cells. Bioscience 58:114

    Article  Google Scholar 

  • Cerling TE, Harris JM, Macfadden BJ, Leakey MG, Quadek J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158

    Article  CAS  Google Scholar 

  • Duff RJ, Villarreal JC, Cargill DC, Renzaglia KS (2007) Progress and challenges toward developing a phylogeny and classification of the hornworts. Bryologist 110:214–243

    Article  Google Scholar 

  • Edward EE, Voznesenskaya EV (2011) C4 photosynthesis: Kranz forms and single-cell C4 in terrestrial plants. In: Raghavendra AS, Sage RF (eds) C4 Photosynthesis and related CO2 concentrating mechanisms. Springer, Dordrecht, pp 29–61

    Google Scholar 

  • Evans JR, Sharkey TD, Berry JA, Farquhar GD (1986) Carbon isotope discrimination measured concurrently with gas exchange to investigate CO2 diffusion in leaves of higher plants. Aust J Plant Physiol 13:281–292

    Article  CAS  Google Scholar 

  • Farquhar GD, Leary MHO, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Flexas J, Ribas-Carbó M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J 48:427–439

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara S, Fukuzawa H, Tachiki A, Miyachi S (1990) Structure and differential expression of two genes encoding carbonic anhydrase in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 87:9779–9783

    Article  PubMed  CAS  Google Scholar 

  • Fukuzawa H, Miura K, Ishizaki K, Kucho K, Saito T, Kohinata T (2001) Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability. Proc Natl Acad Sci U S A 98:5347–5352

    Article  PubMed  CAS  Google Scholar 

  • Genkov T, Meyer M, Griffiths H, Spreitzer RJ (2010) Functional hybrid rubisco enzymes with plant small subunits and algal large subunits: engineered rbcS cDNA for expression in Chlamydomonas. J Biol Chem 285:19833–19841

    Article  PubMed  CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  PubMed  CAS  Google Scholar 

  • Graham LE, Kodner RG, Fisher MM, Graham JM, Wilcox LE, Hackney JM, Obst J, Bilkey PS, Hanson DT, Cook ME (2004) Early land plant adaptations to terrestrial stress: a focus on phenolics. In: Hemsley A, Poole I (eds) The evolution of plant physiology. From whole plants to ecosystems, Linnean society symposium series number 21. Elsevier Academic Press, London, pp 155–169

    Chapter  Google Scholar 

  • Graham LE, Graham JM, Wilcox LW (2009) Algae. Benjamin Cummings/Pearson, San Francisco

    Google Scholar 

  • Griffiths H, Maxwell K, Richardson D, Robe W (2004) Turning the land green: inferring photosynthetic and diffusive limitations in early bryophytes. In: Hemsley A, Poole I (eds) The evolution of plant physiology. From whole plants to ecosystems, Linnean society symposium series number 21. Elsevier Academic Press, London, pp 3–16

    Google Scholar 

  • Hanson DT, Andrews TJ, Badger MR (2002) Variability of the pyrenoid-based CO2 concentrating mechanism in hornworts (Anthocerotophyta). Funct Plant Biol 29:407–416

    Article  CAS  Google Scholar 

  • Hanson DT, Franklin LA, Samuelsson G, Badger MR (2003) The Chlamydomonas reinhardtii cia3 mutant lacking a thylakoid lumen-localized carbonic anhydrase is limited by CO2 supply to Rubisco and not Photosystem II function in vivo. Plant Physiol (Rockv) 132:2267–2275

    Article  CAS  Google Scholar 

  • Hibberd JM, Sheehy JE, Langdale JA (2008) Using C4 photosynthesis to increase the yield of rice-rationale and feasibility. Curr Opin Plant Biol 11:228–231

    Article  PubMed  CAS  Google Scholar 

  • Karlsson J, Clarke AK, Chen ZY, Hugghins SY, Park YI, Husic H, Moroney JV, Samuelsson G (1998) Novel alpha-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO Eur Mol Biol Organ J 17:1208–1216

