Skip to main content

Physiological Ecology of Dryland Biocrust Mosses

  • Chapter
  • First Online:
Photosynthesis in Bryophytes and Early Land Plants

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 37))

Summary

Soil biocrusts are assemblages of cyanobacteria, lichens, and mosses ubiquitous to arid and semi-arid (dryland) systems that offer an array of ecosystem services. Soil crust mosses are taxonomically diverse, account for up to 30 % of crust cover, and offer large contributions to crust biogeochemical functionality, yet remain the least understood component of the community. Because of selective pressures of their growth environment, such species are highly desiccation tolerant, with the ability to withstand the loss of most cellular water for extended periods of time, during which metabolism is suspended. Biocrust mosses can also tolerate larger ranges of temperature, light, and cellular water content than mesic species, yet still remain sensitive to certain aspects of environmental alteration. For one, changes in precipitation regime are likely to heavily influence survival in dryland mosses. Rainfall, occurring as discrete periods of hydration in dryland systems, causes mosses to undergo wet-dry cycles that result in either a positive or a negative carbon balance. Carbon balance can be used as a measure of performance during individual rainfall events, and is a metric for long-term viability. Recent work suggests rainfall event magnitude plays a large role in carbon balance, as does the frequency and seasonality with which events fall. Biocrust mosses are stimulated by elevated CO2, yet may not acclimate photosynthetically to long-term enrichment. Interestingly, elevated CO2 may favor stress tolerance at the expense of growth in biocrust moss, particularly at high temperatures. Finally, despite low annual growth rates, nitrogen appears to place physiological limitations on reproductive biology of biocrust mosses. High levels of nitrogen deposition, however, have been shown to cause toxicity, competitive exclusion by vascular plants, and can reduce cyanosymbioses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

RWC:

relative water content;

PAR:

photosynthetically active radiation;

NPQ:

non-photochemical quenching;

FACE:

Free-Air CO2 Enrichment;

SSS:

Spatial segregation of the sexes

References

  • Alpert P, Oechel W (1987) Comparative patterns of net photosynthesis in an assemblage of mosses with contrasting microdistributions. Am J Bot 74:1787–1796

    Article  Google Scholar 

  • Barker D, Stark L, Zimpfer J, Mcletchie N, Smith S (2005) Evidence of drought-induced stress on biotic crust moss in the Mojave Desert. Plant Cell Environ 28(7):939–947

    Article  Google Scholar 

  • Bates J (1997) Effects of intermittent desiccation on nutrient economy and growth of two ecologically contrasted mosses. Ann Bot 79:299–309

    Article  Google Scholar 

  • Belnap J (1995) Surface disturbances: their role in accelerating desertification. Environ Monit Assess 37:39–57

    Article  CAS  Google Scholar 

  • Belnap J (2003) The world at your feet: desert biological soil crusts. Front Ecol Environ 1(4):181–189

    Article  Google Scholar 

  • Belnap J, Budel B, Lange OL (2001) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management, vol 150, Ecological studies. Springer, Berlin/Heidelberg, pp 3–30

    Chapter  Google Scholar 

  • Belnap J, Phillips S, Troxler T (2006) Soil lichen and moss cover and species richness can be highly dynamic: the effects of invasion by the annual exotic grass Bromus tectorum, precipitation, and temperature on biological soil crusts in SE Utah. Appl Soil Ecol 32(1):63–76

    Article  Google Scholar 

  • Benassi M, Stark L, Brinda J, Mcletchie D, Bonine M, Mishler B (2011) Plant size, sex expression and sexual reproduction along an elevation gradient in a desert moss. The Bryologist 114(2):277–288

    Article  Google Scholar 

  • Bewley JD (1979) Physiological aspects of desiccation tolerance. Annu Rev Plant Phys 30:195–238

    Article  CAS  Google Scholar 

  • Bowker M, Stark L, Mcletchie DN, Mishler B (2000) Sex expression, skewed sex ratios, and microhabitat distribution in the dioecious desert moss Syntrichia caninervis (Pottiaceae). Am J Bot 87(4):517–526

