Skip to main content
Log in

The occurrence of the chloroplast pyrenoid is correlated with the activity of a CO2-concentrating mechanism and carbon isotope discrimination in lichens and bryophytes

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The organic-matter carbon isotope discrimination (Δ) of lichens with a wide range of photobiont and/or cyanobiont associations was used to determine the presence or absence of a carbon-concentrating mechanism (CCM). Two groups were identified within the lichens with green algal photobionts. One group was characterised by low, more C4-like Δ values (Δ < 15‰), the other by higher, more C3-like Δ values (Δ > 18‰). Tri-partite lichens (lichens with a green alga as the primary photobiont and cyanobacteria within internal or external cephalodia) occurred in both groups. All lichens with cyanobacterial photobionts had low Δ values (Δ < 15‰). The activity of the CCM, organic-matter Δ values, on-line Δ values and gas-exchange characteristics correlated with the presence of a pyrenoid in the algal chloroplast. Consistent with previous findings, lichens with Trebouxia as the primary photobiont possessed an active CCM while those containing Coccomyxa did not. Organic Δ values for lichens with Stichococcus as the photobiont varied between 11 and 28‰. The lichen genera Endocarpon and Dermatocarpon (Stichococcus + pyrenoid) had C4-like organic Δ values (Δ = 11 to 16.5‰) whereas the genus Chaenotheca (Stichococcus — pyrenoid) was characterised by high C3-like Δ values (Δ = 22 to 28‰), unless it associated with Trebouxia (Δ = 16‰). Gas-exchange measurements demonstrated that Dermatocarpon had an affinity for CO2 comparable to those species which possessed the CCM, with K0.5 = 200–215 μ1 · 1−1, compensation point (Γ) = 45–48 μl · l−1, compared with K0.5 = 195 μ1 · 1−1, Γ = 44μ1 · 1−1 for Trebouxioid lichens. Furthermore, lichens with Stichococcus as their photobiont released a small pool (24.2 ± 1.9 to 34.2 ± 2.5 nmol · mg−1 Chl) of inorganic carbon similar to that released by Trebouxioid lichens [CCM present, dissolved inorganic carbon (DIC) pool size = 51.0 ± 2.8 nmol · mg−1 Chl]. Lichens with Trentepohlia as photobiont did not possess an active CCM, with high C3-like organic Δ values (Δ = 18‰ to 23‰). In particular, Roccella phycopsis had very high on-line Δ values (Δ = 30 to 33‰), a low affinity for CO2 (K0.5 = 400 μ1 · 1−1,Γ = 120 μ1 · −1) and a negligible DIC pool. These responses were comparable to those from lichens with Coccomyxa as the primary photobiont with Nostoc in cephalodia (organic Δ = 17 to 25‰, on-line Δ = 16 to 21‰, k0.5 = 388 μ1 · 1−1, Γ = 85 μ1 · 1−1, DIC pool size = 8.5 ± 2.4 nmol · mg−1 Chl). The relative importance of refixation of respiratory CO2 and variations in source isotope signature were considered to account for any variation between on-line and organic Δ. Organic Δ was also measured for species of Anthocerotae and Hepaticae which contain pyrenoids and/or Nostoc enclosed within the thallus. The results of this screening showed that the pyrenoid is correlated with low, more C4-like organic Δ values (Δ = 7 to 12‰ for members of the Anthocerotae with a pyrenoid compared with Δ = 17 to 28‰ for the Hepaticae with and without Nostoc in vesicles) and confirms that the pyrenoid plays a fundamental role in the functioning of the CCM in microalgal photobionts and some bryophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCM:

carbon-concentrating mechanism

DIC:

dissolved inorganic carbon (CO2 + HCO -3 + CO 2-3 )

DW:

dry weight

K0.5 :

external concentration of CO2 at which half-maximal rates of CO2 assimilation are reached

photobiont:

photosynthetic organism present in the lichen

Rubisco:

ribulose-1,5-bisphosphate carboxylase-oxygenase

Δ:

carbon isotope discrimination (%)

δ13C:

carbon isotope ratio (%)

References

  • Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts; isolation, culture, cultural physiology, and identification. Phycologia 6: 127–160

    Google Scholar 

  • Ahmadjian V (1993) The lichen symbiosis. John Wiley and Sons, New York

    Google Scholar 

  • Ahmadijian V, Heikilla H (1970) The culture and synthesis of Endocarpon pusillum and Staurothele clopima. Lichenologist 4: 259–267