    Article  CAS  Google Scholar 

  • Kenrick P, Crane P (1997) The origin and early diversification of land plants: a cladistic study. Smithsonian Institution Press, Washington, DC, 441 pp

    Google Scholar 

  • Kugita M, Kaneko A, Yamamoto Y, Takeya Y, Matsumoto T, Yoshinaga K (2003) The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants. Nucleic Acids Res 31:716–721

    Article  PubMed  CAS  Google Scholar 

  • Li L, Wang B, Liu Y, Qiu Y-L (2009) The complete mitochondrial genome sequence of the hornwort Megaceros aenigmaticus shows a mixed mode of conservative yet dynamic evolution in early land plant mitochondrial genomes. J Mol Evol 68:665–678

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Pollock SV, Xiao Y, Cunnusamy K, Moroney JV (2011) Identification of a novel gene, CIA6, required for normal pyrenoid formation in Chlamydomonas reinhardtii. Plant Physiol (Rockv) 156:884–896

    Article  CAS  Google Scholar 

  • Martin CE, Adamson VJ (2001) Photosynthetic capacity of mosses relative to vascular plants. J Bryol 23:319–323

    Google Scholar 

  • McGinn PJ, Morel FMM (2008) Expression and inhibition of the carboxylating and decarboxylating enzymes in the photosynthetic C4 pathway of marine diatoms. Plant Physiol (Rockv) 146:300–309

    Article  CAS  Google Scholar 

  • McKay RML, Gibbs SP (1991) Composition and function of pyrenoids: cytochemical and immuncytochemical approaches. Can J Bot 69:1040–1052

    Article  CAS  Google Scholar 

  • Meeks JC, Elhai J (2002) Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev 66:94–121

    Article  PubMed  CAS  Google Scholar 

  • Meeks JC, Enderlin CS, Wycoff KL, Chapman JS, Joseph CM (1983) Assimilation of 13NH4 + by Anthoceros grown with and without symbiotic Nostoc. Planta 158:384–391

    Article  CAS  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  PubMed  CAS  Google Scholar 

  • Meyer M (2010) Physiological and molecular determinants of the Chlamydomonas reinhardtii pyrenoid. Ph.D. thesis. University of Cambridge, Cambridge, pp 1–183

    Google Scholar 

  • Meyer MT, Seibt U, Griffiths H (2008) To concentrate or ventilate? Carbon acquisition, isotope discrimination and physiological ecology of early land plant life. Proc R Soc Biol Sci Ser B 363:2767–2778

    CAS  Google Scholar 

  • Meyer MT, Genkov T, Skepper JN, Jouhet J, Mitchell MC, Spreitzer RJ, Griffiths H (2012) Rubisco small-subunit α-helices control pyrenoid formation in Chlamydomonas. Proc Natl Acad Sci U S A 1–6

    Google Scholar 

  • Mullineaux CW (2005) Function and evolution of grana. Trends Plant Sci 10:521–525

    Article  PubMed  CAS  Google Scholar 

  • Nozaki H, Onishi K, Morita E (2002) Differences in pyrenoid morphology are correlated with differences in the rbcL genes of members of the Chloromonas lineage (Volvocales, Chlorophyceae). J Mol Evol 55:414–430

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi N, Mukherjee B, Tsujikawa T, Yanase M, Nakano H, Moroney JV, Fukuzawa H (2010) Expression of a low CO2-inducible protein, LCI1, increases inorganic carbon uptake in the green alga Chlamydomonas reinhardtii. Plant Cell 22:3105–3117

    Article  PubMed  CAS  Google Scholar 

  • Osborne CP (2011) The geologic history of C4 plants. In: Raghavendra AS, Sage RF (eds) C4 Photosynthesis and related CO2 concentrating mechanisms. Springer, Dordrecht, pp 339–357

    Google Scholar 

  • Proctor MCF (2009) Physiological ecology. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 237–268