    Article  PubMed  CAS  Google Scholar 

  • Bowker M, Belnap J, Davidson D, Phillips S (2005) Evidence for micronutrient limitation of biological soil crusts: importance to arid-lands restoration. Ecol Appl 15(6):1941–1951

    Article  Google Scholar 

  • Bowker M, Maestre F, Escolar C (2010) Biological crusts as a model system for examining the biodiversity-ecosystem function relationship in soils. Soil Biol Biochem 42(3):405–417

    Article  CAS  Google Scholar 

  • Brinda J, Stark L, Shevock J, Spence J (2007) An annotated checklist of the bryophytes of Nevada, with notes on collecting history in the state. The Bryologist 110(4):673–705

    Article  Google Scholar 

  • Brinda JC, Fernando C, Stark LR (2011) Ecology of bryophytes in Mojave Desert biological soil crusts: effects of elevated CO2 on sex expression, stress tolerance, and productivity in the moss Syntrichia caninervis Mitt. In: Tuba Z, Slack N, Stark LR (eds) Bryophyte ecology and climate change. Cambridge University Press, Cambridge, pp 169–191

    Google Scholar 

  • Buitink J, Hoekstra FA, Leprince O (2002) Biochemistry and biophysics of tolerance systems. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CAB International, Wallingford, pp 293–318

    Chapter  Google Scholar 

  • Castro C, McKee T, Pielke R Sr (2010) The relationship of the North American monsoon to tropical and North Pacific sea surface temperatures as revealed by observational analyses. J Clim 14:4449–4473

    Article  Google Scholar 

  • Clair L, Johansen J (1993) Introduction to the symposium on soil crust communities. West N Am Nat 53(1):1–4

    Google Scholar 

  • Coe KK, Belnap J, Sparks JP (2012a) Precipitation-driven carbon balance controls survivorship of desert biocrust mosses. Ecology 93(7):1626–1636

    Article  PubMed  Google Scholar 

  • Coe KK, Belnap J, Grote EE, Sparks JP (2012b) Physiological ecology of the desert moss Syntrichia caninervis after ten years exposure to elevated CO2: evidence for enhanced photosynthetic thermotolerance. Physiol Plant 144(4):346–356

    Article  PubMed  CAS  Google Scholar 

  • Csintalan Z, Takacs Z, Tuba Z, Proctor MCF, Smirnof N, Grace J (1997) Desiccation tolerance of grassland cryptograms under elevated CO2: preliminary findings. Abstr Bot 21:309–315

    Google Scholar 

  • Dilks TJK (1976) Measurement of the carbon dioxide compensation point and the rate of loss of 14 CO2 in the light and dark in some bryophytes. J Exp Bot 27:98–104

    Article  CAS  Google Scholar 

  • Dilks TJK, Proctor MCF (1974) The pattern of recovery of bryophytes after desiccation. J Bryol 8:97–115

    Google Scholar 

  • Dilks TJK, Proctor MCF (1979) Photosynthesis, respiration and water content in bryophytes. New Phytol 82:97–114

    Article  Google Scholar 

  • Evans R, Belnap J (1999) Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology 80(1):150–160

    Article  Google Scholar 

  • Furness S, Grime J (1982) Growth rate and temperature responses in bryophytes: II. A comparative study of species of contrasted ecology. J Ecol 70:525–536

    Article  Google Scholar 

  • Gaff DF (1997) Mechanisms of desiccation tolerance in resurrection vascular plants. In: Basra AS, Basra RK (eds) Mechanisms of environmental stress resistance in plants. Harwood Academic Publishers, London, pp 43–58

    Google Scholar 

  • Grote EE, Belnap J, Housman D, Sparks JP (2010) Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change. Glob Change Biol 16(10):2763–2774

    Article  Google Scholar 

  • Hamerlynck E, Csintalan Z, Nagy Z, Tuba Z, Goodin D, Henebry G (2002) Ecophysiological consequences of contrasting microenvironments on the desiccation tolerant moss Tortula ruralis. Oecologia 131(4):498–505

    Article  Google Scholar 

  • Hanson D, Swanson S, Graham L, Sharkey T (1999) Evolutionary significance of isoprene emission from mosses. Am J Bot 86(5):634–639