    Google Scholar 

  • Badger MR, Price GD (1992) The CO2 concentrating mechanism in cyanobacteria and microalgae. Physiol Plant 84: 606–615

    Google Scholar 

  • Badger MR, Pfanz H, Büdel B, Heber U, Lange OL (1993) Evidence for the functioning of photosynthetic CO2-concentrating mechanisms in lichens containing green algal and cyanobacterial photobionts. Planta 191: 57–70

    Google Scholar 

  • Beardall J, Griffiths H, Raven JA (1982) Carbon isotope discrimination and the CO2 accumulating mechanism in Chlorella emersonii. J Exp Bot 33(135): 729–737

    Google Scholar 

  • Coleman JR (1991) The molecular and biochemical analyses of carbon dioxide-concentrating mechanisms in cyanobacteria and microalgae. Plant Cell Environ 14(8): 861–868

    Google Scholar 

  • Cowan IR, Lange OL, Green TGA (1992) Carbon-dioxide exchange in lichens: determination of transport and carboxylation characteristics. Planta 187: 282–294

    Google Scholar 

  • Crittenden P (1991) Ecological significance of necromass production in mat-forming lichens. Lichenologist 23: 323–331

    Google Scholar 

  • Evans JR, Sharkey TD, Berry JD, Farquhar GD (1986) Carbon isotope discrimination measured concurrently with gas exchange to investigate CO2 diffusion in leaves of higher plants. Aust J Plant Physiol 13: 281–292

    Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40: 503–537

    Article  CAS  Google Scholar 

  • Griffiths H, Broadmeadow MSJ, Borland AM, Hetherington CS (1990) Short-term changes in carbon-isotope discrimination identify changes between C3 and C4 carboxylation during Crassulacean acid metabolism. Planta 181: 604–610

    Google Scholar 

  • Hogetsu D, Miyachi S (1977) Effects of CO2 concentration during growth on subsequent photosynthetic CO2 fixation in Chlorella. Plant Cell Physiol 18: 347–352

    Google Scholar 

  • James PW, Henssen A (1976) The morphological and taxonomic significance of cephalodia. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: Progress and problems. Academic Press, London, New York, pp 27–77

    Google Scholar 

  • Kaplan A, Schwarz R, Lieman HJ, Reinhold L (1991) Physiological and molecular aspects of the inorganic carbon-concentrating mechanism in cyanobacteria. Plant Physiol 97: 851–855

    Google Scholar 

  • Kuchitsu K, Tsuzuki M, Miyachi S (1991) Polypeptide composition and enzyme activities of the pyrenoid and its regulation by CO2 concentrations in unicellular green algae. Can J Bot 69: 1062–1069

    Google Scholar 

  • Lange OL (1980) Moisture content and CO2 exchange of lichens. Oecologia 45: 82–87

    Google Scholar 

  • Lange OL (1988) Ecophysiology of photosynthesis: Performance of poikilohydric lichens and homoiohydric mediterranean sclerophylls. J Ecol 76: 915–937

    Google Scholar 

  • Lange OL, Zeigler H (1986) Different limiting processes of photosynthesis in lichens. In: Marcelle R, Clistjers H, Poucke MV (eds) Biological control of photosynthesis. Martinus Nijhoff, Dortrecht, pp 147–161

    Google Scholar 

  • Lange OL, Green TGA, Ziegler H (1988) Water status related photosynthesis and carbon isotope discrimination in species of the lichen genus Pseudocyphellaria with green or bluegreen photobionts and in photosymbiodemes. Oecologia 75: 494–501

    Google Scholar 

  • Lange OL, Budel B, Zellner H, Zotz G, Meyer A (1994) Field measurement of water relations and CO2 exchange of the tropical cyanobacterial basidiolichen Dictyonema glabratum in a Panamanian rainforest. Bot Acta 107: 279–290

    Google Scholar 

  • Máguas C, Griffiths H, Broadmeadow MSJ (1995) Gas exchange and carbon isotope discrimination in lichens: Evidence for interaction between CO2-concentrating mechanisms and diffusion limitation. Planta 196: 95–102

    Google Scholar 

  • Máguas C, Griffiths H, Ehleringer J, Serodio J (1993a) Characterization of photobiont associations in lichens using carbon isotope discrimination tehniques. In: Ehleringer J, Hall A, Farquhar G (eds) Stable isotopes and plant carbon-water relations. Academic Press London, New York, pp. 201–212