    Google Scholar 

  • Qiu Y-L, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M, Dombrovska O, Lee J, Kent L, Rest J, Estabrook GF, Hendry TA Taylor DW, Testa CM, Ambros M, Crandall-Stotler B, Duff RJ, Stech M, Frey W, Quandt D, Davis CC (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci U S A 103:5511–15516

    Google Scholar 

  • Raven JA (1997) The role of marine biota in the evolution of terrestrial atmospheric composition and evolution of terrestrial biota: gases and genes. Biogeochemistry 39:139–164

    Article  Google Scholar 

  • Raven JA, Beardall J (2003) Carbon acquisition mechanisms of algae: carbon dioxide diffusion and carbon dioxide concentrating mechanisms. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer, Dordrecht, pp 225–244

    Chapter  Google Scholar 

  • Raven JA, Cockell CA, de La Rocha C (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Proc R Soc Biol Sci Ser B 363:2641–2650

    CAS  Google Scholar 

  • Renzaglia KS, Duff RJ, Nickrent DL, Garbary D (2000) Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny. Proc R Soc Biol Sci Ser B 355:769–793

    CAS  Google Scholar 

  • Renzaglia KS, Villarreal JC, Duff RJ (2009) New insights into morphology, anatomy, and systematics of hornworts. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 139–172

    Google Scholar 

  • Rice SK, Giles L (1996) The influence of water content and leaf anatomy on carbon isotope discrimination and photosynthesis in Sphagnum. Plant Cell Environ 19:118–124

    Article  CAS  Google Scholar 

  • Schuette S, Renzaglia KS (2010) Development of multicellular spores in the hornwort genus Dendroceros (Dendrocerotaceae, Anthocerotophyta) and the occurrence of endospory in bryophytes. Nova Hedwigia 91:301–316

    Article  Google Scholar 

  • Sharkey TD, Berry JA (1985) Carbon isotope fractionation of algae as influenced by an inducible CO2 concentrating mechanism. In: Lucas WJ, Berry JA (eds) Inorganic carbon uptake by aquatic photosynthetic organisms. American Society of Plant Physiologists, Rockville, pp 389–401

    Google Scholar 

  • Smith EC, Griffiths H (1996a) A pyrenoid-based carbon-concentrating mechanism is present in terrestrial bryophytes of the class Anthocerotae. Planta 200:203–212

    CAS  Google Scholar 

  • Smith EC, Griffiths H (1996b) The occurrence of the chloroplast pyrenoid is correlated with the activity of a CO2-concentrating mechanism and carbon isotope discrimination in lichens and bryophytes. Planta 198:6–16

    Article  CAS  Google Scholar 

  • Smith EC, Griffiths H (2000) The role of carbonic anhydrase in photosynthesis and the activity of the carbon-concentrating-mechanism in bryophytes of the class Anthocerotae. New Phytol 145:29–37

    Article  CAS  Google Scholar 

  • Spalding MH (2008) Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters. J Exp Bot 59:1463–1473

    Article  PubMed  CAS  Google Scholar 

  • Spalding MH, Spreitzer RJ, Ogren WL (1983) Carbonic anhydrase-deficient mutant of Chlamydomonas reinhardtii requires elevated carbon-dioxide concentration for photoautotrophic growth. Plant Physiol (Rockv) 73:268–272

    Article  CAS  Google Scholar 

  • Spreitzer RJ, Goldschmidt-Clermont M, Rahire M, Rochaix JD (1985) Nonsense mutations in the Chlamydomonas chloroplast gene that codes for the large subunit of ribulosebisphosphate carboxylase/oxygenase. Proc Natl Acad Sci U S A 82:5460–5464

    Article  PubMed  CAS  Google Scholar 

  • Terashima I, Hanba YT, Tholen D, Niinemets Ü (2011) Leaf functional anatomy in relation to photosynthesis. Plant Physiol (Rockv) 155:108–116

    Article  CAS  Google Scholar 

  • Tholen D, Zhu X-G (2011) The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion. Plant Physiol (Rockv) 156:90–105