    Article  PubMed  CAS  Google Scholar 

  • Harper K, Pendleton R (1993) Cyanobacteria and cyanolichens: can they enhance availability of essential minerals for higher plants? West N Am Nat 53(1):59–72

    Google Scholar 

  • Hearnshaw GF, Proctor MCF (1982) The effect of temperature on the survival of dry bryophytes. New Phytol 90:221–228

    Article  Google Scholar 

  • Hinshiri H, Proctor M (1971) The effect of desiccation on subsequent assimilation and respiration of the bryophytes Anomodon viticulosus and Porella platyphylla. New Phytol 70:527–538

    Article  Google Scholar 

  • Housman D, Powers H, Collins A, Belnap J (2006) Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert. J Arid Environ 66(4):620–634

    Article  Google Scholar 

  • Huxman T, Snyder K, Tissue D, Leffler A, Ogle K, Pockman W, Sandguist D, Potts D, Schwinning S (2004) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141(2):1–15

    Google Scholar 

  • Jobson RW, Qiu Y-L (2010) Amino acid compositional shifts during streptophyte transitions to terrestrial habitats. J Mol Evol 72(2):204–214

    Article  PubMed  Google Scholar 

  • Kidron G, Barzilay E, Sachs E (2000) Microclimate control upon sand microbiotic crusts, western Negev Desert, Israel. Geomorphology 36(1–2):1–18

    Article  Google Scholar 

  • Lackner L (1939) Uber die Jahresperiodizitat in der Entwicklung der Laub-moose. Planta 29:534–616

    Article  Google Scholar 

  • Larcher W (2003) Physiological plant ecology: ecophysiology and stress physiology of functional groups, 4th edn. Springer, Berlin

    Book  Google Scholar 

  • Li Y, Wang Z, Xu T, Tu W, Liu C, Zhang Y, Yang C (2010) Reorganization of photosystem II is involved in the rapid photosynthetic recovery of desert moss Syntrichia caninervis upon rehydration. J Plant Physiol 167(16):1390–1397

    Article  PubMed  CAS  Google Scholar 

  • Lioubimtseva E (2004) Climate change in arid environments: revisiting the past to understand the future. Prog Phys Geogr 28(4):502–530

    Article  Google Scholar 

  • Liu Y, Cao T, Glime J (2003) The changes of membrane permeability of mosses under high temperature stress. The Bryologist 106(1):53–60

    Article  Google Scholar 

  • Loik M, Breshears D, Lauenroth W, Belnap J (2004) A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia 141(2):269–281

    Article  PubMed  Google Scholar 

  • Long S, Ainsworth E, Rogers A, Ort D (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55(1):591–628

    Article  PubMed  CAS  Google Scholar 

  • Lovelock C, Jackson A, Melick D, Seppelt R (1995) Reversible photoinhibition in Antarctic moss during freezing and thawing. Plant Physiol 109(3):955–961

    PubMed  CAS  Google Scholar 

  • Marschall M (2004) Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Ann Bot 94(4):593–603

    Article  PubMed  CAS  Google Scholar 

  • Martin CE, Churchill SP (1982) Chlorophyll concentrations and a/b ratios in mosses collected from exposed and shaded habitats in Kansas. J Bryol 12(2):297–304

    Google Scholar 

  • Mcletchie D (2006) Sporophyte and gametophyte generations differ in their thermotolerance response in the moss microbryum. Ann Bot 97(4):505–511

    Article  PubMed  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh AJ, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Meyer H, Santarius K (1998) Short-term thermal acclimation and heat tolerance of gametophytes of mosses. Oecologia 115(1):1–8

    Article  Google Scholar 

  • Mishler BD, Oliver MJ (1991) Gametophytic phenology of Tortula ruralis, a desiccation-tolerant moss, in the Organ Mountains of southern New Mexico. The Bryologist 94(2):143–153

    Article  Google Scholar 

  • Mishler BD, Oliver MJ (2009) Putting Physcomitrella patens on the tree of life: the evolution and ecology of mosses. Annu Plant Rev 36:1–15