    Google Scholar 

  • Munoz J, Merrett MJ (1988) Inorganic carbon uptake by a small-celled strain of Stichococcus bacillaris Planta 175: 460–464

    Google Scholar 

  • Osafune T, Ehara T, Yokota A, Hase E (1992) Immunogold localization of ribulose-1,5-bisphosphate carboxylase/oxygenase in developing proplastids to dark-grown wax-rich cells of Euglena gracilis. J Electron Microsc 41: 469–474

    Google Scholar 

  • Palmqvist K (1993) Photosynthetic CO2-use efficiency in lichens and their isolated photobionts: The possible role of a CO2-concentrating mechanism. Planta 191: 48–56

    Google Scholar 

  • Palmqvist K, Samuelsson G, Badger MR (1994a) Photobiont-related differences in carbon acquisistion among green-algal lichens. Planta 195: 70–79

    Google Scholar 

  • Palmqvist K, Máguas C, Badger MR, Griffiths H (1994b) Assimilation, accumulation and isotope discrimination of inorganic carbon in cyanobacterial lichens: evidence for the operation of a CO2 concentrating mechanism in cyanobacterial lichens. Crypto Bot 4: 218–226

    Google Scholar 

  • Palmqvist K, Ogren E, Lernmark U (1994c) The CO2-concentrating mechanism is absent in the green alga Coccomyxa: a comparative study of photosynthetic CO2 and light responses of Coccomyxa, Chlamydomonas reinhardtii and barley protoplasts. Plant Cell Environ 17: 65–72

    Google Scholar 

  • Pronina NA, Semenenko VE (1992) The role of pyrenoid in concentration, generation and fixation of carbon dioxide in chloroplasts of microalgae. Fiziol Rast 39(4): 723–732

    Google Scholar 

  • Purvis OW, Coppins BJ, Hawksworth DL, James PW, Moore DM (1992) The lichen flora of Great Britain and Ireland. Natural History Museum Publications, UK

    Google Scholar 

  • Ramazanov Z, Rawat M, Matthews SW, Mason CB, Moroney JV (1993) Role of the pyrenoid in the carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. (Abstr.) Plant Physiol: 102, Suppl 140

  • Raven JA (1985) The CO2 concentrating mechanism. In: Lucas WJ, Berry JA (eds) Inorganic carbon uptake by aquatic photosynthetic organisms. The American Society of Plant Physiologists, Rockville, Md, pp 67–81

    Google Scholar 

  • Raven JA (1991) Implications of inorganic carbon utilisation: ecology, evolution and geochemistry. Can J Bot 69: 908–924

    Google Scholar 

  • Raven JA, Johnston AM, Handley LL, McInroy SG (1990) Transport and assimilation of inorganic carbon by Lichina pygmaea under emersed and submersed conditions. New Phytol 114: 407–417

    Google Scholar 

  • Rice SK, Giles L (1994) Climate in the Pleistocene. Nature 371: 111–112

    Google Scholar 

  • Ronen R, Galun MP (1984) Pigment extraction from lichens with dimethyl sulfoxide (DMSO), and estimation of chlorophyll degradation. Environ Exp Bot 24: 239–245

    Google Scholar 

  • Tschermak-Woess E (1982) The algal partner. In: Handbook of lichenology, vol I. Galun M (ed) CRC Press, Florida, USA, pp 39–92

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Griffiths.

Additional information

This research was funded by Natural Environment Research Council grant no. GR3/8313. The authors would also like to thank Dr. B. Coppins, Royal Botanic Gardens Edinburgh and Prof. A. Roy Perry, National Museum of Wales, for access to herbarium collections, Dr. T. Booth for confocal microscopy work and Dr. A.J. Richards, University of Newcastle upon Tyne and Dr. O.L. Gilbert, University of Sheffield for identifying bryophytes and lichens respectively. E.S. would particularly like to thank Dr. M. Broadmeadow, The Forestry Authority, Farnham, Surrey, and Cristina Máguas, Universidade de Lisboa, for their advice and expertise at the beginning of the project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, E.C., Griffiths, H. The occurrence of the chloroplast pyrenoid is correlated with the activity of a CO2-concentrating mechanism and carbon isotope discrimination in lichens and bryophytes. Planta 198, 6–16 (1996). https://doi.org/10.1007/BF00197580

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00197580

Key words

Navigation