    Article  CAS  Google Scholar 

  • Turmel M, Otis C, Lemieux C (2005) The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales. BMC Biol 3:22

    Article  PubMed  Google Scholar 

  • Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737

    Article  PubMed  CAS  Google Scholar 

  • Uehlein N, Otto B, Hanson DT, Fischer M, McDowell N, Kaldenhoff R (2008) Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell 20:648–657

    Article  PubMed  CAS  Google Scholar 

  • Vance P, Spalding MH (2005) Growth, photosynthesis, and gene expression in Chlamydomonas over a range of CO2 concentrations and CO2/O2 ratios: CO2 regulates multiple acclimation states. Can J Bot 809:796–809

    Article  Google Scholar 

  • Vaughn KC, Campbell EO, Hasegawa J, Owen HA, Renzaglia KS (1990) The pyrenoid is the site of ribulose-1,5-bisphosphate carboxylase/oxygenase accumulation in the hornwort (Bryophyta: Anthocerotae) chloroplast. Protoplasma 156:117–129

    Article  CAS  Google Scholar 

  • Vaughn KC, Ligrone R, Owen HA, Hasegawa J, Campbell EO, Renzaglia KS, Mongenajera J (1992) The Anthocerote chloroplast – a review. New Phytol 120:169–190

    Article  Google Scholar 

  • Villarreal JC, Renner SS (2012) Hornwort pyrenoids, carbon-concentrating structures, evolved and were lost at least five times during the last 100 million years. Proc Natl Acad Sci U S A 109(46):18873–18878

    Google Scholar 

  • Villarreal JC, Renzaglia KS (2006) Structure and development of Nostoc strands in Leiosporoceros dussii (Anthocerotophyta): a novel symbiosis in land plants. Am J Bot 93:693–705

    Article  Google Scholar 

  • Villarreal JC, Cargill DC, Hagborg A, Söderström L, Renzaglia KS (2010) Hornwort diversity: patterns, causes and future work. Phytotaxa 9:150–166

    Google Scholar 

  • von Caemmerer S, Quick WP, Furbank RT (2012) The development of C4 rice: current progress and future challenges. Science 336:1671–1672

    Article  Google Scholar 

  • Voznesenskaya EV, Franceschi VR, Kiirats O, Freitag H, Edwards GE (2001) Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414:543–546

    Article  PubMed  CAS  Google Scholar 

  • Waite M, Sack L (2010) How does moss photosynthesis relate to leaf and canopy structure? Trait relationships for 10 Hawaiian species of contrasting light habitats. New Phytol 185:156–172

    Article  PubMed  CAS  Google Scholar 

  • Whitney SM, Houtz RL, Alonso N (2011) Advancing our understanding and capacity to engineer nature’s CO2 sequestering enzyme, Rubisco. Plant Physiol (Rockv) 155:27–35

    Article  CAS  Google Scholar 

  • Williams TG, Flanagan LB (1996) Effect of changes in water content on photosynthesis, transpiration and discrimination against 13CO2 and C18O16O in Pleurozium and Sphagnum. Oecologia 108:38–46

    Article  Google Scholar 

  • Williams TG, Flanagan LB (1998) Measuring and modelling environmental influences on photosynthetic gas exchange in Sphagnum and Pleurozium. Plant Cell Environ 21:555–564

    Article  CAS  Google Scholar 

  • Yamano T, Miura K, Fukuzawa H (2008) Expression analysis of genes associated with the induction of the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol (Rockv) 147:340–354

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was possible through support of the National Science Foundation (IOS 0719118 and DEB 0531751) and the University of New Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Hanson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hanson, D.T., Renzaglia, K., Villarreal, J.C. (2014). Diffusion Limitation and CO2 Concentrating Mechanisms in Bryophytes. In: Hanson, D., Rice, S. (eds) Photosynthesis in Bryophytes and Early Land Plants. Advances in Photosynthesis and Respiration, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6988-5_6

Download citation

Publish with us

Policies and ethics