    CAS  Google Scholar 

  • Ochyra R, Zander R (2002) The genera Didymodon and Bryoerythrophyllum (Pottiaceae) in Antarctica. J Bryol 24(1):33–44

    Article  Google Scholar 

  • Oliver MJ, Bewley JD (1984) Plant desiccation and protein synthesis V. stability of Poly(A)− and Poly(B)+ RNA during desiccation and their synthesis upon rehydration in the desiccation tolerance moss Tortula ruralis and the intolerant moss Cratoneuron filicinum. Plant Physiol 74:917–922

    Article  PubMed  CAS  Google Scholar 

  • Oliver MJ, Mishler BD, Quidenberry JE (1993) Comparative measures of desiccation-tolerance in the Tortula ruralis complex. I. Variation in damage control and repair. Am J Bot 80(2):127–136

    Article  Google Scholar 

  • Oliver MJ, Velten J, Wood AJ (2000a) Bryophytes as experimental models for the study of environmental stress tolerance: Tortula ruralis and desiccation tolerance in mosses. Plant Ecol 151:73–84

    Article  Google Scholar 

  • Oliver MJ, Tuba Z, Mishler BD (2000b) The evolution of vegetative desiccation tolerance in land plants. Plant Ecol 151:85–100

    Article  Google Scholar 

  • Oliver MJ, Velten J, Mishler BD (2005) Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integr Comp Biol 45:788–799

    Article  PubMed  Google Scholar 

  • Paolillo DJ (1979) On the lipids of the sperm masses of three mosses. The Bryologist 82:93–96

    Article  CAS  Google Scholar 

  • Proctor MCF (1979) Structure and eco-physiological adaptation in bryophytes. In: Clarke GCS, Duckett JG (eds) Bryophyte systematics. Systematics Association special volume 14. Academic, London

    Google Scholar 

  • Proctor MCF (2000) The bryophyte paradox: tolerance of desiccation, evasion of drought. Plant Ecol 151(1):41–49

    Article  Google Scholar 

  • Proctor MCF (2003) Experiments on the effect of different intensities of desiccation on bryophyte survival, using chlorophyll fluorescence as an index of recovery. J Bryol 25(3):201–210

    Google Scholar 

  • Proctor MCF (2008) Physiological ecology. In: Shaw AJ, Goffinet B (eds) Bryophyte biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Proctor MCF, Pence VC (2002) Vegetative tissues: bryophytes, vascular resurrection plants and vegetative propagules. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CAB International, Wallingford, pp 207–239

    Chapter  Google Scholar 

  • Proctor MCF, Smirnoff N (2000) Rapid recovery of photosystems on rewetting desiccation-tolerant mosses: chlorophyll fluorescence and inhibitor experiments. J Exp Bot 51(351):1695–1704

    Article  PubMed  CAS  Google Scholar 

  • Proctor MCF, Smirnoff N (2011) Ecophysiology of photosynthesis in bryophytes: major roles for oxygen photoreduction and non-photochemical quenching? Physiol Plant 141:130–140

    Article  PubMed  CAS  Google Scholar 

  • Proctor MCF, Tuba Z (2002) Poikilohydry and homoihydry: antithesis or spectrum of possibilities? New Phytol 156:327–349

    Article  Google Scholar 

  • Proctor MCF, Nagy Z, Csintalan Z, Takács Z (1998) Water-content components in bryophytes: analysis of pressure-volume relationships. J Exp Bot 49(328):1845–1854

    CAS  Google Scholar 

  • Proctor MCF, Oliver MJ, Wood A, Alpert P, Stark LR, Cleavitt N, Mishler B (2007) Desiccation-tolerance in bryophytes: a review. The Bryologist 110(4):595–621

    Article  CAS  Google Scholar 

  • Reed SC, Coe KK, Sparks JP, Housman DC, Zelikova TJ, Belnap J (2012) Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat Clim Change 2:752–755

    Article  CAS  Google Scholar 

  • Reynolds R, Belnap J, Reheis M, Lamothe P, Luiszer F (2001) Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source. Proc Natl Acad Sci 98(13):7123–7127

    Article  PubMed  CAS  Google Scholar 

  • Reynolds J, Kemp P, Ogle K, Fernandez R (2004) Modifying the pulse-reserve paradigm for deserts of North America: precipitation pulses, soil water, and plant responses. Oecologia 141(2):1–17

    Article  Google Scholar 

  • Rosentreter R, Bowker M, Belnap J (2007) A field guide to biological soil crusts of Western U.S. drylands. U.S. Government Printing Office, Denver

    Google Scholar 

  • Sala O, Lauenroth W (1982) Small rainfall events: an ecological role in semiarid regions. Oecologia 53(3):301–304

    Article  Google Scholar 

  • Schonbeck MW, Bewley JD (1981a) Responses of the moss Tortula ruralis to desiccation treatments. I. Effects of minimum water content and rates of dehydration and rehydration. Can J Bot 59:2698–2706

    Article  CAS  Google Scholar 

  • Schonbeck MW, Bewley JD (1981b) Responses of the moss Tortula ruralis to desiccation treatments. II. Variations in desiccation tolerance. Can J Bot 59:2707–2712

    Article  Google Scholar 

  • Schwinning S, Starr B, Wojcik N, Miller M, Ehleringer J, Sanford R Jr (2005) Effects of nitrogen deposition on an arid grassland in the Colorado plateau cold desert. Rangel Ecol Manage 58(6):565–574

    Article  Google Scholar 

  • Seel WE, Hendry GAF, Lee JA (1992) The combined effects of desiccation and irradiance on mosses from xeric and hydric habitats. J Exp Bot 43(8):1023–1030

    Article  Google Scholar 

  • Sharkey TD, Schrader SM (2006) High temperature stress. In: Madhava Rao KV, Raghavendra AS, Reddy KJ (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 101–130

    Chapter  Google Scholar 

  • Sharkey TD, Yeh S (2001) Isoprene emission from plants. Annu Rev Plant Physiol Plant Mol Biol 52:407–436

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Badger MR, von Caemmerer S, Andrews TJ (2001) Increased heat sensitivity of photosynthesis in tobacco plants with reduced Rubisco activase. Photosynth Res 67:147–156

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N (1992) The carbohydrates of bryophytes in relation to desiccation tolerance. J Bryol 17:185–198

    Google Scholar 

  • Smith SD, Monson RK, Anderson JE (1997) Physiological ecology of North American desert plants. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Stark LR (2001) Widespread sporophyte abortion following summer rains in Mojave Desert populations of Grimmia orbicularis. The Bryologist 104(1):115–125

    Article  Google Scholar 

  • Stark LR (2005) Phenology of patch hydration, patch temperature and sexual reproductive output over a four-year period in the desert moss Crossidium crassinerve. J Bryol 27(3):231–240

    Article  Google Scholar 

  • Stark LR, McLetchie D (2006) Gender-specific heat-shock tolerance of hydrated leaves in the desert moss Syntrichia caninervis. Physiol Plant 126(2):187–195

    Article  CAS  Google Scholar 

  • Stark LR, Mishler BD, Mcletchie DN (2000) The cost of realized sexual reproduction: assessing patterns of reproductive allocation and sporophyte abortion in a desert moss. Am J Bot 87(11):1599–1608

    Article  PubMed  CAS  Google Scholar 

  • Stark LR, McLetchie D, Mishler B (2005) Sex expression, plant size, and spatial segregation of the sexes across a stress gradient in the desert moss Syntrichia caninervis. The Bryologist 108(2):183–193

    Article  Google Scholar 

  • Stark LR, McLetchie D, Eppley S (2010) Sex ratios and the shy male hypothesis in the moss Bryum argenteum (Bryaceae). The Bryologist 113(4):788–797

    Article  Google Scholar 

  • Stark LR, Brinda JC, McLetchie DN (2011a) Effects of increased summer precipitation and N deposition on Mojave Desert populations of the biological crust moss Syntrichia caninervis. J Arid Environ 75:457–463

    Article  Google Scholar 

  • Stark LR, McLetchie DN, Smith SD, Oliver MJ (2011b) Responses of a biological soil crust moss to increased monsoon precipitation and nitrogen deposition in the Mojave Desert. In: Tuba Z, Slack N, Stark LR (eds) Bryophyte ecology and climate change. Cambridge University Press, Cambridge, pp 149–169

    Google Scholar 

  • Thompson D, Walker L, Landau F, Stark L (2005) The influence of elevation, shrub species, and biological soil crust on fertile islands in the Mojave Desert, USA. J Arid Environ 61(4):609–629

    Article  Google Scholar 

  • Tuba Z, Lichtenthaler HK (2011) Ecophysiology of homoiochlorophyllous and poikilochlorophyllous desiccation-tolerant plants and vegetations. In: Luttge U, Beck E, Batrels D (eds) Plant desiccation tolerance, vol 215, Ecological studies. Springer, Berlin/Heidelberg, pp 157–185

    Chapter  Google Scholar 

  • Tuba Z, Lichtenthaler H, Csintalan Z, Nagy Z, Szente K (1994) Reconstitution of chlorophylls and photosynthetic CO2 assimilation upon rehydration of the desiccated poikilochlorophyllous plant Xerophyta scabrida (Pax) Th. Dur. et Schinz. Planta 192(3):414–420

    Article  CAS  Google Scholar 

  • Tuba Z, Csintalan Z, Proctor MCF (1996) Photosynthetic responses of a moss, Tortula ruralis, ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: a baseline study at present-day CO2 concentration. New Phytol 133:353–361

    Article  Google Scholar 

  • Tuba Z, Csintalan Z, Szente K, Nagy Z, Grace J (1998) Carbon gains by desiccation-tolerant plants at elevated CO2. Funct Ecol 12(1):39–44

    Article  Google Scholar 

  • Tucker E, Costerton J, Bewley J (1975) The ultrastructure of the moss Tortula ruralis on recovery from desiccation. Can J Bot 53(2):94–101

    Article  Google Scholar 

  • Valanne N (1984) Photosynthesis and photosynthetic products in mosses. In: Dyer AJ, Duckett JG (eds) The experimental biology of bryophytes. Academic, London, pp 257–273

    Google Scholar 

  • Valko PG (2003) Monitoring biological soil crusts using hyperspectral remote sensing: determination of cyanobacteria, lichen, and moss contribution to spectral indices and observing community compositional changes due to global climate change. Senior thesis, George Washington University, St. Louis

    Google Scholar 

  • Vitousek P, Howarth R (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13(2):87–115

    Article  Google Scholar 

  • Wal R, Pearce I, Brooker R (2005) Mosses and the struggle for light in a nitrogen-polluted world. Oecologia 142(2):159–168

    Article  PubMed  Google Scholar 

  • Xu S, Jiang P, Wang Z, Wang Y (2009a) Crystal structures and chemical composition of leaf surface wax depositions on the desert moss Syntrichia caninervis. Biochem Syst Ecol 37:723–730

    Article  CAS  Google Scholar 

  • Xu S, Liu C, Jiang P, Cai W, Wang Y (2009b) The effects of drying following heat shock exposure of the desert moss Syntrichia caninervis. Sci Total Environ 407(7):2411–2419

    Article  PubMed  CAS  Google Scholar 

  • Zaady E, Kuhn U, Wilske B, Sandoval-Soto L, Kesselmeier J (2000) Patterns of CO2 exchange in biological soil crusts of successional age. Soil Biol Biochem 32(7):959–966

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Lloyd Stark for important discussions and insightful comments related to the information presented in this chapter, as well as use of photographs of Syntrichia caninervis. We also wish to acknowledge the members of the 2011–2012 Sparks Lab at Cornell University for helpful advice on previous versions of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten K. Coe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Coe, K.K., Sparks, J.P., Belnap, J. (2014). Physiological Ecology of Dryland Biocrust Mosses. In: Hanson, D., Rice, S. (eds) Photosynthesis in Bryophytes and Early Land Plants. Advances in Photosynthesis and Respiration, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6988-5_16

Download citation

Publish with us

Policies and ethics